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Abstract: Measurements of cloud condensation nuclei (CCN) concentrations (cm−3) at five levels of
supersaturation between 0.2–1%, together with remote sensing profiling and aerosol size distributions,
were performed at an urban background site of Athens during the Hygroscopic Aerosols to
Cloud Droplets (HygrA-CD) campaign. The site is affected by local emissions and long-range
transport, as portrayed by the aerosol size, hygroscopicity and mixing state. Application of a
state-of-the-art droplet parameterization is used to link the observed size distribution measurements,
bulk composition, and modeled boundary layer dynamics with potential supersaturation, droplet
number, and sensitivity of these parameters for clouds forming above the site. The sensitivity is then
used to understand the source of potential droplet number variability. We find that the importance of
aerosol particle concentration levels associated with the background increases as vertical velocities
increase. The updraft velocity variability was found to contribute 58–90% (68.6% on average) to the
variance of the cloud droplet number, followed by the variance in aerosol number (6–32%, average
23.2%). Therefore, although local sources may strongly modulate CCN concentrations, their impact
on droplet number is limited by the atmospheric dynamics expressed by the updraft velocity regime.

Keywords: CCN activity; droplet formation; cloud maximum supersaturation; relative contribution
of updraft velocity

1. Introduction

Aerosol indirect effects (AIE) on climate encompass the wide range of interaction of aerosols
with clouds, radiation and the hydrological cycle. AIE constitutes the largest source of uncertainty
in the assessment of climate sensitivity and anthropogenic climate change [1], and stems from the
highly coupled and multiscale interactions of particles with clouds, dynamics and radiation. Limited
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understanding of these interactions further hinders their correct implementation in models, magnifying
the uncertainty and envelope of equifinality in model assessments of AIE [2].

The ability of particles to act as cloud condensation nuclei (CCN) and form cloud droplets depends on
their size, chemical composition and morphology. These properties, in turn, are affected by the combination
of numerous aerosol sources and processing over their atmospheric lifetime. The activation of particles
also requires a sufficient level of water vapor supersaturation. Köhler theory determines the conditions
for activating a CCN into droplets through a set of thermodynamic requirements [3]. According to this
theory, exposure of a particle to a water vapor supersaturation that exceeds a characteristic (“critical”) level
forces the wet CCN to experience unconstrained growth and activate into a cloud droplet. The critical
supersaturation, sc, depends on particle size and moles of solute in its aqueous phase.

Supersaturation in clouds is generated when atmospheric airmasses are cooled beyond
saturation (usually through expansion cooling in an ascending updraft [4]). The maximum level
of supersaturation generated, smax, eventually determines the number of CCN that activate into cloud
droplets. It also depends on the airmass cooling rate and aerosol contained within a cloud parcel.
State-of-the-art mechanistic cloud droplet parameterizations [5–8] can readily and accurately estimate
the droplet number (Nd) and smax that would form in a cloudy air parcel, provided the aerosol size
distribution, chemical composition and updraft velocity are known.

Published work to date suggests that mechanistic parameterizations provide realistic descriptions
of cloud droplet formation [7,9–12] and improve the performance of atmospheric models [13–16].
However, the underlying physics reflect highly idealized cloud formation conditions; much work
remains to evaluate their application in subgrid cloud schemes [17], and understanding the uncertainty
associated with their usage in complex boundary layers and cloud types. Furthermore, it is
important to understand the underlying drivers of Nd variability (aerosol parameters, dynamics)
for a wide range of cloud-forming conditions. In situ data that link aerosols and clouds are critically
important for addressing all these issues, with the ultimate goal of reducing the uncertainty behind
aerosol-cloud-climate interactions [2].

This study investigates the aerosol-cloud droplet link in a polluted boundary layer, using data
collected during the Hygroscopic Aerosols to Cloud Droplets (HygrA-CD) field campaign [18], which
took place in Athens, Greece between 15 May and 22 June, 2014. The HygrA-CD is part of the
Initial Training on Atmospheric Remote Sensing (ITARS; www.itars.net) project, and combined in situ
sampling, remote sensing and modeling to enhance the understanding of aerosol impacts on warm
clouds. Here, we analyze data collected during the campaign to understand the drivers of droplet
number variability over the atmospheric states sampled.

2. Instrumentation and Methods

2.1. Sampling Site

Sampling and measurements were conducted at the National Center for Scientific Research
“Demokritos” station (DEM) at a site 275 m height a.s.l. (37.99◦ N, 23.82◦ E), at the municipality of
Agia Paraskevi, Attiki. The station is contributing to the Global Atmosphere Watch (GAW) and Aerosol
Cloud & Trace gases InfraStructure programs (ACTRIS). The site is a suburban location 7 km from the city
center and located at the foothills of Mount Hymettus, in an area surrounded by pine trees approximately
1.5 km away from a highway to the northwest. The closest residences are about 0.5 km away. The sampling
location was influenced by aerosol particles (PM) emitted from the city, under southerly and northwesterly
wind flow regimes. Details about the metropolitan Athens area can be found in Kanakidou et al. [19],
while internal circulation patterns in the urban complex are provided by Melas et al. [20].

2.2. Instrumentation and Models

The instrumentation setup consisted of a Droplet Measurement Technologies (DMT) continuous-flow
streamwise thermal-gradient CCN chamber (CFSTGC) [21] and a scanning mobility particle sizer (SMPS)
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comprised of a TSI Model 3080L electrostatic classifier (TSI Inc., Shoreview, MN, USA) and a condensation
particle counter (CPC; TSI Model 3772, TSI Inc., Shoreview, MN, USA) used to measure the dry aerosol size
distribution of particles with mobility diameters in the range of 10–550 nm and a time resolution of five
minutes. Prior to introduction into the SMPS and CFSTGC, aerosol was dried using a Nafion dryer. During
the campaign, the CFSTGC measured CCN of polydisperse aerosol at a flow rate of 0.5 L min−1 and a
top-bottom column difference, ∆T from 4–15 K, which followed the methodology of Bougiatioti et al. [22].
Total CCN concentrations were measured at 0.2, 0.4, 0.6, 0.8 and 1% supersaturation for 10 min, yielding a
CCN spectrum (i.e., CCN concentrations vs. supersaturation) every 50 min.

The AIAS mobile one-wavelength (532 nm) elastic backscatter depolarization lidar system [23]
was deployed at DEM to provide information about the dynamic activity of the planetary boundary
layer (PBL) (from ~300–1500 m a.s.l.) and to strengthen the link between CCN activity and cloud
formation via the observation of the presence or not of PBL clouds [24]. Additionally, the EOLE lidar
system [25] was running at the nearby site of the National Technical University of Athens (NTUA) [18]
to provide, among other parameters, enhanced information of the PBL structure at 1064 nm, such as
the vertical profiles of backscatter and extinction coefficients.

During the reported period of the CCN measurements, the vertical wind distributions over the
site required for the droplet number calculations were not directly measured, but computed with the
Weather Research and Forecasting-Advanced Research WRF (WRF-ARW) atmospheric modelling
system [18,26,27]. Three two-way nested domains were used with a horizontal grid resolution of
12 × 12 km for the external grid that covered the European continent, 3 × 3 km for the intermediate
domain over central Greece, and 1 × 1 km for the third grid over the greater Athens area (GAA) to
resolve the vertical motions over the complex terrain of the GAA close to the cloud formation scale.
Initial and boundary conditions were obtained from the National Center for Environmental Prediction
final analysis database (NCEP) [28] at 1◦ × 1◦ horizontal resolution, and at six-hourly time intervals.
The vertical model structure includes 31 terrain-following levels up to 50 hPa.

2.3. Analysis Methodology

Aerosols activate to form droplets in the CFSTGC when the water vapor supersaturation, s, that
develops in the instrument growth chamber is above their characteristic “critical supersaturation”,
sc. According to Kölher theory, the effects of soluble material on sc is given by a single-parameter
description of aerosol hygroscopicity, κ [29],

κ =
4A3

27d3
p,cS2

c
(1)

where dp,c is the dry particle critical diameter, A = (4Mwσw)/(RT$w), R is the universal gas constant and
Mw, σw and $w are the molar mass, surface tension and density, respectively, of water at the average
mid-column temperature, T, in the CFSTGC. The dp,c is obtained by matching the concentration of the
activated CCN at a given instrument supersaturation with the integrated SMPS number distribution,
starting from the largest available size bin down to lower sizes [30]. This method of determining
dp,c operates under the assumption that the aerosols are internally mixed, and is used as all particles
with sc below the instrument supersaturation will most likely activate in the instrument’s column.
Any fraction of externally mixed particles is expected to contribute only for a limited amount of time
during the day (e.g., only during early morning rush hour), but furthermore, any externally mixed
non-refractory material is not expected to affect the CCN-active aerosol population [31,32].

The Nd and smax that would potentially form in clouds over the sampling site was calculated with
the parameterization framework of Morales and Nenes [8]. In the calculations, the size distribution was
obtained directly from the SMPS every four minutes while the updraft velocity was calculated hourly
by the WRF model, as described in Section 2.2. It is important to understand the relative contribution
of aerosol chemical composition (κ), aerosol number concentration, and updraft velocity variations to
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the Nd droplet number variation. For this, we carried out a droplet number variance analysis following
the approaches of Bougiatioti et al. [33] and Kalkavouras et al. [34], where the sensitivity of Nd to
total aerosol number (Na), hygroscopicity (κ) and updraft velocity (w), being ∂Nd/∂Na, ∂Nd/∂κ and
∂Nd/∂w, respectively and the daily variance of each parameter, σNa, σκ, σw are used to quantify the
contribution of each parameter to the daily droplet number variance, σ2Nd:

σ2Nd =

(
∂Nd
∂Na

σNα

)2

+

(
∂Nd
∂κ

σκ

)2

+

(
∂Nd
∂w

σw

)2

(2)

From Equation (2) and the calculated partial sensitivity of Nd to the total aerosol number,
hygroscopicity parameter and updraft velocity, their relative contributions (εNa, εκ and εw,
respectively) to the droplet number are estimated by:

εX =

(
∂Nδ
∂X σX

)2

σ2Nd
(3)

where X is either Na, κ, or w.

3. Results

3.1. Aerosol and CCN Measurements

The time series of the observed CCN concentrations are shown in Figure 1, along with the NO2

concentrations. NO2 was chosen as a reference for local pollution because of its limited atmospheric
lifetime from emission (versus other secondary pollutants, e.g., O3) and its high correlation with particulate
matter [31]. As expected, CCN concentrations increased with increasing supersaturation. Throughout
the measurement period, CCN concentrations at each supersaturation level varied up to a factor of three.
The measured CCN at the three highest supersaturations were often very similar, indicating that most CCN
are large (larger than 80 nm) and activate at relatively low cloud supersaturations, which is indicative of
the high degree of aging for the CCN in the region [33]. The CCN concentration time series can be divided
into two periods, based on CCN levels. Period 1 represents the highest concentrations (17, 18, and 19 June),
which were concurrent with low wind speeds and a stagnant, capped shallow planetary boundary layer
(PBL) [18]. Period 2 (second half of 19 and all of 20 June) was characterized by less stagnation, increased
PBL ventilation and a concurrent decrease in PM and CCN concentrations.
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Figure 1. Cloud condensation nuclei (CCN) concentration levels at the measured supersaturations during
the measurement period. As a reference for the influence of local sources, the NO2 concentration levels are
also shown. The two shaded areas represent the different periods of high and low CCN levels, respectively.
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During Period 1, the limited ventilation of the PBL “trapped” particles within the boundary layer;
the high actinic fluxes (owing to the absence of clouds) tended to accelerate the photochemical aging
of particles in a cloudy boundary layer. The aerosol was mostly regional dust that originated from the
Sahara [18], and subsequently processed within the PBL (via condensation and coagulation). A detailed
analysis on air masses origin and different types of sampled aerosol is provided in [17]. The extent
of this processing, which is controlled by local emissions, gave rise to the correlation of NO2 and the
presence of large, aged particles that were strongly CCN active. On the other hand, when the high
CCN concentrations were associated mostly with local sources and pollution events (as in the second
half of 20 June and 21 June), CCN were smaller, less oxidized and high CCN concentrations were
observed with a time lag after high local NO2 concentrations, possibly because of direct processing
and the atmospheric consumption of NO2.

CCN activity can be represented by the fraction of total aerosol (CN) that act as CCN with
supersaturation s, R(s). Here, CN was calculated by the integration of the aerosol number size
distribution from the SMPS. The average values of R(s) for the whole measurement period for 0.2,
0.4, 0.6, 0.8 and 1% supersaturation were 0.24 ± 0.13, 0.31 ± 0.14, 0.35 ± 0.15, 0.39 ± 0.16 and
0.43 ± 0.18, respectively. It can be seen that, on average, only ~40% of the aerosol acted as CCN at
~0.8% supersaturation. Accumulation mode particles can result from the condensation of gaseous
components such as sulfate, nitrate and organics, and the coagulation of smaller particles, with
particles often larger than 100 nm being more aged and processed. When a separate mode is seen
above 80–100 nm, it is typically associated with a cloud-processed mode [33,35,36]. With an average
maximum cloud supersaturation of ~0.09% during Period 1 (see Section 4), it is concluded that cloud
processing could influence particles with sc below 0.09%, or with size dp,c above ~120 nm; indeed,
during Period 1, where there was a separate mode in that size range (95–130 nm), peaking at 110 nm
(Supplementary Material, Figure S1a,b), and particles originated from long-range transport, cloud
processing was likely an important process of aerosol aging that shaped the CCN distributions. Large
dust particles aloft also provided an extensive condensation sink, which reduced the chances of new
particle formation [37,38] despite considerable local emissions, and was supported by the correlation
of NO2 with PM but not necessarily the aerosol/CCN number.

During Period 2, where particles were significantly smaller (compared to Period 1), aerosol
may have been a mixture of freshly emitted particles and secondary particles formed from primary
emissions with condensation of gaseous components during atmospheric processing. Based on the
study of [39] conducted at the same site and during a similar time period of the year, fine aerosol is
mostly composed of organics and ammonium sulfate, with the organic aerosol being mostly oxygenated
(65%), including one very oxygenated and a moderately oxygenated factor indicative of the different
degrees of atmospheric processing, while primary sources contribute 35% [39]. The diurnal profile of
R(s) supports this; especially during Period 2 it exhibited higher values during nighttime and lower
values around local noon, with values being substantially lower than unity (Figure 2). The higher ratios
during nighttime were likely reflective of the atmospheric aging (through condensation/coagulation
and cloud processing) of small, less CCN-active aerosol directly emitted from new particle formation
events. Mixing of free tropospheric air containing aerosol that is too small to act as an efficient CCN
can also occur during daytime. This aerosol also aged and grew subsequently in the PBL; however,
the lack of large particles aloft suggests that the condensation sink provided by the additional particles
may not have been enough to mitigate new particle formation [31]. Studies carried out in other urban
environments [31,38] support these conclusions.
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Figure 2. Diurnal variability of the activation fractions (CCN/CN) during the measurement period for:
(a) 0.4% supersaturation; (b) 0.8% supersaturation. Activation fractions between 0.6–1% supersaturation
did not differ considerably.

3.2. Aerosol Hygroscopicity

Based on the methodology described in Section 2.3, the hygroscopicity parameter, κ, was
calculated for all supersaturation levels. The derived median values obtained for 0.2, 0.4, 0.6, 0.8
and 1% supersaturation were 0.36, 0.19, 0.13, 0.1 and 0.09, respectively. Values of the hygroscopicity
parameters for the different days are summarized in Table 1. Larger submicron particles tend to be
the most processed (aged), and contain larger fractions of inorganic salts owing to cloud processing.
The 0.36 value is very close to the proposed continental average of 0.3 [40,41], and reflects the highly
aged nature of the particles. Smaller particles (κ at higher supersaturations) are increasingly less
hygroscopic, likely from a larger organic mass fraction and externally mixed low-hygroscopicity
(freshly formed) particles [40]. The combination of the analysis of the activation fraction distributions
for a given level of supersaturation indicates that the hygroscopicity tends to increase with particle
size, but particles exhibit a variable degree of external mixing when multiple sources of particles
characteristic of urban environments are present [31,38].

Table 1. Hygroscopicity parameter κ as derived from the CCN measurements for the five different
levels of supersaturation.

Supersaturation (%) 17 June 18 June 19 June 20 June 21 June

0.2 0.47 ± 0.15 0.36 ± 0.14 0.29 ± 0.14 0.25 ± 0.15 0.29 ± 0.13
0.4 0.16 ± 0.06 0.17 ± 0.13 0.25 ± 0.18 0.22 ± 0.19 0.21 ± 0.14
0.6 0.10 ± 0.08 0.10 ± 0.10 0.17 ± 0.14 0.15 ± 0.14 0.15 ± 0.10
0.8 0.09 ± 0.08 0.09 ± 0.12 0.14 ± 0.14 0.15 ± 0.14 0.11 ± 0.07
1 0.08 ± 0.07 0.08 ± 0.14 0.14 ± 0.19 0.14 ± 0.15 0.09 ± 0.07

As supersaturation increases, the activation diameter decreases and smaller particles containing
larger amounts of less CCN-active material (e.g., organics, soot) and less inorganic salts start to
activate. Smaller particles often consist mainly of organics [33], and the obtained κ values are close
to the typical values found for oxidized organics [42–44]. As seen before, cloud processing can also
impact on aerosol processing when particles are in the range of 130 nm. With critical diameters,
dp,c, larger than 120 nm for the lowest supersaturation level being limited, and those found only
during Period 1 where the aerosol had dust influence and was subject to long-range transport, it is
most probable that most of the time, the aging of particles is due to oxidation and condensation [39].
Even though dust-laden air masses are expected to influence mostly coarse mode particles, it has
been reported that in the area, even in ultrafine particles (0.041–0.225 µm aerodynamic diameter),
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mineral dust can account for up to 18% of the total mass of the mode [45,46]. Therefore the larger,
more hygroscopic particles are most probably regional, as they contained large amounts of condensed
material that was not locally produced (e.g., during cloud processing). For particles smaller than
80 nm, the condensation of oxidized organics and secondary organic aerosol (SOA) can explain the
gradual change of the hygroscopicity from 0.1 to 0.36, with decreasing supersaturation (and increasing
particle critical diameter).

4. Discussion

Impact on Droplet Number and Cloud Formation

Based on the methodology developed in Section 2.3, we calculated the maximum supersaturation
(smax) that would form in a cloud, given the knowledge of the aerosol number size distribution,
chemical composition and updraft velocity; the number of droplets (Nd) that are formed under these
conditions is then given by the CCN concentration at smax. Figure 3 represents the calculated time
series of smax and Nd with respect to the estimated updraft velocity. It can be seen that the droplet
number correlates with the updraft velocity very well. When taking into account the CCN time series
(Figure 1), smax is negatively correlated, owing to the increased competition for water vapor when
CCN concentrations increase. During Period 1, when CCN concentrations were the highest, updraft
velocities remained very low (owing to stagnant PBL conditions) and particles strongly competed for
water vapor. Therefore, the potential smax was very low, below 0.05%, keeping the potential Nd at
relatively low levels (100–200) and shifting the size of particles affected by cloud processing to large
sizes (>155 nm). This level of supersaturation is extremely low, implying that the clouds forming may
have been fogs, which can be indistinguishable from haze (as the growth rates of droplets at such
supersaturation are very low) [47]. Therefore, even if aerosol concentrations may be high and vary
substantially, this variability will not reflect on the Nd timeseries, as its sensitivity to aerosol is very low
(see the estimated contribution of Na to Nd variance of 6–12% in Figure 4c). Fluctuations in aerosol and
CCN concentrations may also be partially affected by boundary layer height variability; nevertheless,
in an urban environment such as Athens, emissions from local sources and their atmospheric processing
are mostly responsible for the observed concentrations [39]. These findings are in accordance with
recent studies where new particle formation and biomass burning events were augmented by 87%
or higher, but led to only a 12% (or less) increase in Nd [31,32]. During Period 2, total aerosol and
CCN concentrations were lower, which as expected leads to higher maximum supersaturation levels
(around 0.18%). Despite the lower CCN levels, cloud updraft velocities were elevated, eventually
yielding higher levels of estimated Nd, compared to Period 1 (Figure 3). The respective sensitivity of
Nd to aerosol is much higher (Figure 4c).
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Figure 3. Calculated maximum supersaturation and droplet number with regard to the updraft velocity,
during the measurement period.
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Figure 4. Timeseries of the different estimated parameters that contribute to the droplet formation:
(a) variance of updraft, hygroscopicity and aerosol number, (b) attribution of Nd variability to Na, κ,
and w, and (c) sensitivity of Nd to Na, κ and w from the droplet parameterization.

The smax levels computed for each period provide conclusions that are consistent with remote sensing
observations. The EOLE Raman lidar (1064 nm) for Period 1 did not detect the formation of any clouds
(Figure 5a), consistent with the extremely low values of smax and vertical velocity that would develop in
any cloudy parcels. The absence of any clouds and the specific conditions during each period are also
presented in detail by Papayannis et al. [18]. On Jun 20, EOLE detected a deep PBL, updraft velocities
were considerably higher, especially during early morning hours, and RH levels were much higher than
during Period 1. These meteorological conditions are more favorable for the formation of clouds, which
was detected by the Raman lidar on the top of the PBL during early morning (Figure 4b), and even lead to
a limited precipitation event after local noon. For that day, the higher maximum supersaturation led to
estimated droplet numbers that were three-fold higher, compared to those on June 18.
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Figure 5. Collocated EOLE Raman lidar measurements (1064 nm) for June 18 (a) and June 20 (b)
denoting the PBL structure and the presence/absence of aerosols and clouds.
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The seemingly counterintuitive finding that less polluted clouds (Period 2) exhibit higher Nd
than in more polluted conditions (Period 1) illustrates the need to understand the contributions of
both dynamics and aerosol effects on droplet formation as they covary between atmospheric states.
By calculating the relative contribution of the total aerosol number, hygroscopicity and updraft velocity
to the droplet number (Figure 4b), it is shown that, on average, the highest contribution to the
variance of Nd is attributed to the updraft velocity variability (εw~68.6% on average), followed by the
variance in aerosol number (εNa~23.2% on average) and to a lesser extent the chemical composition
(εκ~8% on average). Furthermore, during Period 1, where the relative dispersion of Nd was high
(σ(Nd)/Nd = 0.71 ± 0.09) and the variability of the total aerosol number was low, the variance of the
updraft velocity was almost entirely responsible for the variance in droplet number (εw~86.5% from
w vs. 10.7% contribution of Na; Figure 4b). For Period 1, Nd and σw have an excellent correlation
(Figure 6a; R2 = 0.99), which is not seen in the Nd vs. Na correlation (Figure 6b). This further supports the
finding that droplet number variability mostly reflects vertical velocity variability in environments with
very high aerosol numbers. Given this, the temporal variability in Nd (from in situ or remote-sensing
data) can be used as a direct measure of average updraft velocity. Furthermore, for turbulent boundary
layers, the hourly average vertical velocity is very close to the “characteristic” velocity, w*, for the
average droplet number over a Gaussian distribution of vertical velocities, which in turn is directly
related to the boundary layer turbulent kinetic energy (TKE) and subgrid velocity variance, σw, as w*
~0.8 σw [17]. This means that the droplet number variability directly reflects the turbulent structure of
the PBL and is not modulated by aerosol variations when the latter are at high enough concentrations,
such as during Period 1. Observations before Period 1 during HygrA-CD support this [24].
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Figure 6. Correlation of droplet number with updraft velocity (a) and total aerosol number (b) during
Period 1, when updraft velocities were low and aerosol numbers were high.

The contribution of parameters to Nd during Period 2 was very different from Period 1.
The relative dispersion of the droplet number was about 50% (σ(Nd)/Nd = 0.43 ± 0.03); given the high
variability of the total aerosol number (σ(Na)/ Na = 0.65 ± 0.02) and non-negligible sensitivity of Nd
to Na, the contribution of the updraft velocity to the variance of Nd is still high (60%) but considerably
affected by Na (28.4%) and hygroscopicity (11.5%). Furthermore, the correlation between updraft
velocity and droplet number is considerably limited (R2 < 0.4) when compared to Period 1. This
means that mapping Nd variability may not necessarily directly reflect the turbulent structure in the
PBL, but could be significantly modulated by pollution plumes throughout the urban environment.
However, if one does have vertical velocity variations (from remote sensing) available, then it would
be possible to define regions within the Planetary Boundary Layher (PBL) where clouds are mostly
affected by aerosol variations and vice versa.
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5. Summary and Conclusions

The international measurement campaign HygrA-CD, which was conducted in the greater Athens
area during early summer 2014, aimed to study the impact of aerosol physico-chemical properties
on cloud formation. Overall, it demonstrated the importance of the covariation of aerosol and
dynamics in the formation of clouds within the boundary layer. More specifically, the combination
of CCN measurements with remote sensing retrievals of aerosol size distribution showed that CCN
concentrations are higher when the PBL height is lower, as the latter leads to a limited ventilation and
dispersion of the locally produced aerosol aloft. Inversely, when the PBL is higher, CCN concentrations
tend to decrease.

During the measurement period, mineral dust-laden regional aerosol containing more and larger
particles appeared to be more hygroscopic, while locally produced aerosol with smaller critical
diameters was less hygroscopic. CCN activation fractions generally exhibited a diurnal cycle, with
higher values during nighttime and lower during daytime, which can be attributed to the subsidence
of air masses containing aged particles from aloft inside the mixing layer during night.

Based on the aerosol size distribution, the chemical composition and updraft velocity variations,
the droplet number and maximum supersaturation for clouds forming over the site were calculated.
Despite the large variability in aerosol number concentrations and CCN during the measurement
period, the variability in cloud droplet number was mostly associated with variations in cloud-scale
updraft velocities. Especially when updraft velocities are low, the excellent correlation between the
estimated droplet number and the updraft velocity can potentially be used for the estimation of vertical
wind profiles when such remote sensing data are not available. Aerosol number, chemical composition
and atmospheric processing, which impact the particle size, also influence the cloud droplet number,
but to a lesser extent, with this influence becoming more important when updraft velocities are higher.
This leads to the conclusion that during early summer, for non-convective updraft regimes, the greater
Athens area is a vertical-velocity limited environment for cloud droplet formation.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/2073-4433/8/6/108/s1.
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