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Abstract: The four-dimensional variational data assimilation (4DVar) method is one of the most
popular techniques used in numerical weather prediction. Nevertheless, the needs of the adjoint
model and the linearization of the forecast model largely limit the wider applications of 4DVar. 4D
ensemble-variational data assimilation methods (4DEnVars) exploit the strengths of the Ensemble
Kalman Filter and 4DVar, and use the ensemble trajectories to directly estimate four-dimensional
background error covariance. This study evaluates the role of the empirical orthogonal function (EOF)
analysis in 4DEnVars. The widely-recognized 4DEnVar method DRP-4DVar (the Dimension-reduced
projection 4DVar) is adopted as the representation of EOF analyses in this study. The performance
of the Dimension-reduced projection 4DVar (DRP-4DVar), 4DEnVar (i.e., another traditional
4DEnVar scheme without EOF transformation), and the Ensemble Transform Kalman Filter
(ETKF) was compared to demonstrate the effect of the EOF analysis in DRP-4DVar. Sensitivity
experiments indicate that EOF analyses construct basis vectors in eigenvalue space and the dimension
reduction in the DRP-4DVar approach helps improve computational efficiency and analysis accuracy.
When compared with 4DEnVar and the ETKF, the DRP-4DVar demonstrates similar analysis
root-mean-square error (RMSE) to 4DEnVar, whereas it surpasses the ETKF by 22.3%. In addition,
sensitivity experiments of DRP-4DVar on the ensemble size, the assimilation window length, and
the standard deviation of the initial perturbation imply that the DRP-4DVar with the optimized EOF
truncation number is robust to a wide range of the parameters, but extremely low values should be
avoided. The results presented here suggest the potential wide application of EOF analysis in the
hybrid 4DEnVar methods.

Keywords: 4DEnVar; ensemble transform kalman filter; dimension-reduced projection 4DVar;
space transformation

1. Introduction

The four-dimensional variational data assimilation (4DVar) method, the Ensemble Kalman Filter
(EnKF), and “hybrid” methods are the most promising methods to provide optimal analysis for
numerical weather prediction (NWP) [1,2]. The traditional 4DVAR technique could optimally fit
observations at multiple times through the trajectory of the model solution while constraining the
output with model dynamics and physics, but it requires the adjoint and tangent linear approximation
of the forecast model due to the implicit expression of the control variables in the cost function. On the
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other hand, the usual EnKF is easier to perform and could provide flow-dependent error estimates of
the background errors by forecasting the statistical characteristics, but it lacks the dynamic constraint
as in 4DVar. The 4DEnVar methods aim to retain the advantages of 4DVar and EnKF while avoiding
the need of an adjoint or tangent linear model of the forecast model, and it has become increasing
popular. Lorenc and Kalnay et al. suggest the encouraging achievement of the 4DEnVar methods
in advancing data assimilation [3,4]. Gustafsson also points out that the optimal approach is to
combine the best ideas of 4DVar and EnKF [5]. Previous studies have evaluated the performance of
4DVar and EnKF with comparing experiments by Caya et al. in a cloud-resolving model, Yang et al.
in a quasi-geostrophic model, Buehner et al. in global deterministic NWP, Poterjoy et al. in the
Weather Research and Forecasting (WRF) model, Miyoshi et al. in the Japan Meteorological Agency’s
operational global analysis and prediction system, and Skachko et al. in a stratospheric chemical
transport model [6–12]. With the development of hybrid methods, recent studies have shown favorable
development of a hybrid method which combines the advantages of 4DVar and EnKF [8–10,13].

Many hybrid methods have been proposed using 4DVar or EnKF in recent years. Similar to
the extension of the three dimensional variational technique (3DVar) to the 4DVar for assimilating
asynchronous observations, Evensen and Van Leeuwen, Hunt et al., and Fertig et al. also extend EnKF
to the Ensemble Kalman Smoother (EnKS) and a four-dimensional Local Ensemble Transform Kalman
Filter (4D-LETKF), respectively [14–16]. With the idea of employing ensemble forecast to provide
flow-dependent background error covariance matrices, Zhang et al. coupled 4DVar with EnKF to
produce the Ensemble 4DVar method which runs both EnKF and 4DVar, and replaces the ensemble
mean of EnKF with the 4DVar analysis [3,17,18].

Both four-dimensional ensemble-variational data assimilation methods (4DEnVars) and En4DVars
use a hybrid combination of fixed background error covariance with localized covariance from an
ensemble of current forecasts designed to provide flow-dependent error estimates. The fundamental
difference between the methods is their modeling of the time evolution of errors: En4DVars also
uses a linear model and its adjoint, while 4DEnVar uses a localized linear combination of nonlinear
forecasts [19]. Furthermore, the 4DEnVar methods require no adjoint model, therefore they are easy to
implement and computationally economical. For example, in Qiu’s 4DEnVar, the analysis increment is
expressed by a linear combination of basis vectors constructed by the singular value decomposition
(SVD), and then the cost function is transformed to be an explicit expression of control variable without
the need of an adjoint and tangent linear model [20,21]. Also, Liu et al. presented a 4DEnVar algorithm
which directly uses the background ensemble perturbations as basis vectors [22,23]. In addition,
Tian et al. developed a POD (proper orthogonal decomposition)-based ensemble four-dimensional
variational data assimilation approach (referred to as POD-4DEnVar). The POD-4DVar method
exploits the strengths of the EnKF and 4DVar, and the feasibility and effectiveness of POD-4DVar
has been demonstrated in an idealized model, WRF, as well as global chemistry transport model
Geos-Chem [24–27]. It should be noted that reduced order strategy is a promising way for efficient
4DVar assimilation [28–33], for example, the POD/DEIM developed by Stefanescu et al. [28]. Moreover,
Wang et al. developed a dimension-reduced projection 4DVar (DRP-4DVar) method, which employed
the empirical orthogonal function (EOF) to project perturbation ensemble to a reduced space spanned
by the dominant EOF modes, and then used basis vectors to obtain an analysis increment which
optimally combines the observations and backgrounds [34,35]. The above 4DEnVar methods share
common features with previous hybrid methods (e.g., [18]), which combine the advantages of the
flow-dependent background error covariance matrix (referred to as B-matrix) and simultaneous
assimilated observations at multiple times.

As one of the representative 4DEnVar approaches, DRP-4DVar has been studied in a series of
studies. Liu et al. demonstrated that the DRP-4DVar method reasonably generated a flow-dependent
B-matrix capturing the weather trends during the assimilation window by using the fifth-generation
Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (MM5) [36].
Zhao and Wang noted that the performance of the DRP-4DVar method has been improved with
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the initial perturbation samples derived from the background error covariance of the WRF-3DVar
assimilation system [37]. A series of numerical experiments were also conducted by using Lorenz-96
model to investigate the sensitivity of assimilation parameters (e.g., the assimilation window length
and the flow-dependent background error covariance) of DRP-4DVar in comparison with the EnKF [38].
Zhao et al. developed a DRP-4DVar assimilation system based on MM5, and successfully assimilated
the simulated sea level pressure observations to improve the typhoon-track forecasts in the observing
system simulation experiments (OSSEs) [39]. However, previous studies paid little attention to the
EOF-, SVD-, or POD-based techniques and their related parameters (e.g., truncation number) in the
4DEnVar method family [20,24,25,40]. Investigating and understanding the role of EOF is of great
importance for the study of these 4DEnVars since the basis vectors expressing the analysis variables in
the 4D space are constructed by the technique. This distinguishes the current paper from most others
on hybrid data assimilation, which focus on comparing 4DVar, 4DEnVar, and 3DEnVar.

This study focuses on discussing the impact of EOF analysis in the DRP-4DVar method and the
optimization of related parameters, by comparison with another traditional 4DEnVar scheme without
the use of EOF transformation (referred to as 4DEnVar hereafter, [22]) and the Ensemble Transform
Kalman Filter (ETKF, [41–43]) in theory and practical application. The ETKF and 4DEnVar methods
share a common feature with the DRP-4DVar method, in that the analysis increments are expressed by
expansion of the basis vectors, yet directly use the background ensemble perturbations in 3D space
and 4D space, respectively, as the basis vectors. Thus, a slightly unusual presentation of the ETKF, the
4DEnVar, and the DRP-4DVar formulas is given, emphasizing the theoretical differences, particularly
those related to the EOF analysis. The three methods are then applied to the Lorenz-96 model,
illustrating the practical outcomes resulting from the theoretical differences. Further, the influence of
the truncation number of EOF modes is investigated, since insufficient EOF modes might not represent
the spatial structure and temporal evolution of the analysis variables, whereas surfeit EOF modes
include noise and cost more computational resources. The analysis of DRP-4DVar, 4DEnVar, and the
ETKF are compared to demonstrate the effect of the EOF analysis in DRP-4DVar. Finally, the sensitivity
of the EOF analysis to parameters is examined, which are the ensemble size, the assimilation window
length, and the ensemble spread of initial perturbations for each assimilation window. Clarifying
the role of the EOF component and its relevant parameter optimization is helpful to improve the
computational efficiency and result accuracy of the DRP-4DVar method. As the DRP-4DVar method is
one of the representative approaches in the family, the discussion presented here can also facilitate the
understanding and applying of other 4DEnVar hybrid methods. The nomenclature in this paper follows
Recommended Nomenclature for EnVar Data Assimilation Methods by WMO’s DAOS WG [38].

2. Mathematical Formulations

2.1. The DRP-4DVar and the 4DEnVar Methods

By minimizing the incremental format of the standard 4DVar cost function J(x′), an optimum
increment (xα)′ at the beginning time t0 can be written as Equation (1) over an assimilation window
of length Lw (Lw = tN − t0). Given the background state x0,b at t0 (the beginning of the assimilation
window) and the observations yobs,i at ti (i = 0, 1, . . . , N), the minimization of the cost function provides
the analysis increment and then the analysis initial condition.

J(x′0) =
1
2
(
x′0
)TB−1(x′0)+ 1

2
[
y′(x0

′)− y′obs
]TO−1[y′(x0

′)− y′obs
]
, (1)

x′0 = x0 − x0,b, (2)
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y′obs =


y′obs,0
y′obs,1

...
y′obs,N

 =


yobs,0 − H0(x0,b)

yobs,1 − H1(Mt0→t1(x0,b))
...

yobs,N − HN(Mt0→tN (x0,b))

, (3)

y′(x0
′) = y(x0)− y(x0,b) =


y0(x0)− y0(x0,b)

y1(x0)− y1(x0,b)
...

yN(x0)− yN(x0,b)

 =


H0(x0)− H0(x0,b)

H1(Mt0→t1(x0))− H1(Mt0→t1(x0,b))
...

HN(Mt0→tN (x0))− HN(Mt0→tN (x0,b))

, (4)

O =


O1 0 ... 0
0 O2 . . . 0
...

...
. . .

...
0 0 ... ON

, (5)

where x0,b with a dimension of Lx × 1, refers to the background or first guess at the initial time t0 and
B denote the corresponding B-matrix with a dimension of Lx × Lx. y′obs represents the observation
increment which is the difference between the observation yobs and the simulated observation y(x0) of
the background x0,b through the forecast model and the observation operators. y′(x0

′) represents the
simulated observation increment of x′0,b. In the assimilation window[t0, tN ], y′(x0

′), y′obs,i and yobs,i
are Si × 1 dimensional column vectors at ti and the number of observation times is N + 1. Therefore,

y′obs and y′(x0
′) have a dimension of Ly × 1, where Ly =

N
∑

i=0
Si· Mt0→ti denotes the model forecast

integrated from t0 to ti. Hi denotes the observation operator at ti. O refers to the observation error
covariance matrix, which include diagonal matrices Oi on its diagonal line since observation errors are
assumed to be uncorrelated.

The control variable x′0 in the incremental format of the 4DVar cost function is connected with x′ i
through forward model, so the gradient as well as the minimization of the cost function with respect to
x′0 is difficult to compute. 4DVar utilizes optimal control theory [44,45] to minimize the cost function
defined over the time interval by using an adjoint model to determine its gradient, but minimizing the
cost function is still computationally expensive. Additionally, coding the adjoint model for 4DVar and
maintaining the update with the model upgrading require tremendous effort.

The 4DEnVar methods (e.g., DRP-4DVar and 4DEnVar in this paper) substantially reduce
computational cost and need no adjoint model [23,34]. The 4DEnVars use Xen and Yen, ensemble
perturbations generated by model integration to construct Py and Px, the basis vectors, and then
express x′0 and y′b by a linear combination of the basis vectors with weighting coefficients given by α:

x′0 = α1X1 + α2X2 + ... + αmXm = Pxα, (6)

y′b = y′(x0
′) = α1Yb,1 + α2Yb,2 + ... + αmYb,m = Pyα, (7)

where m (1 ≤ m ≤ K) is the vector number of the basis, and K is the ensemble size of the perturbation
ensemble. Meanwhile, similar to the ensemble methods, 4DEnVars estimate the B-matrix in the
m-dimension space spanned by the basis vectors:

B =
1

m− 1
(Px − Px)(Px − Px)

T
= Px(bαbT

α )P
T
x , (8)

Px =
1
m

m

∑
i=1

P(i)
x , (9)

where the matrix bα is defined as Pxbα = 1/
√

m− 1
(
Px − Px

)
.
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The 4DEnVar methods transform Equation (1) into Equation (10), which means transforming the
implicit cost function of x′0 into one of the weighting coefficient matrix α, and then derives the explicit
solutions of the analysis increment x′0,a and its weighting coefficients matrix α0,a. Thus, the iterative
minimization and the adjoint model are no longer needed, and the computational cost is substantially
reduced. With the information of observation increment y′obs, α0,a is derived in the space spanned by
the basis vectors (Equation (11)).

J(α) =
1
2

αT(bαbT
α )
−1

α +
1
2
(y′obs − Pyα)TO−1(y′obs − Pyα), (10)

α0,a = [(bαbT
α )
−1

+ Py
TO−1Py]

−1
Py

TO−1y′obs, (11)

x′0,a = Pxα0,a. (12)

Finally, the analysis x0,a at the time t0 is obtained by Equation (13), and then is employed as
the initial condition for the forecast of the next time. Equation (13) indicates that the analysis initial
condition x0,a is derived through a linear combination of the basis vectors with weighting coefficients
given by α0,a.

x0,a = x0,b + Pxα0,a. (13)

The 4DEnVar method directly uses Xen and Yen as Py and Px, respectively. All information about
the ensemble perturbations is kept and the analysis state is performed in the K-dimension space
spanned by the ensemble perturbations.

Xen = xen − x0,b, (14)

Yen = yen − yb, (15)

where yb refers to y(x0,b), xen and yen are ensemble of the prior members and the simulated
observations, with a dimension of Lx × K and Ly × K, respectively. The Xen and Yen are generated by
either historical sampling (e.g., [34]) or ensemble forecast for the assimilation window (e.g., [36,37,46]),
and this study focuses on the latter scenario. Further, the background ensemble perturbations Xen are
assumed to be a Gaussian distribution with Xen = 0 and given standard deviations. The background
covariance B is approximately estimated by

B = (K− 1)−1Xen(Xen)
T . (16)

In the DRP-4DVar method, the basis vectors Py and Px are generated by projecting Xen and Yen to
the reduced dimension space spanned by Uy (a K×m matrix), the leading mth EOFs of Yen.

Py = [Yb,1, Yb,2, ..., Yb,m]Ly×m = YenUy, (17)

Px = [X1, X2, ..., Xm]Lx×m = XenUy. (18)

The EOF analysis here reduces the dimension of Yen, through keeping the first mth EOF that
make YenUy have maximum variability [41]. The validation of Equation (18) is under the tangent
linear approximation. The contribution of the EOFs eigenvalues to the variance is measured by the
corresponding eigenvalues in a m×m matrix Λ2 = Diag

(
λ2

1, . . . , λ2
m
)
.

Yen
TYen = UyΛ2Uy

T , (19)

Uy = [u1, u2, ..., um]K×m. (20)

Therefore, the EOF analysis in the DRP-4DVar reduces the K-dimensional space to a smaller
m-dimensional space, and filters the noise or redundant components that contributing little to the
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variability. In addition, bα (Equation 8) is a singular matrix with a rank of m − 1, and leads to an
underestimation of B. To ameliorate such problem, an improved bα as Equation (21) is proposed by
Wang et al. [34], and is proved necessary by Liu et al. [30].

bα =
1√
m


1− 1

m+1 − 1
m+1 ... − 1

m+1
− 1

m+1 1− 1
m+1 ... − 1

m+1
...

...
. . .

...
− 1

m+1 − 1
m+1 − 1

m+1 1− 1
m+1


m×m

. (21)

2.2. The ETKF

The ETKF [41–43] shares the common feature with 4DEnVars, in that the analysis is expressed
with weight coefficients that linearly combine the basis vectors, though the basis vectors are simply
the background ensemble in three-dimensional space and the ensemble perturbations are updated
as well. In particular, matrices and vectors related to Ly have Ly = Lx in the following equations at
analysis time.

At an analysis time, the background ensemble xb is represented by

xb = xb + Xen,b, (22)

where xb is a column vector containing the mean of the background ensemble and Xen,b is a matrix
whose columns are the background ensemble perturbations from the ensemble mean. For the mean
analysis, the increments and y′b are represented by the linear combination of the background ensemble
perturbations with the weight coefficients given by w

x′ = w1X1 + w2X2 + ... + wkXk = Xen,bw, (23)

y′b = w1Yb,1 + w2Yb,2 + ... + wkYb,k = Yen,bw. (24)

Since B is estimated in the ETKF as Equation (25), the cost function for the analysis time then
becomes an explicit function of weighting coefficient matrix w.

B = (K− 1)−1Xen,b(Xen,b)
T , (25)

J(w) =
K− 1

2
wTw +

1
2
(y′obs − Yen,bw)

TO−1(y′obs − Yen,bw). (26)

Computing the gradient of the J(w) with respect to w for the minimization, the weight coefficients
for the analysis mean wa and the transform matrix B̃a are obtained. It should be noted that the ETKF
method transforms forecast perturbations into analysis perturbations by a transformation matrix B̃a

and then use B̃a to solve the analysis state [41–43]. Similar to Equation (11), Equation (27) indicates the
K× 1 vector of weight wa is derived with information about observation increments, yobs − H(xb)

wa = (B̃a)(H(xb)
TO−1(yobs − H(xb)), (27)

B̃a = [(K− 1)I + Yen,bO−1Yen,b]
−1

. (28)

The mean analysis is then computed from the background ensemble mean and a linear
combination of the background ensemble perturbations.

xa = xb + x′a = xb + Xen,bwa. (29)
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In addition, the analysis ensemble perturbations are converted from the background ensemble
perturbation ensemble by the symmetric square root of (K− 1) B̃a.

Wa = [(K− 1)B̃a]
1
2 , (30)

Xen,a = Xen,bWa. (31)

Equations (29) and (31) indicate that the analysis ensemble is derived through a linear combination
of the background ensemble, with weighting coefficients given by wa (a K× 1 vector) for the mean
analysis, and Wa (a K × K matrix) for the analysis perturbations [42]. Therefore, the k-th analysis
ensemble member is obtained by

xa,k = xa + Xen,a,k = xb + Xen,b,k[wa + Wa,k], (32)

where Xen,b,k, Xen,a,k, and Wa,k refer to the k-th column corresponding matrices, respectively.

2.3. Comparison among the DRP-4DVar, the 4DEnVar, and the ETKF Methods

As shown in Figure 1, the DRP-4DVar, the 4DEnVar, and the ETKF methods theoretically differ in
the construction of basis vectors and temporal evolution of the ensemble perturbations. The 4DEnVar
and the ETKF methods directly employ the background ensemble perturbations as the basis vectors,
and the major analysis of the two methods takes place in a K-dimensional space spanned by the
background ensemble perturbations. Xen,b, the ensemble perturbations, can also be regarded as a
linear transformation from the original K-dimensional space to one spanned by Xen,b. This helps avoid
the mathematics conceptual difficulty in viewing them as basis vectors, since the columns of Xen,b are
linearly dependent and the B-matrix has rank at most K− 1 [40]. Yet constructing Py in 4DEnVar uses
ensemble perturbations in four-dimensional space, whereas the ETKF uses ensemble perturbations in
three dimensions.

Instead of directly using the background ensemble perturbations, DRP-4DVar employs the
EOF analysis to extract the leading EOF vectors, explaining the major variance as the basis vectors.
The EOF analysis allows the DRP-4DVar method to transform the basis from the K-dimensional
space to a m-dimensional space (m ≤ K). When m = K, the transformation maintains all the
information about the ensemble perturbations, and the DRP-4DVar is equivalent to the 4DEnVar.
When m < K, the DRP-4DVar only uses the leading EOF vectors, and filters the noise components
in the ensemble perturbations. The noise components are the EOFs which contribute little to the
variability, from the view of the variance analysis [35,47,48]. Further, since the sum of the columns
of Xen is zero and only the leading EOFs are retained, the sum of the columns of Px tends to be
nonzero. The nonzero sum of the columns of Px also explains the difference between Equation (8) and
Equation (16) (or Equation (25)) which, according to the same definition, estimate the B-matrix in the
DRP-4DVar and the 4DEnVar methods (or the ETKF), respectively. Therefore, when using m < K, the
EOF analysis in the DRP-4DVar not only transforms the basis to the eigenvalue space, but also filters
the noise in the ensemble perturbations.

As to the temporal evolution of the ensemble perturbations, the ETKF refreshes the background
ensemble perturbations at each analysis step. The B-matrix computed from the ensemble perturbations
is flow-dependent. Whereas, at each assimilation window, the ensemble perturbations in the 4DEnVars
are initialized independently by Gaussian random numbers, and then integrated by the model merely
during the assimilation windows. The B-matrix computed from the ensemble perturbations in the
4DEnVars is only partially flow-dependent. In order to obtain ensemble perturbations representative
of the model dynamical structure, ensemble size, assimilation window length, and initial Gaussian
random perturbations need to be optimized. Yet, the DPR-4DVar method is expected to be relatively
robust because of the positive impact of the EOF analysis.
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Figure 1. Schematic diagram of the 4DEnVar method (a) and the ETKF (b).

3. Experiment Design

A series of experiments were conducted using the Lorenz-96 model [49] in order to compare these
three assimilation schemes and assess the impact of pertinent parameters. The ideal model simulates
the simplified behavior of a meteorological variable in a periodic domain:

dxj

dt
= (xj+1 − xj−2)xj−1 − xj + F, (j = 1, . . . , 40), (33)

xj+40 = xj. (34)

This section may be divided by subheadings. It should provide a concise and precise description
of the experimental results, their interpretation, as well as the experimental conclusions that can
be drawn.

Here xj denotes the variable on the j-th grid point, 40 is the number of the grid points, and F
denotes the forcing. The model solves Equation (33) through a fourth-order Runge–Kutta scheme
with a time step of 0.05 (corresponding to 6 h). Although the Lorenz-96 model is simple, it is
helpful in illustrating important features of assimilation methods and in providing instruction for
practical optimization.



Atmosphere 2017, 8, 146 9 of 18

The true states include variables at the 40 grids of every model time step during a 1500 time-step
integration with forcing F = 8. The observations are generated by adding white noise from a Gaussian
distribution with zero mean and variance of 1.00 to the true states. The simulated observations consist
of the variable at the 40 grid points at every model time step. The observation operators in such a
situation are identity matrices.

Several sensitivity experiments are conducted in an imperfect model scenario with forcing
parameter F = 9. Besides model errors, an initial bias of 2.00 is added to each grid point for examining
both methods’ capacity of handling error as close as possible to a realistic situation. Analysis is
performed every model time step (or 6 h) for 1500 time steps. Exp-1 compares the performance of the
DRP-4DVar, the 4DEnVar, and the ETKF methods. For the 4DEnVars, a single simulation is cycled
in time through the forecast steps and analysis steps, and the sample ensemble at each analysis time
is generated through ensemble forecasting at the beginning of each assimilation window with an
ensemble size 80. The random perturbations, which are used to generate the initial ensemble of
each assimilation window, are Gaussian distributed with mean of zero and standard deviation 0.10.
The assimilation window has a 6 model time-step lengths (corresponding to 36 h). In the DRP-4DVar
method, the leading 20 EOF vectors are extracted through the EOF analysis to form the reduced
dimension space for major analysis. Meanwhile, the ETKF employs an ensemble with the ensemble
size 100.

Both the localization and inflation techniques are essential to ameliorate the contaminations
resulting from the spurious correlation over long spatial distances or between variables known to
be uncorrelated [50]. For example, Amezcu and Goodliff found that with observations at every time
step 4DVar outperforms 4DEnVar, but with localization, the localized 4DEnVar has similar results to
the 4DVar [51,52]. To ameliorate problems related to sampling error in this work, the ETKF adopts
the multiplicative covariance inflation technique [53], in which the background error covariance is
multiplied by (1+ ∆), and ∆ is the inflation factor. The manually optimized value ∆ = 30% is adopted,
which yields the minimum mean root-mean-square errors (RMSEs) among 10%, 15%, 20%, 25%, 30%,
35%, and 40% inflation settings.

Following the Exp-1, sensitivity experiments Exp-2, Exp-3, Exp-4, and Exp-5 (see Table 1) are
conducted to further illustrate the role of the EOF analysis and assess the impact of pertinent parameters
(i.e., EOF truncation number, ensemble size, assimilation window length, and standard deviation of
initial random perturbation for each assimilation window).

Table 1. Settings of sensitivity experiments for parameters related to the EOF analysis in the DRP-4DVar.

Experiment Sensitive Parameter Parameter Setting

Exp-2 EOF truncation number, m 5, 10, 15, 20, 25, 30, 35, 40, 45, 50,
55, 60, 65, 70, 75

Exp-3 Ensemble size, K 35, 40, 45, 50, 55, 60, 65, 70, 75, 80,
85, 90, 95, 100

Exp-4 Assimilation window length, Lw (Unit: hour) 0, 6, 12, 18, 24, 30, 36, 42, 48, 54

Exp-5 Standard deviation of initial random
perturbation for each assimilation window, SDi

0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35

4. Experimental Results

As shown in Figure 2, the ETKF, 4DEnVar, and DRP-4DVar methods all successfully assimilated
the observations and substantially improved result accuracy. The mean analysis RMSEs of the
DRP-4DVar, the 4DEnVar, and the ETKF methods are 0.253, 0.310, and 0.386, respectively, which are
much lower than observation error (approximately 1.00). Such results indicate that all the assimilation
schemes are able to handle the model error and the initial bias. Meanwhile, the ensemble spread of the
DRP-4DVar and the ETKF methods provide proper estimations of the uncertainty. The background
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spread of the ETKF lies around the mean RMSE and within the +/− standard deviation line, and so
does the ensemble spread of the DRP-4DVar method (represented by the mean ensemble spread during
the assimilation window). However, the analysis space transforming and the noise filtering of the
DRP-4DVar method render positive influence, as the mean analysis RMSE of the DRP-4DVar method
is 0.133 (34%) and 0.057 (18%) lower than that of the ETKF and the 4DEnVar methods, respectively.Atmosphere 2017, 8, 146  11 of 19 
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Figure 2. Time series of the analysis RMSE (red solid line) and background spread (blue solid line) of the
ETKF experiment (a), the 4DEnVar experiment (b) and the DRP-4DVar (c) in Exp-1. Observation RMSEs
(black dash line), mean analysis RMSEs (pink dash line), and Mean analysis RMSE +/− standard
deviation of analysis RMSEs (green solid line) are computed over last 500 time steps.
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To evaluate the analysis space transformation, a series test of the DRP-4DVar method with
different m value is done in Exp-2. The RMSEs of the ETKF and the 4DEnVar methods in Exp-1 are
used as benchmarks. Firstly, the difference among the ETKF, the 4DEnVar, and the DRP-4DVar methods
with m = 75 in Figure 3 shows superiority of the 4DEnVar methods’ simultaneous assimilation of
asynchronous observations in this study. The DRP-4DVar method with m = 75 produces results
similar to that of the 4DEnVar method in analysis RMSE (0.300 vs. 0.310), whereas it surpasses the
ETKF by 0.086 (22.3%). Figure 4 illustrates that the cumulative sum of the variance explained of the
first 75 EOFs is almost 100%. Further, Figure 5 shows that the 4DEnVar and the DRP-4DVar methods
with m = 75 generate the almost same analysis increment during the assimilation window. Therefore,
in accordance with the theoretical analysis in Section 2.3, the EOF analysis plays a role in transforming
the basis from an ensemble space to an eigenvalue space. For a certain assimilation time window,
Figure 5d–f shows in detail that the 4DEnVar methods tend to give more weight on the background
state and smaller analysis increment than the ETKF. Considering the relatively large observation error,
this inhibits improper correction of the background state and plausibly explains the better performance
of the 4DEnVar method in analysis RMSE.Atmosphere 2017, 8, 146  12 of 19 

 

 
Figure 3. The mean RMSEs of the DRP-4DVar with m set as a serious different value from 5 to 75. 
Other assimilation parameters of the DRP-4DVar experiments are the same as those of the 
DRP-4DVar experiment in Exp-1. The mean RMSEs of the ETKF and the 4DEnVar methods in Exp-1 
are used as benchmarks, which are noted as B1 and B2, respectively. The black bars and white bars 
denote the mean background RMSE and the mean analysis RMSE during the last 500 time steps, 
respectively. 

For impact of noise filtering, Figure 3 shows that both mean background RMSEs and mean 
analysis RMSEs in the DRP-4DVar method at first sharply decrease with the increasing of ݉ until ݉ reaches 30, and then increase slowly when ݉ continues to increase. The DRP-4DVar method 
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analysis RMSE. The first dramatic RMSE decrease suggests extremely low ݉ values need to be 
avoided. Figure 4(a) shows that the first small part of EOFs corresponds to a large variance 
explained, whereas the following EOFs correspond to a long tail of decreasing values. This explains 
the first dramatic RMSE decrease, since every EOF mode of the first small part matters. When ݉ is 
larger than 30, variances explained by the EOF modes are indistinguishable within their 
uncertainties. This means that their actual structures may not be particularly interesting, since any 
linear combination of these patterns is as significant as each of them [47]. When ݉ = 30, filtering 
the noise contributes to a 0.057 analysis RMSE reduction. Figure 4(b) also shows that the cumulative 
variance explained increases rapidly above 90% at ݉ = 15 and to almost 100% at ݉ = 35. To 
further explain the results, Figure 5a–e illustrates that increasing the EOF truncation number 
improves the performance if ݉ is small; while increasing the EOF truncation number brings 
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Figure 3. The mean RMSEs of the DRP-4DVar with m set as a serious different value from 5 to 75.
Other assimilation parameters of the DRP-4DVar experiments are the same as those of the DRP-4DVar
experiment in Exp-1. The mean RMSEs of the ETKF and the 4DEnVar methods in Exp-1 are used as
benchmarks, which are noted as B1 and B2, respectively. The black bars and white bars denote the
mean background RMSE and the mean analysis RMSE during the last 500 time steps, respectively.

For impact of noise filtering, Figure 3 shows that both mean background RMSEs and mean analysis
RMSEs in the DRP-4DVar method at first sharply decrease with the increasing of m until m reaches 30,
and then increase slowly when m continues to increase. The DRP-4DVar method with a wide range of
EOF truncation numbers surpasses the ETKF and the 4DEnVar methods in analysis RMSE. The first
dramatic RMSE decrease suggests extremely low m values need to be avoided. Figure 4a shows that
the first small part of EOFs corresponds to a large variance explained, whereas the following EOFs
correspond to a long tail of decreasing values. This explains the first dramatic RMSE decrease, since
every EOF mode of the first small part matters. When m is larger than 30, variances explained by the
EOF modes are indistinguishable within their uncertainties. This means that their actual structures
may not be particularly interesting, since any linear combination of these patterns is as significant as
each of them [47]. When m = 30, filtering the noise contributes to a 0.057 analysis RMSE reduction.
Figure 4b also shows that the cumulative variance explained increases rapidly above 90% at m = 15
and to almost 100% at m = 35. To further explain the results, Figure 5a–e illustrates that increasing the
EOF truncation number improves the performance if m is small; while increasing the EOF truncation
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number brings indistinct impact if m just corresponds to the sufficient variance explained, whereas
it causes slight deterioration if m is overlarge. Therefore, choosing a relatively large EOF truncation
number improves the accuracy and the optimal EOF truncation number in this study is m = 30.
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Figure 4. (a). The mean variance explained of the first 75 EOFs during the experimental period, i.e.,
the mean eigenvalue spectrum of the covariance matirx of the sample ensemble. Vertical bars show
approximate 95% confidence limits given by the rule of thumb [54], which also indicate the uncertainty
of the variance explained. (b). The cumulative variance explained by the first mth modes. The data are
adopted from the DRP-4DVar experiment with m = 75 in Exp-2.

Because of the space transforming and noise filtering role of the EOF analysis, the DPR-4DVar
method is expected to be relatively robust to ensemble perturbations’ representativeness of the model’s
dynamic structure. At first, results of Exp-3 (see Figure 6), which investigates the sensitivity to
ensemble size, shows that proper EOF analysis setting is capable of ameliorating negative influence
due to sampling error and generating analysis results with acceptable accuracy. Mean RMSEs of
the DRP-4DVar experiments, as well as the RMSE decreasing speed, decreasing with the increasing
ensemble size, and the mean RMSEs are indistinct when the ensemble size is larger than 75. The poorest
performance of the DRP-4DVar in Exp-3 is still comparable with the 4DEnVar method and much better
than the ETKF in Exp-1. This result indicates that the negative effect of the insufficient ensemble
size is counteracted by the refinement of the EOF truncation number, since the 4DEnVar method has
been proven to be equivalent to the DRP-4DVar method with m = K. Additionally, the stability of
the performance of the DRP-4DVar method is achieved without additional covariance inflation or
localization techniques used in previous studies (e.g., [22,25]). Subsequently, the mean RMSEs of the
DRP-4DVar method in Exp-4 (see Figure 7) show a similar pattern to those in Exp-3. The DRP-4DVar
method with an optimized EOF analysis setting is able to handle the impact of the assimilation
window length, though extremely short window lengths need to be avoided. The RMSEs with
assimilation windows longer than 24 h are lower than those of the 4DEnVar method in Exp-1, which is
mainly because a longer assimilation window facilitates the development of ensemble perturbations
representative of the model dynamics. Yet, the RMSEs’ variation due to the increasing assimilation
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window length is more dramatic. Extremely short assimilation window lengths lead to failure of the
assimilation analysis when the RMSE is larger than 1.00. This result is also in accordance with previous
studies on the assimilation window length in 4DVar and the DRP-4DVar methods [7,36].
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Figure 5. The analysis increments (correction, color shades) and forecast (background) errors (true
state minus background mean, contours) of the ETKF, the 4DEnVar, and the DRP-4DVar methods with
different m at the grid points 11~20 during the assimilation window on the 1200th model time step.
(a–d) correspond to the DRP-4DVar method with m as 15, 25, 30, 75, (e) correspond to the 4DEnVar
method, and (f) corresponds to the ETKF. The assimilation window length is 36 h (corresponding to
6 time-step length). The analysis y′b of DRP-4DVar is generated by linear combination of the basis
with different m as Equation (7). As to the DRP-4DVar method with the different m and the 4DEnVar
method, the basis vectors and the background errors are computed from the ensemble perturbations
from the same original background ensemble during the assimilation window. The original background
ensemble is generated by the DRP-4DVar experiment with m = 30 in Exp-1. Meanwhile, since the
ETKF sequentially assimilates observations, f employs the analysis y′b and background error during
the 1200–1206 time steps (corresponding to the 36 h assimilation window) of the ETKF experiment in
EXP-1. Note that f has an order of magnitude different color scale.
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Figure 6. The mean RMSEs of DRP-4DVar with ensemble size of 35–100. Other assimilation parameters
of the DRP-4DVar experiments are the same as those of the DRP-4DVar experiment in Exp-1. The mean
RMSEs of the ETKF and the 4DEnVar methods in Exp-1 are used as benchmarks, which are noted as B1
and B2, respectively. The black bars and white bars denote the mean background RMSE and the mean
analysis RMSE during the last 500 time steps, respectively.
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Figure 7. The mean RMSEs of the ETKF (noted as B1), the 4DEnVar (noted as B2), and the DRP-4DVar
methods with assimilation window length set as a series of different value from 0 to 54 h. Other
assimilation parameters of the DRP-4DVar experiments are the same as those of the DRP-4DVar
experiment in Exp-1. The mean RMSEs of the ETKF and the 4DEnVar methods in Exp-1 are used as
benchmarks, which are noted as B1 and B2, respectively. The black bars and white bars denote the
mean background RMSE and the mean analysis RMSE during the last 500 time steps, respectively.

Exp-5 (see Figure 8) illustrates that the mean RMSEs of the DRP-4DVar method sharply decrease
with the increasing of SDI at first, and then increase slowly when SDI continues to increase. Most mean
RMSEs of the DRP-4DVar method are smaller than that of the 4DEnVar method in Exp-1. This result
indicates the DRP-4DVar method is relatively stable to the variation of SDI . However, similar to the
situation of the EOF truncation number, the dramatic RMSE decrease suggests that choosing large
SDI values is relatively safe. Extremely low SDI (SDI = 0.01) values lead to the failure of assimilation
(analysis RMSE = 5.046, not shown). Further, increasing mean ensemble spreads in Figure 8 might
explain the pattern of RMSEs. Extremely low SDI causes the ensemble spreads after model integration
to underestimate the background RMSE, which means background states are over-weighted and little
information from observations is taken to correct the uncertainty due to the imperfect model and
erroneous initial condition. High SDI leads to the overlarge ensemble spreads after model integration,
so the observations are given too much weight even when the background state is much more accurate.
Such impact of SDI resembles that of the standard deviation of the white noise used in the additive
covariance inflation [22,55].
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Figure 8. The mean RMSEs and ensemble spread of the DRP-4DVar method using initial random
perturbation for each assimilation window with standard deviation of 0.05~0.35. Other assimilation
parameters of the DRP-4DVar experiments are the same as those of the DRP-4DVar experiment in Exp-1.
The mean RMSEs and ensemble spread of the ETKF and the 4DEnVar methods in Exp-1 are used as
benchmarks, which are noted as B1 and B2, respectively. The ensemble spread of the DRP-4DVar and
the 4DEnVar methods refers to the average of the ensemble spreads during an assimilation window.
The black bars, gray bars, and white bars denote the mean background RMSE, the mean analysis RMSE
and the mean ensemble during the last 500 time steps, respectively.

5. Summary and Conclusions

This study investigates the role of EOF analysis in the 4DEnVar scheme DRP-4DVar and the
optimization of pertinent parameters, through comparisons among the DRP-4DVar, 4DEnVar, and
the ETKF methods. The mathematical formula comparison and sensitivity experiments by using the
Lorenze-96 model indicate that the EOF analysis plays an important role in space transforming and
noise filtering in DRP-4DVar. The DRP-4DVar method with little dimension reduction produces results
similar to that of the 4DEnVar method in analysis root-mean-square error (RMSE), whereas it surpasses
the ETKF by 22.3%, and the further refinement of the EOF truncation number magnifies the superiority
by 12.2% and slightly reduces the computational cost.

The space transforming and noise filtering role of the EOF analysis improves the computational
efficiency and the analysis accuracy. The DRP-4DVar method with a wide range of the EOF truncation
number surpasses the ETKF and the 4DEnVar methods in analysis RMSE. This explains the successful
applications of the DRP-4DVar method as well as other 4DEnVar methods [20,24,34,38,56], without
special optimization of the truncation number. Yet, optimizing the EOF truncation number makes
sense. The DRP-4DVar method with the optimized EOF truncation number is robust to the variation
of pertinent parameters, though extremely low parameter values should be avoided. Results of the
sensitivity experiments on the parameters (i.e., the ensemble size, the assimilation window length,
and the standard deviation of the initial perturbation for each assimilation window) also agree with
previous studies on EnKF, 4DVar, 4DEnVar, and DRP-4DVar [7,22,36,55,57], Thus, refinement of the
EOF truncation number is attractive for cases with a high requirement of the computational efficiency
and the analysis accuracy, particularly for applications on operational numerical system (e.g., [39]).

Clarifying the role of the EOF analysis and its relevant parameter optimization facilitates
improvement of the computational efficiency and the analysis accuracy in the DRP-4DVar method, as
well as other 4DEnVar methods. The results presented here suggest the potential wide application of
EOF analysis in the 4DEnVar methods. Such applications are attractive since the 4DEnVar methods
require no tangent linear model or adjoint model, and share the advantages of both EnKF and 4DVar.
Our future work will focus on the development of regional chemical data assimilation systems with
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the 4DEnVars scheme over East Asia, and comparing it with the current EnKF-based assimilation
system [58].
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