
water

Article

Landslide Susceptibility Mapping Using GIS-Based
Data Mining Algorithms

Vali Vakhshoori 1,*, Hamid Reza Pourghasemi 2 , Mohammad Zare 3 and Thomas Blaschke 4

1 Department of Geography, Social Science Centre, Western University, London, ON N6A 5C2, Canada
2 Department of Natural Resources and Environmental Engineering, College of Agriculture, Shiraz University,

Shiraz 71441-65186, Iran; hr.pourghasemi@shirazu.ac.ir
3 Department of Earth Sciences, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran;

zare@susc.ac.ir
4 Department of Geoinformatics—Z_GIS, University of Salzburg, 5020 Salzburg, Austria;

thomas.blaschke@sbg.ac.at
* Correspondence: svakhsho@uwo.ca; Tel.: +1-226-998-0101

Received: 23 August 2019; Accepted: 24 October 2019; Published: 1 November 2019
����������
�������

Abstract: The aim of this study was to apply data mining algorithms to produce a landslide
susceptibility map of the national-scale catchment called Bandar Torkaman in northern Iran. As it
was impossible to directly use the advanced data mining methods due to the volume of data at
this scale, an intermediate approach, called normalized frequency-ratio unique condition units
(NFUC), was devised to reduce the data volume. With the aid of this technique, different data
mining algorithms such as fuzzy gamma (FG), binary logistic regression (BLR), backpropagation
artificial neural network (BPANN), support vector machine (SVM), and C5 decision tree (C5DT)
were employed. The success and prediction rates of the models, which were calculated by receiver
operating characteristic curve, were 0.859 and 0.842 for FG, 0.887 and 0.855 for BLR, 0.893 and 0.856
for C5DT, 0.891 and 0.875 for SVM, and 0.896 and 0.872 for BPANN that showed the highest validation
rates as compared with the other methods. The proposed approach of NFUC proved highly efficient
in data volume reduction, and therefore the application of computationally demanding algorithms
for large areas with voluminous data was feasible.

Keywords: landslide susceptibility; data mining methods; small scale; normalized frequency ratio;
unique condition unites; spatial modeling; geographic information system

1. Introduction

Landslides frequently cause damage to properties and loss of lives in susceptible areas all over
the world. Since the beginning of the 21st century, around 1.5 million people have been affected
by landslides; moreover, landslides have caused financial losses above 875 million US dollars [1].
For instance, in the course of 12 years from 2004 to 2016, more than 55,000 lives worldwide have
been lost due to landslides [2]. Therefore, it is obvious that the identification of landslide-prone
zones and prevention of possible damages and fatalities is of a crucial importance. Landslide studies
for a sensitive zone can be done in three consecutive levels such as landslide susceptibility, hazard,
and risk mapping [3,4]. The first fundamental step in this regard is to produce landslide susceptibility
maps (LSMs) of the sensitive areas [3,5–8]. LSMs show where future landslides may occur in a study
area [3,7–13] and are created according to three fundamental assumptions summarized as follows:

1. The signs of landslides that have occurred can be recognized through filed investigation and
remote sensing techniques [14–17];
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2. Causative factors which affect landslides can be collected and analyzed to assess the probability
of occurrence of the future landslides [3,4,18–20];

3. Past and present landslides are the keys for predicting future landslides [3,4,9,20–23].

On the basis of these assumptions, the relationship between the occurred landslides and
the causative factors for creating an LSM can be analyzed through qualitative or quantitative
methods [3,4,24]. Qualitative analyses of landslide susceptibility assess the effects of causative factors
on landslides based on experts’ opinions [3,4], and therefore the existence of a landslide inventory is
not necessary, however, the application of quantitative methods necessarily depends on the presence
of a landslide inventory map [3,4,23]. Using both types of methods, LSMs are produced at different
scales [4] such as site-specific zones (from several hectares to dozens of square kilometers), local
scale (10–1000 km2), regional scale (1000–10,000 km2), and national scale (>10,000 km2) and a direct
connection can be found between the scale of mapping and the sophistication of the employed
methods, that is to say, more sophisticated methods are used at larger scales (small study areas) [3].
For example, sophisticated deterministic and mathematical models are often used at site-specific
zones to investigate the behavior of individual landslides [25]. At local and regional scales, numerous
landslide susceptibility studies have used various types of qualitative and quantitative methods
such as analytical hierarchy process (AHP) [26–29], weights-of-evidence (WofE) [30–33], frequency
ratio (FR) [34–39], fuzzy logic [40–42], logistic regression (LR) [43–49], artificial neural networks
(ANN) [50–55], and support vector machine (SVM) [56–59]. Often, at a national scale, LSMs have been
created by employing only simple methods, although national-scale LSMs should be produced with
the highest possible accuracy and reliability because these maps are used in preliminary assessments
when more detailed landslide susceptibility, hazard, or risk studies are required and are even used
directly in land use management and environmental impact assessment [3,4,6,11].

Most of the time, simple qualitative methods are applied to produce national-scale LSMs [60],
but it should be noted that qualitative methods are, in general, subjective and not as reliable as
quantitative methods for producing LSMs [61–63]. The lack of a landslide inventory map, which needs
a considerable budget to be prepared for a large area, is the main reason why qualitative methods are
often used at a national scale [60,64–67], however, nowadays advanced data and techniques available
through the integration of remote sensing and geographic information systems can facilitate the
process of providing the data needed to perform a landslide susceptibility assessment. For example,
automatic image classification techniques which use deep learning methods have been shown to be
very promising for detecting landslides that have occurred, as well as providing the inventory maps
as a prerequisite for quantitative methods [68–70]. Therefore, when feasible, the use of quantitative
methods is recommended [4].

Among the quantitative methods, the simple methods (e.g., bivariate statistical methods) are
generally inferior to the advanced methods, for example, machine learning methods [71–75]. Even when
the landslide inventory data are available, the quantitative methods used at a national scale are often
the simple ones [76–79] because the implementation of advanced methods for very large areas with
voluminous data is computationally demanding [53,72,80,81] and often impossible in practice. In this
study, therefore, an intermediate approach, called normalized frequency-ratio unique condition units
(hereinafter called NFUC), is introduced to reduce the volume of data and prepare the data for mapping
the landslide susceptibility of a national scale study area using more advanced data mining algorithms,
such as LR, ANN, SVM, fuzzy gamma (FG), and C5 decision tree (C5DT).

2. Study Area

A large proportion of the landslides in Iran occur on the northern slopes of the Alborz Mountain
range opposite the southern shoreline of the Caspian Sea. In this region and the southeast part of
the Caspian Sea, the Bandar Torkaman catchment at a national scale (Figure 1) is one of the most
susceptible zones to landslides. This catchment covers a large area of 11,593 km2 between latitudes of
36◦ 35′ 49” to 37◦ 47′ 37” N and longitudes of 53◦ 59′ 59” to 56◦ 07′ 06” E. On the basis of the ASTER
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DEM (digital elevation model) of the study area, the altitude varies from −28 m in the northwest
lowlands to 3682 m in the mountainous belt which extends in the NE-SW direction. With reference to
the 1:250,000 geology maps provided by the Geological Survey of Iran, the main geological structure
zones are Gorgan-Rasht in the southern belt of the catchment and Koppedagh in the northern plain
areas covered by young deposits. In total, the catchment includes 40 distinct lithological units listed in
Table 1 and displayed in Figure 2. The climatic regime of the area changes from an arid to a very humid
climate under the effect of an annual average rainfall of 150 mm to 1000 mm, and an annual average
temperature that varies from 4 ◦C in the southern parts to 18 ◦C in the northern regions (according to
the Forest, Range, and Watershed Management Organization, Iran).
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Table 1. Details of the lithological units of the study area.

Age Code Formation Name Lithology

Cenozoic E1m _ Marl, gypsiferous marl, and limestone
Ekh Khangiran Olive-green shale and sandstone

Murm _ Light red to brown marl and gypsiferous marl with
sandstone intercalations

Murmg _ Gypsiferous marl
Plc _ Polymictic conglomerate and sandstone

PlQc _ Fluvial conglomerate, piedmont conglomerate, and
sandstone

Qal _ Stream channel, braided channel, and floodplain deposits
Qft1 _ High-level piedmont fan and valley terrace deposits
Qft2 _ Low-level pediment fan and valley terrace deposits
Qm _ Swamp and marsh

Qsd _ Unconsolidated wind-blown sand deposit including sand
dunes

Qsw _ Swamp
Mesozoic Jch Chaman bid Dark gray argillaceous limestone and marl

Jd Dalichai Well-bedded to thin-bedded, greenish-gray argillaceous
limestone with intercalations of calcareous shale

Jl Lar Light gray, thin bedded to massive limestone
Jmz Mozduran Grey thick-bedded limestone and dolomite
Jsc _ Conglomerate

K _ Cretaceous rocks in general, include limestone, marly
limestone, Inoceramus bearing

Kad-ab _ Undifferentiated unit including argillaceous limestone,
marl, and shale

Kat Aitamir Olive green glauconitic sandstone and shale

Kl _ Lower cretaceous undifferentiated rocks (Argillite,
limestone, massive dolomite, sandstone)

Ksn Sanganeh Grey to black shale and thin layers of siltstone and
sandstone

Ksr Sarcheshmeh Ammonite bearing shale with interaction of orbitolina
limestone

Ktr Tirgan Grey oolitic and bioclastic orbitolina limestone
Ku _ Upper cretaceous, undifferentiated rocks

TRe Elikah
Thick bedded gray oolitic limestone; thin-platy, yellow to

pinkish shale-limestone with worm tracks and well to
thick-bedded dolomite and dolomitic limestone

TRe2 _ Thick bedded dolomite
TRJs Shemshak Dark-gray shale and sandstone

Paleozoic Cl Lalun Dark red medium-grained arkosic to sub arkosic
sandstone and micaceous siltstone

Cm Mobarak Dark gray to black fossiliferous limestone with
subordinate black shale

DCkh _
Yellowish, thin to thick-bedded, fossiliferous argillaceous
limestone, dark gray limestone, greenish marl, and shale,

locally including gypsum

Dp Pabdeh Light red to white, thick bedded quartzarenite with
dolomite intercalations and gypsum

P _ Undifferentiated Permian rocks

Pd Dorud Red sandstone and shale with subordinate sandy
limestone

Pr Ruteh Dark-gray medium-bedded to massive limestone
Pz _ Undifferentiated lower Paleozoic rocks

Pz1a.bv _ Andesitic basaltic volcanic

Sn Niur Greenish gray, shale, sandstone, sandy lime, coral
limestone, and dolomite

Proterozoic PCC _ Late Proterozoic to early Cambrian undifferentiated rocks
PCmt2 Greenschist facies Low-grade, regional metamorphic rocks
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3. Data and Information

The required datasets for landslide susceptibility mapping can be categorized into two groups,
landslide inventory map and causative factors (including conditioning factors and triggering agents).
The landslide inventory map is the most important factor in landslide susceptibility, hazard, and risk
studies [23], and should be as complete and accurate as possible [23,82–84]. The inventory map of the
study area was prepared by the Forest, Range, and Watershed Management Organization (Iran) through
the interpretation of 1:25,000 aerial photographs and extensive field investigations. This inventory
consists of 431 central points of landslides. Generally, archived landslide inventories are recorded as
points [85], especially in small-scale areas [86] that are located in the center of the whole body [86] or
the rupture zone [1] of landslides. Using a landslide inventory map which is recorded as points does
not mean that the produced LSM is less reliable relative to a map produced by an entire area of the
landslides [85], especially when statistical models are applied that considerably reduce the uncertainty
of the inventory map [87]. The available landslide inventory map is split into two parts for modeling
and validation [4,12]. There is no general rule to specify what percentage of landslides should be
allocated for modeling and validation. Most of the researchers consider 70% and 30% of landslides for
modeling and validation, respectively [35,49,56,57,75,88,89]. In this study, however, using the random
procedure [90], 80% of landslides (344 points) were considered for modeling, and the remaining 20%
(87 points) were considered for validation of the produced maps because an extra 20% of the modeling
dataset was used for testing the data mining models in the implementation phase. This means that
about 275 landslide points (64% of all the landslides in the study area) were in fact considered as the
modeling dataset and the rest of the landslide points were used for testing and validation of the models
in two separate phases (discussed in Section 4).

Concerning the conditioning factors, there is no specific rule for the selection of factors, and it
depends on the scale and the geoenvironmental conditions of the study area, the type of the landslides
considered in the analysis, and the availability of the data [23]. Taking these criteria into consideration,
we provided 12 different conditioning factors which included elevation, slope degree, slope aspect,
modified sediment transport index (STI-V), stream power index (SPI), lithology, land cover, distance to
linear factors (rivers network, roads, and faults), climate type, and temperature. In addition, the annual
average rainfall layer was provided as the main triggering agent.

Elevation, slope degree, slope aspect, and river network layers were all derived from the ASTER
DEM with the spatial resolution of 30 m. In addition, we calculated the slope gradient (β) and the
contributing area (A) using DEM, and the factors of stream power index (SPI), and sediment transport
index (STI) [41,91] were created by means of the Raster Calculator tool of ArcGIS® 10 using the
following equations:

SPI = A × tanβ, (1)

STI =
( A

22.13

)0.6( sinβ
0.0896

)1.3

. (2)

The SPI index is a useful indicator for erosion caused by surface runoff [38,73] that can contribute
to land sliding and the STI factor is used as an indicator for the power of erosive flows [92], and hence
the occurrence of landslides [93]. In this study, however, a new factor of STI variations, called STI-V,
was produced by modifying the STI factor. This modification was done so that the highest STI-V
values were assigned to the pixels on the adjacent belt of the most powerful erosive flows rather than
to the flows themselves, because landslides occur adjacent to these flows not inside them. The STI
modification was made using ArcGIS® software by entering the STI raster instead of a DEM in Slope
Tool, which calculates the STI-V values based on the magnitude of changes of the STI values per
the distance unit. The highest STI-V values were assigned to the pixels of slopes near the most
erosive flows.

The lithological data for the study area were digitized from 1:250,000 geology maps provided by
the Geological Survey of Iran (Figure 2). In addition, the layer of faults was extracted from the geology
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maps. The roads were mapped using the topographical maps of the study area at 1:100,000 scale
provided by the Iran National Cartographic Center. Afterwards, the layers of faults, roads, and river
networks were classified into several classes based on the proximity of the lines ready for the modeling
process. The land cover map (Figure 3) was digitized from the national map of soil, pasture, and forest
potentialities created by the Iranian Center for National Spatial Planning, with some modification
using DigitalGlobe satellite data.
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The maps of the climate conditions, temperature, and rainfall used in this study were provided by
the Forest, Range and Watershed Organization of Iran. The layer of climate conditions was digitized into
six classes of humidity, from arid to very humid regions. The digital layer of temperature degree (annual
average) consisted of eight classes with a 2 ◦C increase in each class from 4 ◦C to 18 ◦C. In large-scale
studies, the layers of climate conditions and temperature degree are counted homogeneous, and hence
are unsuitable, but in this research, because of the small scale of the study area, those layers were
heterogeneous enough for evaluation of their possible effects on landslide occurrence. Both factors
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have been shown to impact landslide occurrence by affecting the soil–atmosphere relationship, that is to
say, they can change the soil moisture which in turn can change the pore water pressure, and therefore
shear strength of the slopes [94,95]. In addition, an increase of humidity and temperature can both
considerably influence the weathering process of rocks and soils and facilitate the production of basic
materials for land sliding [96].

The rainfall map, as a triggering factor, was classified into 11 classes based on the annual average
values. For LSMs that are produced at a small scale (the area is very large), even if the number
of meteorological stations is low or the data does not exist, the amount of rainfall can be assessed
by utilizing satellite data [23] because water plays a very important role in landslide triggering,
for example, by increasing pore water pressure and lubrication in materials [31].

As mentioned before, in this study, machine learning methods are integrated with the bivariate
statistical method of FR through the NFUC approach; in fact, the FR method is supposed to provide
the initial weights for running the machine learning models. To apply the FR method, it is necessary to
categorize the continuous factors (e.g., elevation and slope degree) into discrete classes. Classification
is mainly done based on experts’ opinions [56,97]. In this study, the continuous factors were classified
considering the geoenvironmental conditions of the study area and the potential effects of each factor
on the landslides. Because of the very large area of the catchment, we considered the maximum possible
number of classes for each factor to prevent homogeneity of the data, thus, increasing the accuracy of
the final LSMs. After classification, all factors were converted to raster format with 30 × 30 m pixel
size (equal to the resolution of the ASTER DEM, employed in this study) according to the method of
pixel-based modeling [7,12]. The causative factors are shown in Figure 4a–k, except for the lithology
and the land cover maps that are shown separately.
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Figure 4. Prepared causative factors including elevation (a), slope degree (b), slope aspect (c), modified
sediment transport index (STI-V) (d), stream power index (SPI) (e), distance to rivers network (f),
distance to faults (g), distance to roads (h), climate (i), annual average rainfall (j), and annual average
temperature (k).

4. Methods

In this study, each of the five data mining models, namely FG, binary logistic regression (BLR),
backpropagation artificial neural network (BPANN), SVM, and C5DT, were separately integrated
with the FR model through an intermediate approach called NFUC to produce the LSMs of the study
area at a national scale. As mentioned before, the process of running the machine learning methods
requires intensive computer processing for landslide susceptibility mapping at a national scale (a large
area with big data), which is very time-consuming and sometimes practically impossible [53,72,80,81].
For example, to apply the machine learning methods of BPANN and SVM in this study, it was required
to convert the data from raster format to a text file readable by statistical software. When visualizing
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the scored text file to the first raster format using the Lookup tool in ArcGIS software, this process took
a very long time and was practically impossible using standard computers due to the huge number
of pixels (around 12,881,000 pixels). To overcome this problem, the number of pixels can be reduced
by increasing the size of pixels. A pixel size from 26 × 26 m to 1000 × 1000 m has been tried for very
big areas (at national to global scales) and has been reported to have satisfying results depending on
different conditions [60,62,65–67,77,79,98,99], however, it should be noted that increasing the size of
pixels is done at the expense of reducing the models’ accuracy, i.e., the larger the pixel size, the lower
the spatial accuracy of the produced map. In this study, a pixel size of 30 × 30 m was considered to
fully exploit the accuracy of available data, for example, the available DEM. Therefore, it resulted in a
huge number of pixels which made the process, especially for machine learning methods, practically
impossible. Therefore, the NFUC approach was applied to facilitate the application of these methods
at this scale by reducing the volume of the data and integrating the models as follows:

• At the first stage, to find the correlation of the landslides with the causative factors and calculate the
initial weights [9,100], the bivariate statistical method of FR is applied. In this method, the weight
(Fri) of each class (i = 1, 2, 3, . . . , n) of a factor is equal to the percentage of its landslides divided
by the percentage of its area as a ratio of the whole map;

• At the second stage, the Fris (the sixth column of Table 2) should be normalized in the standard
interval of (0.1, 0.9) that results in the µi values (the last column of Table 2) as follows [101,102]:

µi = 0.8
Fri − Frmin

Frmax − Frmin
+ 0.1, (3)

where, Frmin and Frmax are the minimum and maximum observed FR weights among the classes of
a given factor. In this step, because the pixels with an equal µi in a factor layer are equally important
in terms of affecting the occurrence of landslides, they can be merged together, which results in
separate units. This act reduces the number of computations in the process of converting the data
and employing the machine learning models. Additionally, the separate units with very close µi

values (some units showed negligible differences in terms of the µi value) can also be integrated
into single units. Apart from reducing the number of pixels, another advantage of the second stage
is that the pixels’ values fall in a standard continuous range which means there is no unknown
value in relation to the categorical factors and it helps to apply the machine learning models;

• At the third stage, the unique condition units of the study area are created by overlaying all the
factors with the µi values in GIS software (e.g., using the Combine tool in ArcGIS® 10);

• The last stage involves creating a calibration dataset which is comprised of the µi values of both
landslide and stable pixels extracted from the unique condition units. Both landslide and stable
pixels are necessary for training some of the data mining models [57,81,93,103,104], such as BLR,
BPANN, SVM, and C5DT (except for FG which was applied directly using the unique condition
raster). The calibration dataset consisted of 80% landslide pixels (344 pixels in the modeling
dataset) and 344 randomly selected stable pixels. A buffer distance of 100 m around the landslides
was considered when randomly picking out the stable pixels to provide relative assurance of the
insensitivity of these stable pixels, which in turn helped to increase the accuracy of the models.
A low-volume text file (such as DBF, database file) of the calibration dataset was used in the
training process of the machine learning models in statistical software (SPSS® Statistics 19 and
SPSS® Modeler 18 in this study).
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Table 2. Correlation between the landslide modeling dataset and the classes of causative factors.

Factor Class Class Area % No. of
Landslide Landslide % Fri µi

Elevation (m
above m.s.l.)

<100 32.29 6 1.74 0.050 0.118
100–300 12.16 63 18.31 1.500 0.648
300–600 13.01 98 28.49 2.190 0.900

600–1000 11.82 89 25.87 2.190 0.900
1000–1300 9.33 49 14.24 1.520 0.655
1300–1700 10.34 32 9.30 0.900 0.429
1700–2500 9.68 7 2.03 0.210 0.177

2500< 1.33 0 0.00 0.000 0.100

Slope degree

0–6 40.83 89 25.87 0.630 0.226
6-12 22.55 76 22.09 0.980 0.457

12–18 15.40 76 22.09 1.430 0.755
18–24 10.35 59 17.15 1.650 0.900
24–30 6.17 27 7.85 1.270 0.649
30–40 4.03 16 4.65 1.150 0.569
40< 0.65 1 0.29 0.440 0.100

Slope aspect

Flat 0.23 0 0.00 0.000 0.100
North 17.42 60 17.44 1.000 0.740

Northeast 12.00 32 9.30 0.770 0.593
East 8.61 33 9.59 1.110 0.810

Southeast 10.51 29 8.43 0.800 0.612
South 13.32 52 15.11 1.130 0.823

Southwest 11.18 48 13.95 1.250 0.900
West 10.59 38 11.04 1.040 0.766

Northwest 16.13 52 15.11 0.930 0.695

STI-V

0–10 59.43 160 46.51 0.780 0.108
10–20 17.07 68 19.76 1.150 0.185
20–30 7.41 19 5.52 0.740 0.100
30–40 4.35 21 6.10 1.400 0.236
40–50 3.06 10 2.90 0.950 0.143
50–60 2.41 10 2.90 1.200 0.195
60–70 2.10 8 2.32 1.100 0.174
70–80 2.01 14 4.06 2.020 0.365
80–90 2.14 34 9.88 4.610 0.900

SPI

<1 15.24 22 6.39 0.420 0.100
1–2 19.29 49 14.24 0.740 0.388
2–3 21.29 90 26.16 1.230 0.828
3–5 30.43 121 35.17 1.150 0.756
5< 13.73 62 18.02 1.310 0.900

Lithology
(Code)

E1m 0.35 0 0.00 0.000 0.100
Ekh 0.22 0 0.00 0.000 0.100

Murm 0.70 3 0.87 1.250 0.239
Murmg 0.00 0 0.00 0.000 0.100

Plc 0.37 0 0.00 0.000 0.100
PlQc 0.50 0 0.00 0.000 0.100
Qal 0.21 0 0.00 0.000 0.100
Qft1 0.89 0 0.00 0.000 0.100
Qft2 0.87 6 1.74 1.990 0.321
Qm 40.80 14 4.07 0.100 0.111
Qsd 3.44 31 9.01 2.620 0.391
Qsw 12.35 100 29.06 2.350 0.361
Jch 0.51 6 1.74 3.400 0.477
Jd 3.52 10 2.90 0.820 0.191
Jl 5.19 20 5.81 1.120 0.224
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Table 2. Cont.

Factor Class Class Area % No. of
Landslide Landslide % Fri µi

Jmz 2.17 6 1.74 0.800 0.189
Jsc 0.09 0 0.00 0.000 0.100
K 0.08 2 0.58 7.210 0.900

Kad-ab 0.09 0 0.00 0.000 0.100
Kat 0.99 0 0.00 0.000 0.100
Kl 0.14 3 0.87 6.170 0.785

Ksn 1.51 1 0.29 0.190 0.121
Ksr 1.08 1 0.29 0.260 0.129
Ktr 0.00 0 0.00 0.000 0.100
Ku 2.20 3 0.87 0.390 0.143
TRe 0.33 7 2.03 6.130 0.780

TRe2 0.30 0 0.00 0.000 0.100
TRJs 4.12 24 6.97 1.690 0.288

Cl 0.13 1 0.29 2.130 0.336
Cm 3.89 35 10.17 2.610 0.390

DCkh 6.24 31 9.01 1.440 0.260
Dp 0.07 0 0.00 0.000 0.100
P 0.47 1 0.29 0.610 0.168

Pd 1.93 7 2.03 1.050 0.217
Pr 0.12 0 0.00 0.000 0.100
Pz 0.05 0 0.00 0.000 0.100

Pz1a.bv 0.68 2 0.58 0.850 0.194
Sn 0.04 0 0.00 0.000 0.100

PCC 0.01 0 0.00 0.000 0.100
PCmt2 3.19 30 8.72 2.730 0.403

Landcover
(ID)

1 12.90 2 0.58 0.040 0.107
2 3.12 52 15.11 4.840 0.900
3 6.69 93 27.03 4.040 0.768
4 8.45 9 2.61 0.300 0.150
5 7.48 6 1.74 0.230 0.138
6 5.16 3 0.87 0.170 0.128
7 6.22 2 0.58 0.090 0.115
8 2.62 4 1.16 0.440 0.173
9 5.73 12 3.49 0.600 0.199
10 24.16 147 42.73 1.770 0.393
11 9.20 13 3.78 0.410 0.168
12 3.74 0 0.00 0.000 0.100
13 1.71 0 0.00 0.000 0.100
14 1.52 1 0.29 0.190 0.131
15 1.25 0 0.00 0.000 0.100

Distance to
roads (m)

0–100 4.51 72 20.93 4.640 0.900
100–200 3.76 38 11.04 2.930 0.568
200–300 4.06 30 8.72 2.140 0.415
300–400 3.40 29 8.43 2.470 0.479
400–500 3.58 31 9.01 2.510 0.486

500< 80.67 144 41.86 0.520 0.100

Distance to
rivers

network (m)

0–100 5.41 83 24.12 4.450 0.900
100–200 4.59 45 13.08 2.850 0.549
200–400 9.38 37 10.75 1.140 0.175
400–700 13.08 36 10.46 0.800 0.100

700–1000 11.74 39 11.33 0.960 0.135
1000–1500 16.85 54 15.69 0.930 0.128

1500< 38.93 50 14.53 0.370 0.100
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Table 2. Cont.

Factor Class Class Area % No. of
Landslide Landslide % Fri µi

Distance to
faults (m)

0–200 9.30 61 17.73 1.900 0.900
200–400 7.85 43 12.50 1.590 0.738
400–600 6.81 47 13.66 2.000 0.952

600–1000 10.54 55 15.10 1.510 0.696
1000< 65.49 138 40.11 0.610 0.225

Climate
(type)

Very humid 15.32 97 28.19 1.840 0.900
Humid 19.95 83 24.12 1.210 0.626

Semi humid 13.37 25 7.26 0.540 0.335
Mediterranean 15.24 85 24.71 1.620 0.804

Semiarid 35.55 54 15.69 0.440 0.291
Arid 0.02 0 0.00 0.000 0.100

Annual
average

rainfall (mm)

150 0.01 0 0.00 0.000 0.100
200 0.15 0 0.00 0.000 0.100
250 2.11 0 0.00 0.000 0.100
300 9.73 1 0.29 0.030 0.109
400 20.36 31 9.01 0.440 0.225
500 19.40 99 28.78 1.480 0.521
600 16.48 31 9.01 0.540 0.254
700 13.03 41 11.92 0.910 0.359
800 13.92 97 28.19 2.020 0.675
900 4.13 40 11.62 2.810 0.900

1000 0.64 4 1.16 1.820 0.618

Annual
average

temperature
(◦C)

4 0.34 0 0.00 0.000 0.100
6 1.42 2 0.58 0.400 0.269
8 2.36 3 0.87 0.370 0.257
10 8.88 23 6.68 0.750 0.417
12 7.14 21 6.10 0.850 0.460
14 34.92 227 65.99 1.890 0.900
16 32.01 64 18.60 0.580 0.346
18 12.90 4 1.16 0.090 0.138

When using the calibration dataset in the statistical software, 80% of data was engaged in training
and 20% in testing the models. Apart from the validation dataset that had been preserved for the final
validation of the models, applying this 20% testing proportion provided a preliminary performance
evaluation when the BLR, BPANN, SVM, and C5DT models were executed.

4.1. FG

The fuzzy set theory was introduced by Zadeh [105]. The term “set” in this method refers to
the range of values, between 0.1 and 0.9 in this study, which can be assigned to different members.
This method can be used qualitatively or quantitatively as a flexible method, depending upon the
source of the fuzzy membership values, which was the quantitative µi values in this study. There is
a direct relationship between the membership value and susceptibility to landslides, that is to say,
a minimum membership value shows the minimum susceptibility of a pixel to landslides, and vice
versa. After assigning the relevant µi values to the pixels, the layers of the causative factors can be
combined by using one of the fuzzy functions (OR, AND, SUM, PRODUCT, and GAMMA) to calculate
the probability of landslide occurrence (P) for each output pixel (x). The GAMMA function that is
reported to have the best results among all fuzzy functions [42,101,102,106–108] is used here with the
equation of

PGAMMA(x) = [1−
∏n

i=1
µi(x)]

γ
× [

∏n

i=1
µi(x)]

1−γ
, (4)
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where, γ can range from 0 to 1. The γ = 0 and the γ = 1, respectively, results in the minimum and
maximum possible P of the pixels [108,109]. In this study, different γ values of 0.5, 0.6, 0.7, 0.8, 0.9, 0.95,
and 0.975 are tested to see which one would produce a more reliable LSM.

4.2. BLR

As a multivariate statistical method, logistic regression is reported to construct one of the most
reliable landslide susceptibility models [35,43,48,110,111]. The BLR method calculates the probability
of a two-category dependent variable, such as landslide occurrence, regarding its relationship with
causative factors as the independent variables [112,113]. The relationship between the dependent
variable and the independent variables is a nonlinear form of correlation. The probability of occurrence
of a dependent variable (P) based on a set of given independent factors in the LR model is expressed as
follows:

P = 1/(1 + e−z), (5)

where, P, on an S-shaped curve, ranges from 0 to 1 in a direct relationship with the variation of the
parameter Z from −∞ to +∞. And the parameter Z is specified as

Z = β0 + β1X1 + β2X2 + . . . + βnXn, (6)

where β0 is the model intercept, and βi (i = 1, 2, 3, . . . , n) is the coefficient of each given factor (Xi) [114].
By assigning the probability values calculated in this model to the related pixels, the LSM of the area is
produced.

To determine the accuracy of the model, two types of R-squared can be considered, the Cox and
Snell R-squared and the Nagelkerke R-squared. The first can vary from zero to a maximum of less than
one for a perfect model [115], and the second, which is an adjusted version of the first one, falls within
the range of zero to one [116]. The higher values for the above two indices show the better results.

4.3. BPANN

Artificial neural networks benefit from nonlinear mathematical algorithms to mimic the learning
process of the human brain in dealing with complex issues [50,117–119]. The main advantage of this
model is that there is no need to necessarily engage a specific statistical variable because, in fact,
this model is independent of the data statistical distribution [53,120]. The LSMs are produced by a
trained ANN as a feedforward structure [121,122]. The BPANN model, constructed in this study, was a
multilayer perceptron network trained by the backpropagation algorithm [123] using the optimization
algorithm of gradient descent with a momentum parameter [124].

Structurally, the network is comprised of an input layer, hidden layer(s) with different numbers of
neurons, and an output layer. Neurons of the input layer can be scaled, categorical, or binary data [125].
As mentioned before, the prepared calibration dataset consisted of the µi values (the normalized FR
weights) of both the landslide pixels and the stable pixels as the necessary input data for training the
model [93,103]. The calibration points were divided into two parts, training and test dataset, that were
very important in modification of the weights within the network and evaluation of the network
prediction power, respectively [54,126]. Because there is no general rule [93], 80% of the calibration
points were assigned to the learning dataset and 20% to the test dataset, as suggested by Swingler [127].
The ideal number of hidden layers and associated neurons for enhancing the network performance was
selected through trial and error [122,128]. After running the model, the training process was iterated
to modify the weights in the input layer until one of the specified stopping rules occurred. As the
stopping rules in this study, the total number of iterations was set at 2000 and the maximum iterations
without an error reduction at 10.

The other important parameters of the network are the initial learning rate and the momentum
factor, which were set at 0.01 and 0.9, respectively, after considering the values given in the literature
and testing different values. A high learning rate leads to a high-speed learning process, however, with
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a higher degree of uncertainty [50,103]. In addition, momentum value is defined to prevent the possible
network instability originated from a high-speed learning process [50,103].

4.4. SVM

SVM is a machine learning method that has been recently used in landslide susceptibility
analysis [57,58,81,129]. It classifies the input training points (calibration dataset) of the landslide
causative factors (Fi = F1, F2, . . . , Fn) into two classes of stable (Pi = −1) and unstable (Pi = 1) pixels
using the optimal hyperplane (an n-dimensional surface) with the widest possible space between the
margins of the nearest points. In linear form, the equation of a hyperplane can be written as follows:

Pi(W · Fi + b) ≥ 1, (7)

where, b, as a constant value, shows the offset of the hyperplane from the origin. The Euclidean
length between the hyperplane and each of the margins is 1

2‖W‖
2 [56,59] that is used in the Lagrangian

equation to define the optimal hyperplane [57] as follows:

L =
1
2
‖W‖2 −

∑n

i=1
λi(Pi(W · Fi + b) − 1). (8)

In the above equation, λi is the Lagrange multiplier. More information and the detailed equations
of the SVM method can be found in Hong et al. (2016). Four different types of kernel functions can be
used for an SVM model such as linear, polynomial, sigmoid, and radial basis function (RBF). The last
one is frequently reported as the best function for landslide susceptibility mapping studies [56–58].
The balance between accuracy and overfitting of the model can be adjusted by the regularization (C)
and gamma parameters. The C is usually set between one and 10; the higher the C is, the more accurate
the model would become, but it may cause overfitting of the model. The same trend is seen in terms of
the RBF gamma parameter; nevertheless, values in the range of three to six divided by the number of
the input factors are worth trying [130].

4.5. C5DT

C5 is one of the most powerful algorithms used in decision tree models that has recently been
employed in landslide studies [59,131]. This algorithm is the new version of the old C4.5, which had
been reported to be the fastest machine learning method [132]. C5 is even faster than the traditional
C4.5 algorithm, it is efficient in terms of both memory usage and weighting process, and it benefits
from two options of boosting and winnowing [133,134]. Selection of the boosting option helps to
significantly increase the accuracy of the model by building a number of consecutive models that
focus on the misclassified records of the preceding model, and the winnowing option helps to prune
ineffective factors before construction of the model, thus, increasing the speed of assessment, which is
a considerable advantage, notably, in dealing with big data [135–138].

Depending on the amount of information each causative factor reflects about the landslide
occurrence, the C5 algorithm separates the input training points of the factors. This process begins with
the factor that reveals the maximum information about the occurrence of landslides. Then, each of the
created subgroups are split up again based on another important factor, and this process continues by
taking all other factors into account, one by one. The lowest-level branches of the decision tree are then
pruned if they do not enhance the results of the model significantly. The process of pruning the tree is
done in two stages, local pruning and global pruning [59]. Local pruning evaluates the subtrees and
prunes the branches, and global pruning treats the tree as a whole with some weak subtrees that should
be collapsed. To control the severity of the pruning in the local stage, the pruning severity parameter
of the model is set between zero and 100 in SPSS® Modeler software. The higher the parameter,
the smaller the tree would be and it can prevent the model from overfitting. Finally, the decision tree
created is used to score the whole pixels of the study area.
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4.6. Validation of the Built Models

To assess the reliability of landslide susceptibility models, the receiver operating characteristic
(ROC) method is recommended [3,139,140]. The area under the curve (AUC) of the ROC graph is
used as a scalar statistic [141,142] to indicate the validation rates of the models. To calculate the AUC,
several thresholds (i = 1, 2, 3, . . . , n + 1) are defined for each of which the sensitivity and specificity
statistics are calculated as follows [42,139,141]:

Sensitivityi =
L>i
TL

, (9)

Speci f icityi =
S>i
TS

, (10)

where, L>i is the number of landslide pixels with a value higher than that of the threshold, and S>i
is the number of stable pixels with a value lower than that of the threshold. TL and TS are the total
number of the landslide pixels and the stable pixels in the map, respectively. Plotting the sensitivity
and 1-specificity of each threshold on the y-axis and x-axis, respectively, the AUC of the ROC graph is
calculated by the following equation [80,139]:

AUC =
n + 1∑
i = 1

1
2

√
(xi − xi+1)

2
× (yi + yi+1). (11)

The calculated AUC shows the success rate of the model if the modeling dataset is engaged in
Equations (9) and (10), and the prediction rate of the validation dataset. Both rates are required to be
evaluated [90,143]. The success rate shows how well the model classifies the areas of existing landslides
but not future landslides, therefore, the prediction rate is calculated [41,72,90,144].

After the validation process is done, the outputs of the models that are continuous numerical
values should be visualized, preferably not in more than five zones for clarity [3]. In this regard, five
main techniques can be used such as simple ranking, natural breaks, the mean value and standard
deviation intervals, equal interval classes, and equal area classes [90,145,146]. The equal area classes
technique is more suitable than the others for comparison of the maps [42,53,90]. Using this technique
and considering the geoenvironmental situations of the study area, an equal proportion of 20% of
the area was assigned to each of the zones of the maps, very low, low, moderate, high, and very high
susceptibility (Figure 5a–e) for a straightforward comparison.
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5. Results and Discussion

5.1. The Relationship between the Landslides and Causative Factors

By applying the FR method, the correlation between the landslides and the causative factors was
examined. The higher the Fri of a class is (Table 2), the stronger the correlation between that class
and the landslides would be, and vice versa. In the case of altitude, the middle classes of altitude
(300–600 and 600–1000 m) with equal Fris (2.19) were the most sensitive zones. After these, altitudes
of 100–300 and 1000–1300 m by the same weight of 1.5 also showed a meaningful relationship with
landslide occurrence, but other classes of altitude were not susceptible (Fri < 1). In all probability,
the main reason for the higher weights of the middle altitude classes was the interaction effect of
other important causative factors such as the high amount of precipitation, the potential slope degrees,
and the existence of loose soils and stones that accompanied these classes.
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In terms of slope degree, the areas with a slope degree from 12 to 40, which covered about 36% of
the study area, were susceptible to landslides. On the contrary, the two classes of zero to six degree and
six to 12 degree (owing to their low shear stress) and the class 40 < degree (due to gradual fall of the
unstable materials and hence existence of the weather-resistant rocks) comprised the low-risk regions.

The slope aspect factor as a geomorphological attribute can influence the occurrence of
landslides [147], however, similar to some other studies [43,80,148], in this study, the Fris of the
classes did not reveal any clear correlation between the slope aspects and occurrence of landslides.
Nevertheless, the flat areas (Fri = 0) and the northeast and southeast aspects (with weights of well
below one) showed an inverse correlation with the occurrence of landslides.

The two last classes STI-V factor had a strong correlation with the occurrence of landslides.
The last class of this factor, 80–90, showed the highest weight, 4.6, with a covering just above 2% of the
whole area encompassing about 10% of the landslides. These landslides were those which were highly
affected by the toe erosion process of the powerful rivers. Therefore, STI-V (the modified version of STI
factor) can have a high density of landslides in its classes with the highest values, however, the other
classes with lower values did not show a clear relationship with the landslides because the main cause
of the landslides occurring in these classes was the effect of other factors rather than the rivers.

When examining the weights of the classes of the SPI factor, the last three classes with the highest
weights showed a relatively high susceptibility to landslides, although not exponentially, as seen in the
case of STI-V. They had similar weights (just over one). This shows that this factor is not as good as the
STI-V factor for indicating landslides affected by rivers.

In the case of lithology, the most sensitive lithological unit was K (described in Table 1), with a
weight of 7.21, followed by the K1 and TRe units with weights of 6.17 and 6.13, respectively. Other very
susceptible units were consecutively Jch, PCmt2, Qsd, Cm, Qsw, and Cl, which all had a weigh over
two. By considering the lithological combination and the spatial range of units, it was observed that
most of the susceptible units had some sensitive materials inside (often limestone and marl) and were
located in the regions with potential conditions for land sliding (e.g., on steep slopes with a high
amount of rainfall and high density of rivers, roads, and faults).

Concerning the land cover factor, the two most susceptible classes (2 and 3) both consisted
of lands on steep slopes which were deforested for intensely irrigated to non-irrigated farming.
The weights of these two classes (about 4.8 and 4, respectively) were about double the weight of their
surrounding dense forest (i.e., class 10 which was the only other landslide-prone class). Not surprisingly,
the landslides in dense forest often happened very close to the roads, notably those constructed on
the steep slopes and alongside the rivers. The above results reveal that landslides can be significantly
affected by human activities such as deforestation for cultivation and construction of roads in forests,
for example, for carrying wood [149,150]. The nearest buffer zone from roads (0–100 m) had the highest
weights (about 4.6) which strongly supports the assumption about the profound influence of roads
on landslides. The four next classes covering a distance of 100 to 500 m from roads were also very
susceptible to landslides, all having a weight above two; the only stable buffer zone had a distance of
more than 500 m from roads.

For rivers, similar to roads, the highest weights belonged to the classes with the closest distance to
the network of rivers; the classes of 0 to 100 m and 100 to 200 m were much more liable to landslides,
and the only other susceptible class was (200 to 300 m). This confirms the significant influence rivers
have on the landslides; rivers can promote the occurrence of landslides, for example, by eroding the
toe of slopes and affecting the groundwater table.

In the case of distance to faults, however, no certain relationship can be seen between the distance
of the classes and the landslides; except the class of >1000 m that was relatively stable. Other classes
with different ranges of distance to faults were all similarly susceptibility to landslides with some
differences in terms of weight.

In relation to climate, as expected, the very humid areas showed the highest susceptibility to
landslides (Fri = 1.84). Surprisingly, after that class, it was the Mediterranean class that was the second
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susceptible class with an Fri = 1.62, and not the humid areas (Fri = 1.2) because climate factor, like any
other causative factor, is not the absolute predictor of landslides and may show unexpected weights
under the effect of other overlapping factors.

Consecutively, the most susceptible rainfall classes are those with an annual average of 900,
800, and 1000 mm, whereas the four initial classes with the lowest amount of rainfall (150, 200, 250,
300 mm) showed a Fri of about zero which is considered normal. The higher weight of the rainfall class
with 500 mm (Fri = 1.48) in comparison to its two upper classes (with higher precipitation) indicated
that, although water plays important roles such as the lubrication effect [151] in triggering landslides,
the interaction between the causative factors still plays an influential role in the determination of the
weights of classes. This may also be true in the case of the annual average temperature factor, for which
the weight of greater than one, for the only susceptible class (14 ◦C), appears to be largely due to the
effect of other accompanying important factors.

5.2. Application of the NFUC Method

As mentioned before, it was impossible to apply most of the data mining models to the raw
pixel-by-pixel rasters of the study area because of the high volume of data. Therefore, the intermediate
approach of NFUC was designed and employed to reduce the volume of data. Results showed that,
with the aid of the NFUC approach, the number of raw pixels (30 × 30 m) in the whole study area
was considerably reduced to about one-fourth, that is to say, the very large initial number of around
12,881,000 pixels of the study area decreased to about 3,385,000 unique condition units (each of which
comprising the pixels with the same µi values). When the NFUC approach is applied, a decrease in data
volume mainly depends on the number of classes considered for each causative factor, i.e., the lower
the number of classes, the more the reduction of data volume. In this study, since the highest possible
number of classes for each factor was considered to prevent the homogeneity of data, the data volume
reduction was finally about 75%, which is still a considerable percentage. The NFUC approach is
expected to have the potential to reduce data volume even more in other studies where the number of
classes for each factor is usually considered relatively lower. A decrease of about 75% in the volume of
data made the implementation of all the considered data mining methods in this research possible.

Although the application of the NFUC approach and transfer of the data between the statistical
and GIS software was relatively time-consuming, it possessed the advantage of employing more
advanced models at a national scale that were impossible to use with conventional computers due
to the high volume of information at this scale. In addition, one could question the way the NFUC
approach introduces the predefined pixel weights (µi) as the raw input data to the data mining models,
however, it should be considered that these weights are not defined arbitrarily but through a statistically
significant approach. A µi value is representative of the common feature of a bunch of pixels, which is
their relationship with the occurred landslides (modeling dataset). Therefore, µi values can be used
in other data mining methods in order to further process the weights. Using the NFUC approach,
models were successfully constructed and reliable LSMs were produced, which are discussed in the
next sections.

5.3. Application of Different Data Mining Methods

Among all the γ values applied in this study (0.5, 0.6, 0.7, 0.8, 0.9, 0.95, and 0.975) for the FG
model, the value of 0.9 produced an output layer with the widest range of susceptibility degrees,
from 0.056 to 0.873 (Table 3). By applying a higher γ value, the output map did not contain the
very low susceptibility degrees. On the contrary, using a lower γ value, the generated map did not
include the high susceptibility degrees. A similar result has also been reported by Tangestani [108].
Therefore, the map of γ = 0.9 was compared with the maps of other methods.
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Table 3. Range of the output susceptibility index of different γ values in the FG method.

γ Value The Lowest Output Susceptibility The Highest Output Susceptibility

0.5 0 0.294
0.6 0 0.376
0.7 0 0.480
0.8 0.003 0.613
0.9 0.056 0.873

0.95 0.218 0.885
0.975 0.429 0.940

To construct the BLR, BPANN, SVM, and C5DT models, the calibration dataset with a text format
was imported to SPSS® Statistics 19 and SPSS® Modeler 18. The summary of the BLR model shows
that the Cox and Snell R-square and Nagelkerke R-square values were 0.444 and 0.592, respectively,
testifying to the good results of the model. With regards to the BLR model, the significance probability
values of all factors were lower than 0.05, except for STI-V, SPI, climate, rainfall, and temperature.
A value of <0.05 for the significance probability implied that the factor statistically affects the occurrence
of landslides.

With respect to the BPANN model, the best result was achieved when one hidden layer with
eight units was applied, the initial learning rate was 0.01, and the momentum factor was set at 0.9.
However, the mentioned network was executed ten times with different random seeds at a training
and test ratio of 80:20 to obtain the best possible results. The results showed that the training and
test accuracies of the best model (Table 4) are 91.4% and 88%, respectively, with an overall incorrect
prediction of only 9.28%, and therefore this model was selected to produce the related LSM.

Table 4. The accuracy of the BPANN models performed using different random seeds.

BPANN Models Training Accuracy (%) Test Accuracy (%) Overall Incorrect Predictions (%)

1 85.7 81.8 15.08
2 86.4 84.3 14.02
3 84.9 85.5 14.98
4 87.7 84.8 12.88
5 80.7 82.1 19.02
6 85.9 80.9 15.01
7 87.9 83.3 13.02
8 91.4 88.0 9.28
9 82.6 85.1 16.09
10 87.2 80.7 14.10

The highest accuracy without being overfit for the SVM model were achieved when the parameter
C was set on one and the RBF gamma was 0.23. The training and test accuracies of this model
were 84.26% and 79.73%, respectively. Therefore, this model was used to create the LSM of the area.
Evaluation of the posterior probability histogram and the training and test accuracies of the predictions
for the input calibration dataset showed that increasing the parameters C and RBF gamma led to
overfitting of the model. On the one hand, by increasing these parameters, posterior probability of
most of the predictions tended to be very close to zero or one, which means if an LSM had been
produced, it was unable to predict the middle range of susceptibility values. Likewise, in that case,
the training accuracy was higher than the test accuracy, which could show the models were overfitted
to the existing landslides and had a low capability to predict future events. On the other hand, with an
RBF gamma lower than 0.23, both training and test accuracies of the model declined.

In the case of the C5DT model, the best results were obtained when the boosting and winnowing
options were activated, the pruning severity was 100 (the highest possible value), and the number of
trials for the boosting method was 14. Under these conditions, the model considered the four causative
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factors of slope degree, temperature, STI-V, and SPI not to be significantly effective, and therefore
dropped them from the process. With a pruning severity lower than 100, the model showed a high
propensity to get overfitted.

5.4. Validation of the Data Mining Models

The ROC graphs in Figure 6a,b illustrate the success and prediction curves of the
models, respectively.
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Figure 6. Success (a) and prediction (b) rate curves of the models based on the receiver operating
characteristic (ROC) method.

Overall, although a small-scale landslide susceptibility map is generally less reliable than a larger
scale map [4,35], the LSMs produced in this study were all satisfactorily reliable and showed validation
rates between 0.8 and 0.9, which can be categorized as a good accuracy [152].

In ascending order, the success rates of the models were 0.859 for FG, 0.887 for BLR, 0.891 for SVM,
0.893 for C5DT, and 0.896 for BPANN, and the prediction rates were 0.842 for FG, 0.855 for BLR, 0.856
for C5DT, 0.872 for BPANN, and 0.875 for SVM. Notwithstanding the use of the same normalized FR
weights, the performance of the FG model was comparatively low where its success rate was about 3%
lower than that of four other models. For the other models, there was less than a 1% difference in the
success rates (BPANN was the best). In terms of predicting future landslides, however, the prediction
rates of the models BPANN and SVM were similarly better (about 2% to 3% higher) than those of the
FG, BLR, and C5DT.

It should be noted that in the case of the C5DT model, despite controlling the parameters to
prevent overfitting, it was the most overfitted model by showing a relatively large difference between
its success and prediction rates (about 4%). Generally, the higher this difference, the more overfitted
the model, in other words, the model performs well in zoning the area based on the current landslides
(modeling dataset), but it is not as successful for predicting future landslides (validation dataset) as
well. Considering this criterion, the SVM model had the best results because the difference between
its success rate and prediction rate was only about 1.5 percent. Nevertheless, because C5DT was the
fastest machine learning model, uses fewer factors as compared with other models (nine of the 13
prepared factors in this study), and it has been proven to be a reliable model in other studies [131,138],
it is worth trying this model in other studies especially for large areas with a large amount of data
where the speed of model is important.
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The percentage of landslides in each susceptible zone is given in Table 5. Because the area
percentages of the zones were the same (20%), the percentage of landslides that fell in the zones can be
compared directly. Generally, the greater the percentage of landslides inside a very high susceptible
zone, the better the map would be. Regarding this matter, the BPANN model was the best model
because the percentage of landslides in a very high susceptible zone of its LSM was 87% (about 6%
higher than that of the SVM, C5DT, and BLR). The worst results were obtained for the FG LSM model
that encircled only 75% of the landslides in its very high susceptible zone. By considering both high
and very high susceptible zones together, the BPANN LSM, again, had the best results because it
could encompass more than 96% of the landslides in the two mentioned zones, whereas SVM, C5DT,
and BLR encompassed about 94%, and FG encompassed about 90%.

Table 5. The percentage of landslides in each zone of the landslide susceptibility maps (LSMs) produced
by different data mining methods.

Susceptibility Zone Zones Area %
Landslides %

FG BLR C5DT SVM BPANN

Very low 20 1.62 0.93 0.70 0.93 1.39
Low 20 1.39 1.39 1.86 1.86 0.93

Medium 20 6.26 3.94 3.25 2.78 1.16
High 20 14.85 11.60 11.37 13.46 9.51

Very high 20 75.87 82.13 82.83 80.97 87.01

All things considered, BPANN followed by SVM are the best models, although it should be noted
that all other employed models also produced a reliable LSM at a national scale.

The results of the models in this study can be compared to the same models employed in other
studies, however, at a national scale (like the scale of this research), only some of the data mining
methods applied in this research have been used in other studies. For example, the BPANN model has
been employed with satisfactory results producing a national-scale LSM of China [46]. Some studies
have reported reasonable accuracy of small-scale LSMs produced by the logistic regression method in
different conditions [78,134,135]. For further comparison, the results could be compared with studies
at scales different than the scale of this research, such as regional and local scales. At these different
scales, SVM with RBF function has high reliability and has been shown to be better than models such
as decision tree and Bayesian network [50], neuro-fuzzy inference system, and generalized additive
model [36], and C5DT model [39]. The C5DT model has been proven, however, to be a reliable model
for predicting landslide-prone areas in two other studies [111,118], hence, once more as a suggestion,
it is worth comparing this model with different models in future studies because of the high learning
speed of this model. In line with this study, but at different scales, some studies have also shown better
results for the ANN models as compared with the LR model [33,49,56], however, there could be cases
where the LR model has been more reliable than the ANN and SVM models depending on the study
conditions [133]. Overall, the ANN and SVM models have often shown better results in comparison
to other data mining models, which is consistent with the findings of this research. As both models
are similarly and highly reliable, their output maps can be combined to produce the best possible
result. Combining the output of landslide susceptibility models is a recommended way to reduce the
uncertainty of the final map [136–138], however, the ways the maps can be combined are various and
depend on other criteria, and therefore it needs to be addressed in future studies.

All in all, it was observed that nowadays it is possible to employ advanced machine learning
methods for small-scale landslide susceptibility mapping with the aid of remote sensing and GIS
techniques and their combination. To deal with the problem of the lack of landslide inventory
data for very large areas, advanced remote sensing techniques can be applied. The inventory
data used in this study was produced as part of a preplanned national project and through visual
interpretation of aerial photographs and field investigations which are very time-consuming and costly.
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To facilitate the detection of landslides, future studies could utilize modern remote sensing techniques
in combination with GIS, for example, the technique of automatic image classification using deep
learning methods [139–141]. In addition, with regards to the difficulties of using advanced machine
learning methods to create the LSMs of very large areas, intermediate approaches such as NFUC could
be adopted to reduce the data volume and make the application of these methods possible.

6. Conclusions

The aim of this research was to apply and compare different data mining methods in small-scale
landslide susceptibility zoning. It is often impossible to use most data mining models, including
advanced machine learning methods, for small-scale analyses because the data at this scale
are voluminous and the mentioned methods are computer intensive. Therefore, in this study,
an intermediate approach, called NFUC, was designed to reduce the volume of the related data.
One of the biggest, most susceptible catchments, in northern Iran, was selected as the study area.
The LSMs of the area were produced by employing the data mining methods of FG, LR, C5DT, BPANN,
and SVM. To enhance the speed of training the models and make the implementation of the models
feasible at this scale, the relatively big data of the 13 selected causative factors were converted to a
low-volume format of continuous variables using the NFUC approach. The NFUC approach showed
significant capability of reducing the volume of data up to one-fourth, and therefore it can be used as an
effective approach for dealing with voluminous data in small-scale landslide susceptibility assessments.
Considering the validation rates of the models determined by the ROC method and the percentage of
landslides in susceptible areas of their maps, BPANN, followed by SVM, were the most reliable models.
However, the C5DT, BLR, and FG models could also be considered reliable enough for a small-scale
study. For very large areas (at continental and global scales) where the balance between the reliability
and the speed of training is even more important, the C5DT model, as the fastest model, could be
more helpful.

To summarize, we conclude that advanced methods, such as ANN or SVM, can reliably be
employed with the aid of the NFUC approach to enhance the reliability of LSMs for large areas.
Additionally, the best LSMs produced in this study (BPANN and SVM, or preferably a combination of
them depending on different criteria) can be engaged in national land use management plans and as a
guide for detailed mapping. Finally, to produce more reliable small-scale LSMs, it is suggested that
more advanced methods, such as ANN and SVM, can be used with the help of the NFUC approach.
In addition, future studies could benefit considerably from more advanced remote sensing and GIS
techniques to prepare the required data for very large areas and also implement the machine learning
models at these scales for landslide susceptibility assessment.
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49. Raja, N.B.; Çiçek, I.; Türkoğlu, N.; Aydin, O.; Kawasaki, A.; Aydın, O. Correction to: Landslide susceptibility
mapping of the Sera River Basin using logistic regression model. Nat. Hazards 2017, 91, 1423. [CrossRef]

50. Chauhan, S.; Sharma, M.; Arora, M.; Gupta, N. Landslide Susceptibility Zonation through ratings derived
from Artificial Neural Network. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 340–350. [CrossRef]

http://dx.doi.org/10.1007/s10346-005-0031-y
http://dx.doi.org/10.1080/10106049.2016.1195886
http://dx.doi.org/10.1007/s00254-007-0818-3
http://dx.doi.org/10.1007/s10346-015-0576-3
http://dx.doi.org/10.1080/19475705.2010.498151
http://dx.doi.org/10.1007/s12665-015-5093-0
http://dx.doi.org/10.1016/j.enggeo.2011.09.011
http://dx.doi.org/10.1007/s00254-005-1228-z
http://dx.doi.org/10.1007/s12517-012-0807-z
http://dx.doi.org/10.1007/s11629-013-2847-6
http://dx.doi.org/10.1007/s12665-011-1432-y
http://dx.doi.org/10.1016/j.enggeo.2004.06.001
http://dx.doi.org/10.1007/s11069-012-0217-2
http://dx.doi.org/10.1080/19475705.2016.1144655
http://dx.doi.org/10.1007/s10346-011-0283-7
http://dx.doi.org/10.1007/s11629-014-3171-5
http://dx.doi.org/10.1016/j.jafrearsci.2016.02.019
http://dx.doi.org/10.1007/s11629-016-4126-9
http://dx.doi.org/10.1111/j.1467-9671.2006.01004.x
http://dx.doi.org/10.5194/nhess-10-1851-2010
http://dx.doi.org/10.1007/s11069-017-3145-3
http://dx.doi.org/10.1016/j.jag.2010.04.006


Water 2019, 11, 2292 26 of 30

51. Chen, W.; Pourghasemi, H.R.; Zhao, Z. A GIS-based comparative study of Dempster-Shafer, logistic regression
and artificial neural network models for landslide susceptibility mapping. Geocarto Int. 2017, 32, 367–385.
[CrossRef]

52. Gorsevski, P.V.; Brown, M.K.; Panter, K.; Onasch, C.M.; Simic, A.; Snyder, J. Landslide detection and
susceptibility mapping using LiDAR and an artificial neural network approach: A case study in the
Cuyahoga Valley National Park, Ohio. Landslides 2016, 13, 467–484. [CrossRef]

53. Pradhan, B.; Lee, S. Landslide susceptibility assessment and factor effect analysis: Backpropagation artificial
neural networks and their comparison with frequency ratio and bivariate logistic regression modelling.
Environ. Model. Softw. 2010, 25, 747–759. [CrossRef]

54. Zare, M.; Pourghasemi, H.R.; Vafakhah, M.; Pradhan, B. Landslide susceptibility mapping at Vaz Watershed
(Iran) using an artificial neural network model: A comparison between multilayer perceptron (MLP) and
radial basic function (RBF) algorithms. Arab. J. Geosci. 2013, 6, 2873–2888. [CrossRef]

55. Zeng-Wang, X. GIS and ANN model for landslide susceptibility mapping. J. Geogr. Sci. 2001, 11, 374–381.
[CrossRef]

56. Chen, W.; Pourghasemi, H.R.; Panahi, M.; Kornejady, A.; Wang, J.; Xie, X.; Cao, S. Spatial prediction of
landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio,
generalized additive model, and support vector machine techniques. Geomorphology 2017, 297, 69–85.
[CrossRef]

57. Hong, H.; Pradhan, B.; Bui, D.T.; Xu, C.; Youssef, A.M.; Chen, W. Comparison of four kernel functions used
in support vector machines for landslide susceptibility mapping: A case study at Suichuan area (China).
Geomat Nat. Hazards Risk 2017, 8, 544–569. [CrossRef]

58. Pradhan, B. A comparative study on the predictive ability of the decision tree, support vector machine
and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput. Geosci. 2013, 51, 350–365.
[CrossRef]

59. Wu, X.; Ren, F.; Niu, R. Landslide susceptibility assessment using object mapping units, decision tree, and
support vector machine models in the Three Gorges of China. Environ. Earth Sci. 2014, 71, 4725–4738.
[CrossRef]

60. Günther, A.; Eeckhaut, M.V.D.; Malet, J.-P.; Reichenbach, P.; Hervás, J. Climate-physiographically
differentiated Pan-European landslide susceptibility assessment using spatial multi-criteria evaluation
and transnational landslide information. Geomorphology 2014, 224, 69–85. [CrossRef]

61. Thiery, Y.; Malet, J.-P.; Sterlacchini, S.; Puissant, A.; Maquaire, O. Landslide susceptibility assessment by
bivariate methods at large scales: Application to a complex mountainous environment. Geomorphology 2007,
92, 38–59. [CrossRef]

62. Trigila, A.; Frattini, P.; Casagli, N.; Catani, F.; Crosta, G.; Esposito, C.; Iadanza, C.; Lagomarsino, D.;
Mugnozza, G.S.; Segoni, S.; et al. Landslide Susceptibility Mapping at National Scale: The Italian Case Study.
In Landslide Science and Practice; Springer: Berlin/Heidelberg, Germany, 2013; pp. 287–295.

63. Van Westen, C.; Van Asch, T.W.; Soeters, R. Landslide hazard and risk zonation—Why is it still so difficult?
Bull. Eng. Geol. Environ. 2006, 65, 167–184. [CrossRef]

64. Gaprindashvili, G.; Van Westen, C.J. Generation of a national landslide hazard and risk map for the country
of Georgia. Nat. Hazards 2016, 80, 69–101. [CrossRef]

65. Günther, A.; Reichenbach, P.; Malet, J.-P.; Van Den Eeckhaut, M.; Hervás, J.; Dashwood, C.; Guzzetti, F.
Tier-based approaches for landslide susceptibility assessment in Europe. Landslides 2013, 10, 529–546.
[CrossRef]

66. Liu, C.; Li, W.; Wu, H.; Lu, P.; Sang, K.; Sun, W.; Chen, W.; Hong, Y.; Li, R. Susceptibility evaluation and
mapping of China’s landslides based on multi-source data. Nat. Hazards 2013, 69, 1477–1495. [CrossRef]

67. Van Den Eeckhaut, M.; Hervás, J.; Jaedicke, C.; Malet, J.P.; Montanarella, L.; Nadim, F. Statistical modelling
of Europe-wide landslide susceptibility using limited landslide inventory data. Landslides 2012, 9, 357–369.
[CrossRef]

68. Li, Y.; Zhang, Y.; Huang, X.; Yuille, A.L. Deep networks under scene-level supervision for multi-class
geospatial object detection from remote sensing images. ISPRS J. Photogramm. Remote Sens. 2018, 146,
182–196. [CrossRef]

69. Li, Y.; Zhang, Y.; Huang, X.; Zhu, H.; Ma, J. Large-Scale Remote Sensing Image Retrieval by Deep Hashing
Neural Networks. IEEE Trans. Geosci. Remote Sens. 2017, 56, 950–965. [CrossRef]

http://dx.doi.org/10.1080/10106049.2016.1140824
http://dx.doi.org/10.1007/s10346-015-0587-0
http://dx.doi.org/10.1016/j.envsoft.2009.10.016
http://dx.doi.org/10.1007/s12517-012-0610-x
http://dx.doi.org/10.1007/BF02892323
http://dx.doi.org/10.1016/j.geomorph.2017.09.007
http://dx.doi.org/10.1080/19475705.2016.1250112
http://dx.doi.org/10.1016/j.cageo.2012.08.023
http://dx.doi.org/10.1007/s12665-013-2863-4
http://dx.doi.org/10.1016/j.geomorph.2014.07.011
http://dx.doi.org/10.1016/j.geomorph.2007.02.020
http://dx.doi.org/10.1007/s10064-005-0023-0
http://dx.doi.org/10.1007/s11069-015-1958-5
http://dx.doi.org/10.1007/s10346-012-0349-1
http://dx.doi.org/10.1007/s11069-013-0759-y
http://dx.doi.org/10.1007/s10346-011-0299-z
http://dx.doi.org/10.1016/j.isprsjprs.2018.09.014
http://dx.doi.org/10.1109/TGRS.2017.2756911


Water 2019, 11, 2292 27 of 30

70. Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Meena, S.R.; Tiede, D.; Aryal, J. Evaluation of Different
Machine Learning Methods and Deep-Learning Convolutional Neural Networks for Landslide Detection.
Remote Sens. 2019, 11, 196. [CrossRef]

71. Lee, S.; Kim, Y.; Min, K. Development of spatial landslide information system and application of spatial
landslide information. J. Gis Assoc. Korea 2000, 8, 141–153.

72. Lee, S.; Ryu, J.-H.; Kim, I.-S. Landslide susceptibility analysis and its verification using likelihood ratio,
logistic regression, and artificial neural network models: Case study of Youngin, Korea. Landslides 2007, 4,
327–338. [CrossRef]

73. Yilmaz, I. Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural
networks and their comparison: A case study from Kat landslides (Tokat—Turkey). Comput. Geosci. 2009, 35,
1125–1138. [CrossRef]

74. Shahabi, H.; Hashim, M.; Bin Ahmad, B. Remote sensing and GIS-based landslide susceptibility mapping
using frequency ratio, logistic regression, and fuzzy logic methods at the central Zab basin, Iran. Environ.
Earth Sci. 2015, 73, 8647–8668. [CrossRef]

75. Sahana, M.; Sajjad, H. Evaluating effectiveness of frequency ratio, fuzzy logic and logistic regression models
in assessing landslide susceptibility: A case from Rudraprayag district, India. J. Mt. Sci. 2017, 14, 2150–2167.
[CrossRef]

76. Balteanu, D.; Chendes, , V.; Sima, M.; Enciu, P. A country-wide spatial assessment of landslide susceptibility
in Romania. Geomorphology 2010, 124, 102–112. [CrossRef]

77. Holec, J.; Bednárik, M.; Šabo, M.; Minár, J.; Yilmaz, I.; Marschalko, M.; Yilmaz, I. A small-scale landslide
susceptibility assessment for the territory of Western Carpathians. Nat. Hazards 2013, 69, 1081–1107.
[CrossRef]

78. Komac, B.; Zorn, M. Statistical landslide susceptibility modeling on a national scale: The example of Slovenia.
Rev. Roum. Géogr. 2009, 53, 179–195.

79. Sabatakakis, N.; Koukis, G.; Vassiliades, E.; Lainas, S. Landslide susceptibility zonation in Greece. Nat.
Hazards 2013, 65, 523–543. [CrossRef]

80. Park, S.; Choi, C.; Kim, B.; Kim, J. Landslide susceptibility mapping using frequency ratio, analytic hierarchy
process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environ. Earth Sci.
2013, 68, 1443–1464. [CrossRef]

81. Bui, D.T.; Pradhan, B.; Löfman, O.; Revhaug, I. Landslide Susceptibility Assessment in Vietnam Using
Support Vector Machines, Decision Tree, and Naïve Bayes Models. Math. Probl. Eng. 2012, 2012, 1–26.

82. Glade, T. Landslide Hazard Assessment and Historical Landslide Data—An Inseparable Couple? In The Use
of Historical Data in Natural Hazard Assessments; Springer: Berlin/Heidelberg, Germany, 2001; pp. 153–168.

83. Ibsen, M.-L.; Brunsden, D. The nature, use and problems of historical archives for the temporal occurrence of
landslides, with specific reference to the south coast of Britain, Ventnor, Isle of Wight. Geomorphology 1996,
15, 241–258. [CrossRef]

84. Lang, A.; Moya, J.; Corominas, J.; Schrott, L.; Dikau, R. Classic and new dating methods for assessing the
temporal occurrence of mass movements. Geomorphology 1999, 30, 33–52. [CrossRef]

85. Zêzere, J.; Pereira, S.; Melo, R.; Oliveira, S.; Garcia, R.A.C. Mapping landslide susceptibility using data-driven
methods. Sci. Total Environ. 2017, 589, 250–267. [CrossRef]

86. Wang, X.; Zhang, L.; Wang, S.; Lari, S. Regional landslide susceptibility zoning with considering the
aggregation of landslide points and the weights of factors. Landslides 2014, 11, 399–409. [CrossRef]

87. Ardizzone, F.; Cardinali, M.; Carrara, A.; Guzzetti, F.; Reichenbach, P. Impact of mapping errors on the
reliability of landslide hazard maps. Nat. Hazard Earth Sys. 2002, 2, 3–14. [CrossRef]

88. Pradhan, B.; Mansor, S.; Pirasteh, S.; Buchroithner, M.F. Landslide hazard and risk analyses at a landslide
prone catchment area using statistical based geospatial model. Int. J. Remote Sens. 2011, 32, 4075–4087.
[CrossRef]

89. Pourghasemi, H.R.; Jirandeh, A.G.; Pradhan, B.; Xu, C.; Gokceoglu, C. Landslide susceptibility mapping
using support vector machine and GIS at the Golestan Province, Iran. J. Earth Syst. Sci. 2013, 122, 349–369.
[CrossRef]

90. Chung, C.J.F.; Fabbri, A.G. Validation of Spatial Prediction Models for Landslide Hazard Mapping. Nat.
Hazards 2003, 30, 451–472. [CrossRef]

http://dx.doi.org/10.3390/rs11020196
http://dx.doi.org/10.1007/s10346-007-0088-x
http://dx.doi.org/10.1016/j.cageo.2008.08.007
http://dx.doi.org/10.1007/s12665-015-4028-0
http://dx.doi.org/10.1007/s11629-017-4404-1
http://dx.doi.org/10.1016/j.geomorph.2010.03.005
http://dx.doi.org/10.1007/s11069-013-0751-6
http://dx.doi.org/10.1007/s11069-012-0381-4
http://dx.doi.org/10.1007/s12665-012-1842-5
http://dx.doi.org/10.1016/0169-555X(95)00073-E
http://dx.doi.org/10.1016/S0169-555X(99)00043-4
http://dx.doi.org/10.1016/j.scitotenv.2017.02.188
http://dx.doi.org/10.1007/s10346-013-0392-6
http://dx.doi.org/10.5194/nhess-2-3-2002
http://dx.doi.org/10.1080/01431161.2010.484433
http://dx.doi.org/10.1007/s12040-013-0282-2
http://dx.doi.org/10.1023/B:NHAZ.0000007172.62651.2b


Water 2019, 11, 2292 28 of 30

91. Gritzner, M.L.; Marcus, W.A.; Aspinall, R.; Custer, S.G. Assessing landslide potential using GIS, soil wetness
modeling and topographic attributes, Payette River, Idaho. Geomorphology 2001, 37, 149–165. [CrossRef]

92. Moore, I.D.; Wilson, J.P. Length-slope factors for the Revised Universal Soil Loss Equation: Simplified method
of estimation. J. Soil Water Conserv. 1992, 47, 423–428.

93. Nefeslioglu, H.; Gokceoglu, C.; Sonmez, H. An assessment on the use of logistic regression and artificial
neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Eng.
Geol. 2008, 97, 171–191. [CrossRef]

94. Krzeminska, D.M.; Steele-Dunne, S.C.; Bogaard, T.A.; Rutten, M.M.; Sailhac, P.; Geraud, Y. High-resolution
temperature observations to monitor soil thermal properties as a proxy for soil moisture condition in
clay-shale landslide. Hydrol. Process. 2012, 26, 2143–2156. [CrossRef]

95. Rianna, G.; Comegna, L.; Mercogliano, P.; Picarelli, L. Potential effects of climate changes on soil–atmosphere
interaction and landslide hazard. Nat. Hazards 2016, 84, 1487–1499. [CrossRef]

96. Daneshvar, M.R.M. Landslide susceptibility zonation using analytical hierarchy process and GIS for the
Bojnurd region, northeast of Iran. Landslides 2014, 11, 1079–1091. [CrossRef]

97. Süzen, M.L.; Doyuran, V. Data driven bivariate landslide susceptibility assessment using geographical
information systems: A method and application to Asarsuyu catchment, Turkey. Eng. Geol. 2004, 71, 303–321.
[CrossRef]

98. Ferentinou, M.; Chalkias, C. Mapping Mass Movement Susceptibility across Greece with GIS, ANN and
Statistical Methods. In Landslide Science and Practice; Springer: Berlin, Germany, 2013; pp. 321–327.

99. Lima, P.; Steger, S.; Glade, T.; Tilch, N.; Schwarz, L.; Kociu, A. Landslide Susceptibility Mapping at National
Scale: A First Attempt for Austria. In Workshop on World Landslide Forum; Springer: Cham, Switzerland, 2017;
pp. 943–951.

100. Ayalew, L.; Yamagishi, H. The application of GIS-based logistic regression for landslide susceptibility
mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 2005, 65, 15–31. [CrossRef]

101. Lee, S. Application and verification of fuzzy algebraic operators to landslide susceptibility mapping. Environ.
Geol. 2007, 52, 615–623. [CrossRef]

102. Pradhan, B.; Lee, S.; Buchroithner, M.F. Use of geospatial data and fuzzy algebraic operators to
landslide-hazard mapping. Appl. Geomat. 2009, 1, 3–15. [CrossRef]

103. Caniani, D.; Pascale, S.; Sdao, F.; Sole, A. Neural networks and landslide susceptibility: A case study of the
urban area of Potenza. Nat. Hazards 2008, 45, 55–72. [CrossRef]

104. Feizizadeh, B.; Roodposhti, M.S.; Blaschke, T.; Aryal, J. Comparing GIS-based support vector machine kernel
functions for landslide susceptibility mapping. Arab. J. Geosci. 2017, 10, 122. [CrossRef]

105. Zadeh, L.A. Fuzzy sets. Inf. Cont. 1965, 8, 338–353. [CrossRef]
106. Ercanoglu, M.; Temiz, F.A. Application of logistic regression and fuzzy operators to landslide susceptibility

assessment in Azdavay (Kastamonu, Turkey). Environ. Earth Sci. 2011, 64, 949–964. [CrossRef]
107. Sema, H.V.; Guru, B.; Veerappan, R. Fuzzy gamma operator model for preparing landslide susceptibility

zonation mapping in parts of Kohima Town, Nagaland, India. Model. Earth Sys. Environ. 2017, 3, 499–514.
[CrossRef]

108. Tangestani, M.H. A comparative study of Dempster–Shafer and fuzzy models for landslide susceptibility
mapping using a GIS: An experience from Zagros Mountains, SW Iran. J. Asian Earth Sci. 2009, 35, 66–73.
[CrossRef]

109. Pradhan, B. Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and
multivariate logistic regression approaches. J. Indian Soc. Remote Sens. 2010, 38, 301–320. [CrossRef]

110. Chau, K.T.; Chan, J.E. Regional bias of landslide data in generating susceptibility maps using logistic
regression: Case of Hong Kong Island. Landslides 2005, 2, 280–290. [CrossRef]

111. Yang, I.T.; Chun, K.S.; Park, J.H. The effect of landslide factor and determination of landslide vulnerable area
using GIS and AHP. J. Korean Soc. Geos. Inf. Sys. 2006, 14, 3–12.

112. Lee, S. Application of logistic regression model and its validation for landslide susceptibility mapping using
GIS and remote sensing data. Int. J. Remote Sens. 2005, 26, 1477–1491. [CrossRef]

113. Zhu, L.; Huang, J.F. GIS-based logistic regression method for landslide susceptibility mapping in regional
scale. J. Zhejiang Univ. A 2006, 7, 2007–2017. [CrossRef]

114. Lee, S.; Sambath, T. Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency
ratio and logistic regression models. Environ. Earth Sci. 2006, 50, 847–855. [CrossRef]

http://dx.doi.org/10.1016/S0169-555X(00)00068-4
http://dx.doi.org/10.1016/j.enggeo.2008.01.004
http://dx.doi.org/10.1002/hyp.7980
http://dx.doi.org/10.1007/s11069-016-2481-z
http://dx.doi.org/10.1007/s10346-013-0458-5
http://dx.doi.org/10.1016/S0013-7952(03)00143-1
http://dx.doi.org/10.1016/j.geomorph.2004.06.010
http://dx.doi.org/10.1007/s00254-006-0491-y
http://dx.doi.org/10.1007/s12518-009-0001-5
http://dx.doi.org/10.1007/s11069-007-9169-3
http://dx.doi.org/10.1007/s12517-017-2918-z
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1007/s12665-011-0912-4
http://dx.doi.org/10.1007/s40808-017-0317-9
http://dx.doi.org/10.1016/j.jseaes.2009.01.002
http://dx.doi.org/10.1007/s12524-010-0020-z
http://dx.doi.org/10.1007/s10346-005-0024-x
http://dx.doi.org/10.1080/01431160412331331012
http://dx.doi.org/10.1631/jzus.2006.A2007
http://dx.doi.org/10.1007/s00254-006-0256-7


Water 2019, 11, 2292 29 of 30

115. Cox, D.R.; Snell, E.J. Analysis of Binary Data, 2nd ed.; Chapman and Hall: London, UK, 1989.
116. Nagelkerke, N.J.D. A note on a general definition of the coefficient of determination. Biometrika 1991, 78,

691–692. [CrossRef]
117. Fuchu, D.; Lee, C.; Sijing, W. Analysis of rainstorm-induced slide-debris flows on natural terrain of Lantau

Island, Hong Kong. Eng. Geol. 1999, 51, 279–290. [CrossRef]
118. Kawabata, D.; Bandibas, J. Landslide susceptibility mapping using geological data, a DEM from ASTER

images and an Artificial Neural Network (ANN). Geomorphology 2009, 113, 97–109. [CrossRef]
119. Palani, S.; Liong, S.Y.; Tkalich, P. An ANN application for water quality forecasting. Mar. Pollut. Bull. 2008,

56, 1586–1597. [CrossRef]
120. Lee, S.; Ryu, J.H.; Won, J.S.; Park, H.J. Determination and application of the weights for landslide susceptibility

mapping using an artificial neural network. Eng. Geol. 2004, 71, 289–302. [CrossRef]
121. Ermini, L.; Catani, F.; Casagli, N. Artificial Neural Networks applied to landslide susceptibility assessment.

Geomorphology 2005, 66, 327–343. [CrossRef]
122. Paola, J.D.; Schowengerdt, R.A. A review and analysis of backpropagation neural networks for classification

of remotely-sensed multi-spectral imagery. Int. J. Remote Sens. 1995, 16, 3033–3058. [CrossRef]
123. Negnevitsky, M. Artificial Intelligence: A Guide to Intelligent Systems; Pearson education: London, UK, 2005.
124. Kanungo, D.P.; Arora, M.; Sarkar, S.; Gupta, R. A comparative study of conventional, ANN black box, fuzzy

and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling
Himalayas. Eng. Geol. 2006, 85, 347–366. [CrossRef]

125. Garrett, J. Where and why artificial neural networks are applicable in civil engineering. J. Comput. Civil Eng.
1994, 8, 129–130. [CrossRef]

126. Congalton, R.G. Remote Sensing and Geographic Information System Data Integration: Error Sources and
Research Issues. Photogramm. Eng. Rem. Sens. 1991, 57, 677–687.

127. Swingler, K. Applying Neural Networks: A Practical Guide; Academic Press: New York, NY, USA, 1996.
128. Gong, P. Integrated Analysis of Spatial Data from Multiple Sources: An Overview. Can. J. Remote Sens. 1994,

20, 349–359. [CrossRef]
129. Chen, W.; Xie, X.; Wang, J.; Pradhan, B.; Hong, H.; Bui, D.T.; Duan, Z.; Ma, J. A comparative study of logistic

model tree, random forest, and classification and regression tree models for spatial prediction of landslide
susceptibility. Catena 2017, 151, 147–160. [CrossRef]

130. IBM. Knowledge Center. Available online: https://www.ibm.com/support/knowledgecenter/en/SS3RA7_17.1.
0/modeler_mainhelp_client_ddita/clementine/svm_node_experttab.html (accessed on 23 August 2019).

131. Schlögel, R.; Braun, A.; Torgoev, A.; Fernández-Steeger, T.M.; Havenith, H.-B. Assessment of Landslides
Activity in Maily-Say Valley, Kyrgyz Tien Shan. In Landslide Science and Practice; Springer: Berlin/Heidelberg,
Germany, 2013; pp. 111–117.

132. Lim, T.S.; Loh, W.Y.; Shih, Y.S. A Comparison of Prediction Accuracy, Complexity, and Training Time of
Thirty-Three Old and New Classification Algorithms. Mach. Learn. 2000, 40, 203–228. [CrossRef]

133. Cho, J.H.; Kurup, P.U. Decision tree approach for classification and dimensionality reduction of electronic
nose data. Sensors Actuators B Chem. 2011, 160, 542–548. [CrossRef]

134. Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013; Volume 26.
135. Aquino, L.D.; Tullis, J.A.; Stephen, F.M. Modeling red oak borer, Enaphalodes rufulus (Haldeman), damage

using in situ and ancillary landscape data. For. Ecol. Manag. 2008, 255, 931–939. [CrossRef]
136. Fakhr, M.; Elsayad, A.M. Steel Plates Faults Diagnosis with Data Mining Models. J. Comput. Sci. 2012, 8,

506–514.
137. Nisbet, R.; Elder, J.; Miner, G. Handbook of Statistical Analysis and Data Mining Applications; Academic Press:

London, UK, 2009.
138. Wang, X.; Niu, R. Landslide intelligent prediction using object-oriented method. Soil Dyn. Earthq. Eng. 2010,

30, 1478–1486. [CrossRef]
139. Begueria, S. Validation and Evaluation of Predictive Models in Hazard Assessment and Risk Management.

Nat. Hazards 2006, 37, 315–329. [CrossRef]
140. Fielding, A.H.; Bell, J.F. A review of methods for the assessment of prediction errors in conservation

presence/absence models. Environ. Conserv. 1997, 24, 38–49. [CrossRef]
141. Fawcett, T. An introduction to ROC analysis. Pattern Recogn. Lett. 2006, 27, 861–874. [CrossRef]

http://dx.doi.org/10.1093/biomet/78.3.691
http://dx.doi.org/10.1016/S0013-7952(98)00047-7
http://dx.doi.org/10.1016/j.geomorph.2009.06.006
http://dx.doi.org/10.1016/j.marpolbul.2008.05.021
http://dx.doi.org/10.1016/S0013-7952(03)00142-X
http://dx.doi.org/10.1016/j.geomorph.2004.09.025
http://dx.doi.org/10.1080/01431169508954607
http://dx.doi.org/10.1016/j.enggeo.2006.03.004
http://dx.doi.org/10.1061/(ASCE)0887-3801(1994)8:2(129)
http://dx.doi.org/10.1080/07038992.1994.10874578
http://dx.doi.org/10.1016/j.catena.2016.11.032
https://www.ibm.com/support/knowledgecenter/en/SS3RA7_17.1.0/modeler_mainhelp_client_ddita/clementine/svm_node_experttab.html
https://www.ibm.com/support/knowledgecenter/en/SS3RA7_17.1.0/modeler_mainhelp_client_ddita/clementine/svm_node_experttab.html
http://dx.doi.org/10.1023/A:1007608224229
http://dx.doi.org/10.1016/j.snb.2011.08.027
http://dx.doi.org/10.1016/j.foreco.2007.10.011
http://dx.doi.org/10.1016/j.soildyn.2010.06.017
http://dx.doi.org/10.1007/s11069-005-5182-6
http://dx.doi.org/10.1017/S0376892997000088
http://dx.doi.org/10.1016/j.patrec.2005.10.010


Water 2019, 11, 2292 30 of 30

142. Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC)
curve. Radiology 1982, 143, 29–36. [CrossRef]

143. Neuhäuser, B.; Damm, B.; Terhorst, B. GIS-based assessment of landslide susceptibility on the base of the
weights-of-evidence model. Landslides 2012, 9, 511–528. [CrossRef]

144. Pourghasemi, H.R.; Rahmati, O. Prediction of the landslide susceptibility: Which algorithm, which precision?
Catena 2018, 162, 177–192. [CrossRef]

145. Chung, C.-J.F.; Fabbri, A.G. Probabilistic prediction models for landslide hazard mapping. Photogramm. Eng.
Rem. 1999, 65, 1389–1399.

146. Fabbri, A.G.; Chung, C.J. On Blind Tests and Spatial Prediction Models. Nat. Resour. Res. 2008, 17, 107–118.
[CrossRef]

147. Dai, F.; Lee, C.; Ngai, Y. Landslide risk assessment and management: An overview. Eng. Geol. 2002, 64,
65–87. [CrossRef]

148. Akgun, A.; Dag, S.; Bulut, F. Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of
Turkey) by likelihood-frequency ratio and weighted linear combination models. Environ. Geol. 2008, 54,
1127–1143. [CrossRef]

149. Cannon, S. Debris-Flow Response of Southern California Watersheds Burned by Wildfire. In Proceedings of
the Second International Conference on Debris-Flow Hazards Mitigation, Taipei, Taiwan, 16 August 2000;
A.A. Balkema: Brookfield, WI, USA, 2000.

150. Glade, T. Landslide occurrence as a response to land use change: A review of evidence from New Zealand.
Catena 2003, 51, 297–314. [CrossRef]

151. Varnes, D.J. Landslide Hazard Zonation: A Review of Principles and Practice; Unesco: Paris, France, 1984.
152. Hasanat, M.H.A.; Ramachandram, D.; Mandava, R. Bayesian belief network learning algorithms for modeling

contextual relationships in natural imagery: A comparative study. Artif. Intell. Rev. 2010, 34, 291–308.
[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1148/radiology.143.1.7063747
http://dx.doi.org/10.1007/s10346-011-0305-5
http://dx.doi.org/10.1016/j.catena.2017.11.022
http://dx.doi.org/10.1007/s11053-008-9072-y
http://dx.doi.org/10.1016/S0013-7952(01)00093-X
http://dx.doi.org/10.1007/s00254-007-0882-8
http://dx.doi.org/10.1016/S0341-8162(02)00170-4
http://dx.doi.org/10.1007/s10462-010-9176-8
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Study Area 
	Data and Information 
	Methods 
	FG 
	BLR 
	BPANN 
	SVM 
	C5DT 
	Validation of the Built Models 

	Results and Discussion 
	The Relationship between the Landslides and Causative Factors 
	Application of the NFUC Method 
	Application of Different Data Mining Methods 
	Validation of the Data Mining Models 

	Conclusions 
	References

