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Abstract: Recognition of the carbon dioxide (CO2) concentration variations over time is critical for
tracing the future changes in climate both globally and regionally. In this study, a time series analysis
of atmospheric CO2 concentration and its relationship with precipitation, relative humidity (RH),
and vegetation is investigated over Oman. The daily XCO2 data from OCO-2 satellite was obtained
from September 2014 to March 2019. The daily RH and precipitation data were also collected from
the ground weather stations, and the Normalized Difference Vegetation Index was obtained from
MODIS. Oman was studied in four distinct regions where the main emphasis was on the Monsoon
Region in the far south. The CO2 concentration time series indicated a significant upward trend over
different regions for the study period, with annual cycles being the same for all regions except the
Monsoon Region. This is indicative of RH, precipitation, and consequently vegetation cover impact
on atmospheric CO2 concentration, resulting in an overall lower annual growth in the Monsoon
Region. Simple and multiple correlation analyses of CO2 concentration with mentioned parameters
were performed in zero to three-month lags over Oman. They showed high correlations mainly
during the rainfall period in the Monsoon Region.
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1. Introduction

Increases in greenhouse gases, particularly carbon dioxide (CO2), have accelerated the rise in
global air temperatures in recent years [1]. Forster et al. showed that the global mean concentration
of CO2 and the atmospheric radiative forcing associated with it increased to a substantial degree
within the last two centuries, causing further disruption in the earth’s energy budget balance [2]. The
atmospheric radiative forcing changes cause alterations in the atmospheric heating distribution by
trapping additional heat, resulting in changes in the different elements of the hydrological cycle and
atmospheric moisture content [3], which are subsequently expected to affect precipitation [4–6]. At the
same time, precipitation, water vapor content [7], and consequently, vegetation cover have a direct
effect [8] on the monthly CO2 concentration fluctuations.
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In the Intertropical Convergence Zone (ITCZ), summer monsoons contribute to the major portion of
annual total precipitation in these regions. In this regard, the possible changes in monsoon precipitation
with the increase in carbon dioxide concentration have been considered by several researchers [9–11].
Richardson et al. research demonstrated that rapid warming of the land surface is caused by increased
CO2 concentration, resulting in enhanced convection [12], and thus higher precipitation over land in
this zone. Loo et al. study also showed an increase in precipitation anomalies beyond the 1970s in
the monsoon regions, corresponded with global warming and temperature anomalies’ increase in
recent decades [9]. This increase subsequently affects land vegetation growth and greenness during the
monsoon, resulting in more atmospheric CO2 absorption and decrease [5]. These interactions cause an
annual cycle in CO2 concentration with seasonal fluctuations [13]. Gupta et al. study showed a strong
anti-correlation between the annual cycle of vegetation and mid-tropospheric CO2 concentration over
India [13]. However, high CO2 concentration in April and May (pre-monsoon period) is explained by
the high planetary boundary layer height in these months.

In addition, studies show a strong interaction between CO2 concentration and atmospheric
humidity. Dessler et al. showed that with an increased level of CO2 concentration, a warmer surface,
and hence a more humid troposphere are expected [14]. On the other hand, humidity plays a crucial
role in atmospheric CO2 mixing and its annual cycle [15,16]. In this regard, some studies on global
and regional scales have investigated the CO2 fluctuations with precipitation and relative humidity
(RH) [12,15,17–19]. Huang et al. study in monsoon regions indicated that the changes which occur
in atmospheric CO2 levels are related to the thermodynamic components driven by changes in the
water vapor [10]. Besides, Wang et al. showed the sensitivities of monthly variability in atmospheric
CO2 concentration with temperature and precipitation using CO2 records from the Mauna Loa
Observatory, Hawaii [7]. The regional study of atmospheric CO2 concentration changes in association
with atmospheric moisture and precipitation is still a challenging question, particularly in regions with
scarce rainfall and critical hydrological parameters.

CO2 concentration data over the world are obtained from ground observation stations as well as
ships and aircraft. However, these kinds of measurements are limited to specific locations over the
world and are unevenly distributed [1]. Thus, Earth Observation Satellites are used to observe the
global CO2 concentration and to build a detailed spatial distribution of CO2 sources and sinks [20].
Two types of greenhouse gas observation satellites are used for this purpose, the thermal infrared
(TIR) and short-wavelength infrared (SWIR). The TIR measurements are sensitive to CO2 in the
middle and upper troposphere, whereas the SWIR measurements are sensitive to CO2 in the lower
troposphere, where the CO2 sources and sinks are located [21]. The two main satellites utilizing the
SWIR measurements are the Greenhouse Gases Observing Satellite (GOSAT) launched in 2009, and the
Orbiting Carbon Observatory (OCO-2) satellite launched in 2014. To improve the understanding of
the carbon cycle and to validate the space-based CO2 concentration, the ground-based Total Carbon
Column Observing Network (TCCON) was established in 2004 [22]. This network is composed of
“ground-based Fourier transform spectrometers,” recording direct solar spectra in the near-infrared
bands (TCCON wiki), which is not affected by the surface properties [22]. In this regard, validation
of dry air mole fraction of CO2 (XCO2) derived from GOSAT in comparison with TCCON shows,
in general, a mean bias of less than 2 ppm [1,21,23], providing reliable and valuable information
on the variation of CO2 [23]. Following the same approach, the XCO2 retrieved from the OCO-2
satellite and its validation with TCCON shows a standard deviation of around 1.3–1.9 ppm and a
station-to-station variability of 0.2–0.5 ppm among collocated TCCON sites [1,22–26]. These biases,
as shown by Wunch et al. [22], are dependent on latitude, earth surface properties, and scattering by
aerosols, although no latitude-dependent bias reported in the ocean and near ocean regions in Wu et al.
study [23]. These validations show that despite the slight differences found between the TCCON
dry air mole fraction of CO2 and that of GOSAT and OCO-2, the appropriate spatial resolution and
accuracy of these space-based dataset, as well as the relatively long time-series measurement make
them suitable for global and regional studies. Several studies utilized data from the two satellites. For
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example, Falahatkar et al. investigated the interaction of land surface temperature and Normalized
Difference Vegetation Index with GOSAT XCO2 data for one year over Iran [27], while Fu et al. tracked
the fossil fuel consumption in urban areas and revealed the impacts of urban vegetation on seasonal
variation of XCO2 using OCO-2 observations [28]. In addition, Siabi et al. assessed the CO2 distribution
over Iran using XCO2 data from OCO2 during the growing season [29]. In their study, land cover and
wind direction showed the highest impact in CO2 concentration over Iran. However, no previous
studies on CO2 concentration have been conducted over Oman using ground-based measurements as
they lack or space-based observations.

The Sultanate of Oman is a part of Western Asia occupying the southeast of the Arabian Peninsula
on the Indian Ocean. The average annual rainfall in the Sultanate of Oman is about 110 mm but
can range from <100 to 500 mm [30]. Although July–August is known as the “wet” or “monsoon”
period in the south of Oman, this country is one of the most water-stressed regions in the world, and
it is relatively sensitive to global climate change [31]. Despite the importance of investigating the
atmospheric CO2 trend in Oman and its monthly variability, no previous studies were carried out,
which can be critical in predicting and adapting to the future climate.

Thus, the objectives of the current study can be summarized as analyzing the time series of
atmospheric CO2 concentration over Oman using Earth Observation Satellites as well as investigating
the relationship of monthly variability of CO2 concentration with precipitation along with relative
humidity and vegetation cover changes.

2. Materials and Methods

2.1. Study Area

A diverse climate and geography characterize Oman. The terrain varies from the desert plains
in the central region to the rugged mountains in the north and south. As for the climate, it is both
hot and humid in the northern coastal plains and hot and dry in the central part. In the far south,
there is an active southwest summer monsoon in late June to August [30]. Furthermore, because of
complex topography, Oman has several local climates across its terrain, according to the Köppen and
Geiger classification system varying from dry-arid to semi-arid conditions [32]. As a result, vegetation
biomass and distribution are mainly controlled by the low and inconsistent rainfall and the fluctuating
temperatures [31]. Therefore, in this study, considering the climate features and the rainfall patterns,
Oman is assessed in four distinct regions, as displayed in Figure 1. “Monsoon Region” is referred to the
Dhofar Mountains and coastal areas in the southwest with monsoon rainfall pattern and thus exhibit
different vegetation cover compared to the rest of Oman. In this region, three distinct periods are
considered during the year. Pre-monsoon, covering the period from 1 November to 19 June; monsoon,
from 21 June to 30 August; and post-monsoon, from 1 September to 30 October. The second region
considered is the “South Region,” which despite the slight impact of the monsoon rainfall on this area,
still has a different climate and vegetation pattern. The third region, called “Central Region” is located
in the center of Oman and is mostly desert with limited rainfall and vegetation. “North Region” is
the fourth area that encompasses the northern part of the country, which has varied precipitation and
vegetation changing with elevation.

2.2. Dataset

In this study, daily precipitation and RH data are collected from 36 ground weather stations over
Oman (Figure 1) for the study period from September 2014 to May 2019. As shown in Figure 1, there is
a sufficient number of stations for each of the four study regions and the appropriate distribution of
stations over Oman.
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Figure 1. The four study regions with ground weather station locations over Oman.

Because of ground CO2 observations absence in Oman, the column-averaged CO2 dry air mole
fraction, XCO2 (hereafter, CO2 concentration), from the Orbiting Carbon Observatory 2 satellite is
obtained in the current study for the period from September 2014 to May 2019 (Daily bias-corrected
OCO2_L2_Lite_FP.9r products were downloaded from https://disc.gsfc.nasa.gov). OCO-2 was launched
in July 2014 and started providing data in September 2014, intending to estimate CO2 with high
precision and resolution to characterize sources and sinks of this critical greenhouse gas [1,22–24,26].
The satellite flies in a sun-synchronous orbit at an average altitude of 705 km above the earth’s surface,
with a descending node at around 13:30 local time, at a spatial resolution of roughly 3 km2 and a
temporal resolution of 16 days [26]. Validation of the OCO-2 data set versus measurements from the
TCCON, as reported by Wunch et al. [22], shows regional biases of around 0.5 ppm and standard
deviations of 1.5 ppm (similar results obtained from other studies in different regions [1,23,26]). These
errors, as mentioned by Kaluwik et al. [24], are not entirely due to OCO-2, but TCCON, as well
as colocation errors, are also contributing. For this study, the XCO2 data from Greenhouse gases
Observing Satellite (GOSAT) with a more extended period from May 2009 was also considered (Daily
Level 2 GOSAT bias-corrected products from https://disc.gsfc.nasa.gov). However, it showed very few
numbers of overpasses (23 points) over Oman from 2009 to 2016, while the number of OCO-2 total
measurements over Oman during the mentioned period is 473,618 points. Figure 2 shows the OCO-2
measurement points over Oman for the year 2015 as a sample of the satellite overpasses.

With a spatial resolution of 500 m, the Normalized Difference Vegetation Index (NDVI) products
from MODIS (Moderate Resolution Imaging Spectroradiometer) images were used for monitoring the
overall changes of vegetation over Oman during the study period. The MODIS MCD43A4 Version 6
data used here was extracted and processed over the four study regions using the JavaScript code editor
in the GEE (google earth engine) platform. This MODIS dataset is produced daily using 16 days of
Terra and Aqua MODIS data temporally weighted to the ninth day (https://lpdaac.usgs.gov/products/
mcd43a4v006/). Generally, the NDVI ranges from −1 to +1. The negative values of vegetation index
correspond to water, snow, and ice cover. In contrast, bare land value is almost zero, and the typical
range of 0.1 and higher is linked with the greenness of plant canopies [33].

https://disc.gsfc.nasa.gov
https://disc.gsfc.nasa.gov
https://lpdaac.usgs.gov/products/mcd43a4v006/
https://lpdaac.usgs.gov/products/mcd43a4v006/
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Figure 2. XCO2 measurement points from OCO-2 overpasses in Oman during 2015.

2.3. Methods

During the study period, the spatial daily and monthly means of CO2 concentration were
calculated based on the satellite passes over each region. The spatial mean of NDVI for the available
days was also calculated using GEE for all four study regions. The spatial daily and monthly mean of
RH, as well as daily mean and monthly sum of precipitation, were also calculated based on the stations
located in each region over the study period.

Time-series analysis is a suitable way to investigate the variation of parameters over time. In this
study, the trend analysis of CO2 concentration as well as precipitation, RH, and NDVI was considered
for the four regions over Oman. Simple linear regression (SLR) was applied to test the linear trend,
with CO2 concentration as well as precipitation, RH, and NDVI considered as the dependent variables
in the SLR. Also, the non-parametric Mann Kendal test (M-K test) for trend analysis was applied here
to identify the significant upward or downward trend of the mentioned parameters. The M-K test,
developed by Mann [34] and Kendall [35], statistically detects monotonic increasing or decreasing
trends of a variable of interest in a series of data. In this test, the null (H0) and alternative hypotheses
(H1) identify the absence or presence of a trend in the time series of the investigated data, respectively.
The following equations give the M-K test statistic S and the standardized test statistic ZMK used for
testing the hypotheses [36]:

S =
∑n−1

i=1

∑n

j=i+1
sgn

(
X j −Xi

)
(1)

sgn (Xj−Xi) =


+1 i f (Xj−Xi) > 0
0 i f (Xj−Xi) = 0
−1 i f (Xj−Xi) < 0

 (2)

Var (S) =
1
18

n(n− 1)(2n + 5) −
g∑

p=1

tp
(
tp − 1

)(
2tp + 5

) (3)
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ZMK =


S−1√
Var(S)

i f S > 0

0 i f S = 0
S+1√
Var(S)

i f S < 0

 (4)

where Xi and Xj denote the successive data values of the time series collected over the years at times
i and j, n is the length of the time series, tp is the number of observations for the pth value, and g is
the number of tied values. Positive values of ZMK indicate that the observed data increase with time,
while negative ZMK values indicate data decreasing in the time series. When |ZMK| > Z1−α/2, the null
hypothesis is rejected and the alternative is accepted indicating a significant existence of a trend in the
time series. The statistically significant trend was evaluated in a two-tailed M-K test at a probability
level of 0.95 (α = 0.05).

Multiple correlation analysis (MCA) was applied in this study to analyze the interaction and the
strength of the relationship between CO2 concentration with precipitation and relative humidity. MCA
is commonly used to explain the association between one continuous variable and two or more response
variables [37] using a linear function of a set of variables which generalizes the standard coefficient of
correlation. It should be mentioned, and as discussed by Huberty [37], there is a distinction between
the multiple regression analysis (MRA) and MCA. Such that “in predictive research (MRA), the main
emphasis is on practical applications, whereas in explanatory research (MCA), the main emphasis is
on understanding phenomena [37].” However, as explained by [37], an initial choice of the response
variables for an MCA study should be conducted based on some relevant substantive theory. Here, the
response variables were chosen based on the initial simple correlation analysis. Then, the correlation
coefficient Equation (5) and p-value of 0.95 probability level are used to test the statistical significance
of MCA. However, some response variables have been deleted as a result of low/no contribution to
explain the variability.

correlation coefficient =
n
∑n

i=1 hatYi Yi −
(∑n

i=1 hatYi
)(∑n

i=1 Yi
)

√
n

∑n
i=1 hatY2

i −
(∑n

i=1 hatYi
)2

√√
n

∑n
i=1 Y2

i −
(∑n

i=1 Yi
)2

(5)

where Yi and hatYi are response variable and continuous variable values, respectively.

3. Results and Discussion

3.1. Time Series Analysis and Monthly CO2 Concentration Variability along with Other Parameters

The monthly CO2 concentration time series for different regions in Oman, as well as the fitted
linear regressions, are plotted in Figure 3 for the whole study period from September 2014 to May 2019.
The CO2 concentration is shown to be increasing for all the regions under study with an estimated
slope of 0.19 to 0.23 ppm/month (Figure 3). The M-K test for trend analysis of CO2 concentration
showed a significant upward trend for all regions but with a sharper increase in the Central and North
Regions. It should be mentioned here that the trend analysis was performed for RH, precipitation,
and NDVI over the different regions in Oman and showed a significant positive trend of RH for the
Monsoon and South Regions, while no significant trend was found for precipitation and NDVI for all
regions in Oman. Figure 3 shows that the Monsoon Region is marked by more intense fluctuations
during the study period, with sharp decreases in CO2 concentration levels in some months of this
region, while other regions show smoother fluctuations. These sharp decreases in CO2 concentrations
in these months characterizes the lower annual growth in CO2 concentrations not only in the Monsoon
region but the South region as a whole. Thus, to explore these differences and for better comparison,
the monthly CO2 concentration time series is plotted against monthly precipitation as well as RH and
NDVI to show the CO2 fluctuation in association with other parameters (Figure 4). In general, there
seems to be an association between CO2 concentration and RH on a monthly basis, as higher peaks of
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CO2 concentration seem to coincide with lower peaks of RH in all regions. The same pattern applies to
CO2 concentration and NDVI in the Monsoon and South Regions, but the influence of time lags is
detected here. This association between CO2 concentration and NDVI is not visible in other regions
because of the sparse vegetation cover and the fact that a large part of these regions is mainly deserts.
The interaction between monthly mean carbon dioxide concentration and monthly precipitation seems
to be more complicated to be discussed based on the graphs in Figure 4. Hence, for more precise
comparison, the climatology mean (CM) of monthly CO2 concentration in association with CM of
monthly RH and NDVI and particularly precipitation is investigated.

Water 2020, 12, x FOR PEER REVIEW 7 of 15 

 

monthly precipitation as well as RH and NDVI to show the CO2 fluctuation in association with other 
parameters (Figure 4). In general, there seems to be an association between CO2 concentration and 
RH on a monthly basis, as higher peaks of CO2 concentration seem to coincide with lower peaks of 
RH in all regions. The same pattern applies to CO2 concentration and NDVI in the Monsoon and 
South Regions, but the influence of time lags is detected here. This association between CO2 
concentration and NDVI is not visible in other regions because of the sparse vegetation cover and the 
fact that a large part of these regions is mainly deserts. The interaction between monthly mean carbon 
dioxide concentration and monthly precipitation seems to be more complicated to be discussed based 
on the graphs in Figure 4. Hence, for more precise comparison, the climatology mean (CM) of 
monthly CO2 concentration in association with CM of monthly RH and NDVI and particularly 
precipitation is investigated. 

The CM for monthly CO2 concentration during the study period for the four regions is plotted 
in Figure 5. The monthly variation for all regions excluding the Monsoon Region ranges from 399 to 
408 ppm, while for the Monsoon Region it ranges from 388 to 407 ppm. The CO2 concentration for all 
regions except the Monsoon Region is lowest in October and highest in April. In the Monsoon Region, 
however, the CO2 concentration starts decreasing in January, reaching the first minimum (402 ppm) 
in March and then increases slightly in April and drops again in August during the monsoon period 
to 388 ppm. To study and clarify the monthly changes of CO2 concentration, 3Y axes CM of monthly 
CO2 concentration, precipitation, and RH as well as 3Y axes CM of monthly CO2 concentration, 
precipitation and NDVI are plotted and shown in Figure 6. Based on Figure 6, the sharp decrease in 
CO2 concentration in the Monsoon Region in August occurred simultaneously with the highest 
precipitation, RH, and NDVI during the monsoon period, though there are time lags between 
minimum CO2 concentration and maximum NDVI. In other words, during the monsoon season, there 
is an increase in relative humidity and precipitation and subsequently vegetation, which eventually 
causes a decrease in CO2 concentration in this region. There is a decrease in CO2 concentration in 
March, and although it does not seem to be linked with precipitation, RH, or NDVI within the 
boundary of monsoon region, it seems that there might be an impact of precipitation in the vicinity 
of this region on CO2 concentrations as ground stations close by in the south region have recorded 
especially high precipitation in the Month of March (Figure 6). This decrease in CO2 concentration 
could be associated with other parameters related to regional land characteristics as well, but this 
needs to be further investigated. 

  

 
 

Figure 3. Monthly CO2 time series for different regions in Oman for the period September 2014 to May
2019. The dashed line indicates the corresponding linear trend.

The CM for monthly CO2 concentration during the study period for the four regions is plotted
in Figure 5. The monthly variation for all regions excluding the Monsoon Region ranges from 399 to
408 ppm, while for the Monsoon Region it ranges from 388 to 407 ppm. The CO2 concentration for all
regions except the Monsoon Region is lowest in October and highest in April. In the Monsoon Region,
however, the CO2 concentration starts decreasing in January, reaching the first minimum (402 ppm) in
March and then increases slightly in April and drops again in August during the monsoon period to
388 ppm. To study and clarify the monthly changes of CO2 concentration, 3Y axes CM of monthly
CO2 concentration, precipitation, and RH as well as 3Y axes CM of monthly CO2 concentration,
precipitation and NDVI are plotted and shown in Figure 6. Based on Figure 6, the sharp decrease
in CO2 concentration in the Monsoon Region in August occurred simultaneously with the highest
precipitation, RH, and NDVI during the monsoon period, though there are time lags between minimum
CO2 concentration and maximum NDVI. In other words, during the monsoon season, there is an
increase in relative humidity and precipitation and subsequently vegetation, which eventually causes
a decrease in CO2 concentration in this region. There is a decrease in CO2 concentration in March,
and although it does not seem to be linked with precipitation, RH, or NDVI within the boundary
of monsoon region, it seems that there might be an impact of precipitation in the vicinity of this
region on CO2 concentrations as ground stations close by in the south region have recorded especially
high precipitation in the Month of March (Figure 6). This decrease in CO2 concentration could be
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associated with other parameters related to regional land characteristics as well, but this needs to be
further investigated.
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3.2. CO2 Concentration Relationship with Other Parameters

In this section, the correlation between CO2 concentration, relative humidity, and precipitation,
using daily records on a monthly basis is investigated. Because of the limited number of NDVI data
each month, this parameter is not taken into consideration here. It should also be mentioned that for
precipitation data, only days with recorded rainfall are included in the correlation with coinciding
days of other parameters. Because of the different characteristics of the Monsoon Region, a detailed
correlation investigation was performed, and the same procedure was then applied to other regions.

Linear correlation analysis of CO2 concentration with precipitation in the Monsoon Region showed
a negative correlation coefficient for all months, which indicates atmospheric CO2 decline because of
precipitation [7]. The correlation coefficients for this region are presented in Figure 7. In this study,
only the months of January to April, as well as June, have shown a non-significant correlation based on
p-values of α = 0.05. Here, the lack of continuous days with significant precipitation can be the reason
for the insignificant correlation.
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The daily CO2 concentration correlation with precipitation was investigated with one, two, and
three-month lags. This was done to evaluate the possible effect of monthly time lags on the consequent
month’s CO2 concentration. This analysis showed a significant CO2-precipitation relationship with
one to three-month lags for some periods in the Monsoon region. Significant correlations in different
time lags based on a p-value of α = 0.05 are shown in Figure 8. These results show that an increase
in precipitation in June, July, and August results in a decrease in CO2 concentration of the following
months. The same applies for September and October precipitation. A significant two-month lag
correlation in CO2 concentration was also seen with precipitation in August and September, and a
significant three-month lag correlation with September rainfall.

In a research done by [7] for investigating the monthly variability in atmospheric CO2 growth
rate in Mauna Loa, air temperature and precipitation correlation with carbon dioxide concentration
changes with 1 to 12-month lags were considered. As a result, significant correlations in 4-month lag in
precipitation and 1-month lag for temperature with CO2 growth rate were reported in their study. To
further explain our recent findings, it can be added that along with rainy days’ impact on the CO2

concentration decrease of the same month, the effect of the previous month’s rainfall on vegetation
and, consequently, carbon dioxide absorption can be considered as another factor.
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Figure 8. Significant simple correlations in CO2, precipitation and RH over Oman, the stars are marked
in desired month for carbon dioxide.

Furthermore, monthly carbon dioxide concentration correlation with relative humidity as well
as one-month to three-month lags is investigated in this study. The CO2-RH correlation with lags
is performed to test the possible impact of the preceding month’s relative humidity on the carbon
dioxide concentration of each month. Significant negative CO2-RH correlations are detected during
the year except for January, February, April, and May (Figure 8). Meanwhile, significant correlations in
one-month lag are recognized throughout the year except for February, March, and October. Significant
correlations for two and three-month lags are also shown in Figure 8. However, the CO2-RH association
is not similar across the two and three-month lags varying between positive and negative correlations,
where the negative correlation coefficients were more frequent. This could be related to complex
atmosphere thermodynamic components of relative humidity and its interaction with precipitation [10].

As it is presented in Figure 8, the same approach was applied for the three remaining regions
of Oman. More stable atmospheric conditions with rare rainy days during the year, less relative
humidity changes, and less fluctuation in CO2 concentration can be the reason for fewer months with
significant correlation in South and Central regions, particularly in correlations involving precipitation.
However, in the North Region, there are more months with significant correlations that reflect the
impact of regional interaction of precipitation and RH on CO2 fluctuation due to different topography
features and rainfall patterns. In general, along with the global increase in carbon dioxide as well as its
increasing trend over Oman, the points discussed above highlight the impact of regional atmospheric
conditions on CO2 concentration changes, particularly in the Monsoon Region.

Therefore, defining multiple correlation analysis between CO2 and precipitation as well as RH
in the months with more than one significant correlation is considered. This attempt aims to obtain
a multivariate relationship to justify the interaction of different parameters on local carbon dioxide
fluctuations. It should be mentioned that in MCA, the main emphasis is on understanding interactions,
which explain the relationship between a single variable and a collection of response variables [37].
Predicting regional CO2 concentration fluctuations is not the purpose of this study.
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Here, the CO2 concentration interaction with multiple variables, including precipitation and RH
in different time lags for the Monsoon Region as the region with a higher number of months with
significant correlations, was investigated. It is worth to mention that two sets of MCA are considered.
The first is the MCA of CO2-RH, which is carried out for all days with data (Figure 9a), and the second
is the MCA of CO2-RH-precipitation, where only days with precipitation are considered (Figure 9b).
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Figure 9. Significant months and variables in MCA, (a) Monsoon Region CO2-RH MCA,
(b) Monsoon Region CO2-RH-precipitation MCA, (c) North Region CO2-RH MCA, (d) North Region
CO2-RH-precipitation MCA.

The multiple correlation analysis shows that the existence of a significant simple correlation
between CO2 and another variable, for example, in August for the Monsoon Region (Figure 8), is
not necessarily confirmed in a multivariate correlation (Figure 9a,b). Also, the existence of multiple
significant correlations between CO2 and other variables, for example, in the Monsoon Region in
October (Figure 8), does not necessarily lead to the definition of a significant MCA in the same
month (Figure 9b). In other words, some response variables which had a significant impact on
simple correlation were insignificant in MCA, which could be due to the interaction between the
response variables.

Figure 9 also shows significantly correlated variables for months with acceptable MCAs. As it
is shown in Figure 9a, if only RH is considered in MCA, it will be possible to establish multivariate
correlations for a longer period from May to November, which reveals more significant correlations
in the monsoon period. Besides, RH with zero and one-month lags are recognized as more effective
variables in local carbon dioxide fluctuation, whereas two-month and three-month lags have been
eliminated in most of the months. At the same time, when both RH and precipitation are involved in
MCA (Figure 9b), the period with significant MCA is limited to the months with more frequent rainy
days. As a result, in MCAs including days with both RH and precipitation, RH displays less impact
on carbon dioxide fluctuations compared to when it is considered individually. Furthermore, fewer
correlation coefficients are obtained in months when both RH and precipitation are involved in MCA.

In the North Region, multiple correlations in CO2-RH analysis (Figure 9c) were significant in
May and June for zero and one-month lags, whereas only in August, a significant MCA with RH and
three-month lag precipitation is established (Figure 9d).
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4. Conclusions

In this study, because of the lack of ground-based measurements, the CO2 concentration data
captured by the OCO-2 satellite was used. The trend analysis of CO2 concentration during the study
period shows a significant upward trend all over Oman. However, the Monsoon Region shows a
lower increasing rate but more interannual variations. Along with being aware of the global upward
trend and seasonal cycle of CO2, the effects of regional characteristics such as precipitation, relative
humidity, and vegetation on monthly fluctuations of CO2 were considered over Oman. This research
showed that in the Monsoon Region with higher precipitation as well as higher relative humidity
and vegetation cover, the monthly atmospheric CO2 concentrations were significantly affected by the
regional parameters compared to the rest of Oman. Precipitation was shown to have a higher impact in
defining the changes in CO2 concentrations. Ultimately, despite the short study period, the findings of
current research are sound and reliable. However, other parameters such as soil temperature and soil
moisture relationship with atmospheric CO2 concentration variations are suggested in further studies.
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