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Abstract: Downscaling methods have been widely used due to the coarse and biased outputs of
general circulation models (GCMs), which cannot be applied directly in regional climate change
projection. Hence, appropriate selection of GCMs and downscaling methods is important for assessing
the impacts of climate change. To explicitly explore the influences of multi-GCMs and different
downscaling methods on climate change projection in various climate zones, the Heihe River Basin
(HRB) and the Zhanghe River Basin (ZRB) were selected in this study to represent the north arid
region and the south humid region in China, respectively. We first evaluated the performance of
multi-GCMs derived from Coupled Model Inter-comparison Project Phase 5 (CMIP5) in the two
regions based on in-situ measurements and the 40 year European Centre for Medium-Range Weather
Forecasts (ECMWF) Re-Analysis (ERA-40) data. Subsequently, to construct appropriate climate change
projection techniques, comparative analysis using two statistical downscaling methods was performed
with consideration of the significant north–south meteorological discrepancies. Consequently, specific
projections of future climate change for 2021–2050 under three representative concentration pathway
(RCP) scenarios (RCP2.6, RCP4.5, and RCP8.5) were completed for the HRB and ZRB, including daily
precipitation, maximum air temperature, and minimum air temperature. The results demonstrated
that the score-based method with multiple criteria for performance evaluation of multiple GCMs more
accurately captured the spatio-temporal characteristics of the regional climate. The two statistical
downscaling methods showed respective advantages in arid and humid regions. The statistical
downscaling model (SDSM) showed more accurate prediction capacities for air temperature in the
arid-climate HRB, whereas model output statistics (MOS) better captured the probability distribution
of precipitation in the ZRB, which is characterized by a humid climate. According to the results
obtained in this study, the selection of appropriate GCMs and downscaling methods for specific
climate zones with different meteorological features significantly impact regional climate change
projection. The statistical downscaling models developed and recommended for the north and south
of China in this study provide scientific reference for sustainable water resource management subject
to climate change.
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1. Introduction

According to the fifth assessment report of the Intergovernmental Panel on Climate Change
(IPCC), the global mean temperature will continue rising until the end of the 21st century, associated
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with a significant increase in the frequency and intensity of extreme climate events, which will
cause severe socio-economic upheaval and environmental degradation [1–4]. As one of the countries
suffering from the significant impacts of climate change, China has an unequivocally urgent need
for accurate projections of climate change, which are seriously limited by regional heterogeneities in
climate and anthropogenic activities. Hence, development of projection methods that suitably capture
spatio-temporal characteristics of regional climate change has become a key scientific issue to address
the impact of global climate change at the regional scale. General circulation models (GCMs) are
major tools used to provide large-scale information for the impact assessment of global climate change;
however, their coarse spatial resolution and biased outputs hinder their direct application to climate
change prediction at the regional scale [5–7]. Consequently, dynamic and statistical downscaling
methods have been developed to mitigate the mismatch in spatial scales and biases between GCM
outputs and in-situ measurements. Dynamic downscaling methods, i.e., regional climate models
(RCMs), have been developed based on dynamic formulations using initial and time-dependent
lateral boundary conditions of GCMs to generate finer-resolution climate data, which provide more
detailed regional information and have been widely used worldwide [8–10]. However, complexity
exists in the computation and mismatch of scales, especially for small-scale watersheds [11–13].
Conversely, statistical downscaling methods primarily establish statistical relationships between
large-scale predictors and local-scale predictands without physical representation or parameterization,
being simple to compute and relatively easy to implement [7,14–18]. These methods have been widely
and successfully used in regional climate change projections. The distinct internal mechanisms of
different statistical downscaling methods are one of the main sources of uncertainty in climate change
projection. For example, Chiew et al. [19] selected three downscaling models with increasing complexity
to investigate the difference between the modeled future runoff using the different downscaled rainfall.
The results revealed that the differences in the results can be significant due to different GCMs and
different methods. Cheng et al. [20] developed statistical extreme weather event simulation and
downscaling models for southern-central Canada; they employed different regression methods for
different meteorological variables considering the adaptability of the methods. Sunyer et al. [21] used
eight statistical methods to downscale precipitation outputs from 15 RCMs in Europe to highlight
the need to consider an ensemble of both methods and climate models. In addition, Yang et al. [7]
investigated the performance of four statistical downscaling methods to improve the accuracy of
GCMs in terms of spatial variability. Other researchers also conducted comparative studies of methods
in China. For example, Liu et al. [22] used the nonhomogeneous hidden Markov model (NHMM)
and statistical downscaling model (SDSM) to downscale precipitation over an arid region in China
and found that their abilities to simulate wet-day precipitation amounts differed—NHMM performed
better. In addition, Hu et al. [23] compared three statistical methods to downscale summer daily
precipitation over the Yellow River source region to illustrate the strengths and weaknesses of different
methods in terms of several statistics. Similar studies were performed in the Yangtze River Basin
and the North China Plain [24,25]. Most of the studies mainly aimed at the same type of region to
compare different downscaling methods to investigate their advantages, but few studies have focused
on the selection of downscaling methods due to the climate characteristics of different regions, which
is important for reducing the uncertainty in climate change projection.

Many studies have consistently pointed out that the uncertainty from GCMs is also critical for
climate change projection, which could be efficiently reduced by multi-model averaging. Rana and
Moradkhani [26] chose 10 GCMs from Coupled Model Inter-comparison Project Phase 5 (CMIP5)
and used two statistical downscaling methods (bias correction and spatial downscaling, multivariate
adaptive constructed analogs) to examine the spatial and temporal changes in precipitation and
temperature over the Columbia River Basin. The results could be used to help planners to better
understand the range of possible future climate change effects by considering multi-model projection,
rather than a single GCM. San-Martin et al. [27] compared the spread uncertainty of GCMs and
downscaling methods, indicating that of the latter can be greater. Zelazowski et al. [28] presented
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a pattern-scaling set to scan uncertainty in climate models, but the ability to capture the course
of uncertainty remains a limitation. More recently, Kusangaya et al. [29] found that the ability
of downscaled GCMs to capture the spatial variability of extreme hydrological events contains
considerable uncertainty. Tegegne et al. [30] proposed a new approach to combine multiple GCMs to
increase the reliability of climate predictions. However, multi-model ensemble projection, without
considering specific performance assessment at the regional scale, cannot concisely depict the regional
climate characteristics; due to the significant spatio-temporal heterogeneities of regional climate change,
the relative uncertainty of the contribution of each impact assessment stage can vary depending on the
projection variable and the method used to examine the uncertainty [31,32].

Wang et al. [33] explored the projections of future climate change in the Heihe River Basin by
constructing a statistical downscaling model (SDSM). They built a good study framework, but it was
aimed at a specific arid area and did not provide suggestions for the discrepancy between South and
North China. In this study, to explicitly explore the influences of multi-GCMs and different downscaling
methods on climate change projection in various climate zones, we selected the Heihe River Basin
(HRB), located in northwestern China, and the Zhanghe River Basin (ZRB), located in the lower
reaches of the Yangtze River Basin, to represent the north–south discrepancy in the climate in China.
Two statistical downscaling methods, an SDSM and model output statistics (MOS), were constructed
for both basins to comparatively analyze the uncertainty in the climate change projections of the
downscaling methods. The objectives of this study were (1) to determine suitable GCMs for the
HRB and ZRB separately, based on the performance evaluation of multi-GCMs derived from CMIP5
using the score-based method [34,35]; (2) to construct the SDSM and MOS using the 40 year ECMWF
Re-Analysis (ERA-40) data and observed meteorological data to investigate the adaptability of the two
downscaling methods to different climate zones; and (3) to generate future climate change scenarios by
applying the identified preferred downscaling method for the HRB and ZRB under three representative
concentration pathway (RCP) scenarios (RCP2.6, RCP4.5, and RCP8.5), determining the variation
ranges of different climate variables including precipitation, maximum air temperature, and minimum
air temperature. The results obtained provide certain guidance for climate change projection, with an
emphasis on the substantial importance of regional differences, and could provide a scientific reference
for sustainable water resource management under climate change.

2. Materials and Methods

2.1. Study Area

This study was conducted in two basins (the HRB and ZRB) with different hydro-climatic regimes
(Figure 1), representing the south–north spatial heterogeneity in China.

2.1.1. Heihe River Basin

The HRB, the second largest inland river basin, is located in the central Hexi Corridor of
northwestern China, with coordinates of approximately 98◦–101◦ E and 38◦–42◦ N. Due to the
complicated geomorphology and disparity in altitude, the climate characteristics of this area show
significant regional differences. The HRB is divided into three parts by the Yingluo Gorge and the
Zhengyi Gorge from south to north. Above the Yingluo Gorge are the upper reaches, where the water
sources mainly originate; the elevation here ranges from 1680 to 5280 m. The middle reaches are
between the two gorges, with relatively flat terrain, containing 90% of the population and agricultural
land of the whole basin. The annual mean air temperature and precipitation are 6–8 ◦C and 120–200 mm,
respectively. The lower reaches are below the Zhengyi Gorge, having sparse natural vegetation and an
annual mean precipitation of less than 50 mm; this area is one of the main sources of sandstorms in
North China [36,37].
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Figure 1. Map of the Heihe River Basin (a) and Zhanghe River Basin (b) and the location of meteorological
stations with corresponding numbers defined in Table A1.

2.1.2. Zhanghe River Basin

The ZRB is located in southern-central China, bounded by coordinates spanning 111◦ to 113◦ E
and 30◦ to 32◦ N. It is characterized by a warm and humid subtropical climate. As part of the
rainstorm area in the middle reaches of the Yangtze River, the mean annual precipitation of this area is
1000 mm, with extremely uneven annual rainfall distribution, which leads to frequent drought and
flood disasters. The Zhanghe reservoir is the boundary of the upper and lower reaches. The lower
reaches are dominated by hills, and the total cultivated area is 16.4 × 104 ha, playing an essential role
as one of the rice production bases in Hubei Province.

2.2. Data

2.2.1. Observed Data

In this study, in-situ observations from 17 gauged stations in the HRB and five gauged stations
in the ZRB, including monthly and daily precipitation and mean, maximum, and minimum air
temperature, were obtained from the China Meteorological Data Service Center (http://data.cma.cn/en).
The monthly data were used for the performance evaluation of multi-GCMs for the two basins, and the
daily data were divided into two periods for statistical downscaling model calibration and validation.

2.2.2. GCM Data

Monthly and daily data of 23 GCMs were obtained from CMIP5 (https://esgf-node.llnl.gov/search/

cmip5/) (Table A2). The monthly data from the historical experiments were used for performance
evaluation of the GCMs, whereas the daily data from the historical and RCP experiments were used to
generate future climate change scenarios under three RCP scenarios (RCP2.6, RCP4.6, and RCP8.5)
using the statistical downscaling methods. For each GCM, we selected variant label r1i1p1f1. To unify
the different spatial resolution of the GCMs, consider the different sizes of the two basins, and ensure

http://data.cma.cn/en
https://esgf-node.llnl.gov/search/cmip5/
https://esgf-node.llnl.gov/search/cmip5/
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each grid captured at least one gauged station, GCM data were resampled to 2◦ × 2◦ in the HRB and
1.5◦ × 1.5◦ in the ZRB.

2.2.3. ERA-40 Reanalysis Data

The ERA-40 reanalysis data were obtained from the European Centre for Medium-Range Weather
Forecasts (ECMWF) [38]. Research continues to demonstrate that ERA-40 reanalysis data are more
applicable than other data for simulating the spatio-temporal evolution patterns of precipitation and air
temperature in most areas in China. Therefore, daily ERA-40 reanalysis data, including precipitation
and air temperature for 1961–2000 from the ECMWF (http://apps.ecmwf.int/datasets/data/era40-daily/

levtype=sfc/), were extracted to construct the SDSM model. The spatial resolution of ERA-40 is
consistent with that of the GCMs used in the HRB and ZRB.

Notably, due to the inconsistent lengths of the data (observed data: 1961–2005/2006, GCM data:
1961–2005 and ERA-40 reanalysis data: 1961–2000), 1961–1990 and 1991–2000 were set as the calibration
and validation periods for the SDSM model, respectively. Due to the MOS model directly establishing
the relationship between GCM output and observed climate variables to downscale and correct the
biases, 1961–1990 was set as the calibration period, and 1991–2005 and 1991–2006 were set as the
validation periods for the preferred GCMs in the HRB and ZRB, respectively. The different length of
validation periods is considered as to use the available data as much as possible [39,40].

2.3. Methods

2.3.1. Performance Evaluation of Multi-GCMs

Score-Based Method

Previous studies have found that the simulation performance of each GCM differs significantly,
especially for different climate regions [41–43]. To identify the preferred GCM for a certain region,
a score-based method was applied to the multi-model adaptive assessment in this study. Through this
method, in-situ observations of precipitation and mean, maximum, and minimum air temperature
were compared with the GCM simulations on a monthly scale based on 11 evaluation metrics (Table 1),
characterizing climate long-term means and standard deviations, seasonal variation, spatiotemporal
distribution, and probability density functions. The multi-criteria rank score (RS) was calculated
as follows:

RSi =
1
N

N∑
n=1

(
Xmax −Xi

Xmax −Xmin
× 10) (1)

where N is the number of evaluation metrics (N = 11), Xi is the relative error between the ith GCM
output and the observed climate variable, and Xmax and Xmin are the respective maximum and
minimum values of the relative error. All evaluation metrics have a weight of 1.0 in this study. For each
GCM, we calculated an RS for each climate variable. The higher the RS, the better the performance of
the GCM.

Table 1. Evaluation metrics used for general circulation model (GCM) performance assessment.

Evaluation Metric Method

Mean Relative Error (%)
Coefficient of variation Relative Error (%)

Temporal variation Normalized root mean square error (NRMSE) [44]
Monthly distribution Pearson correlation coefficient [45,46]
Spatial distribution Pearson correlation coefficient

Trend and its magnitude Mann–Kendall Z test [47]
Mann–Kendall β test [48]

Space–time variability The first eigenvector of empirical orthogonal functions (EOF1) [49,50]
The second eigenvector of empirical orthogonal functions (EOF2)

Probability density functions (PDFs) Brier score (BS) [51]
Skill score (Sscore)

http://apps.ecmwf.int/datasets/data/era40-daily/levtype=sfc/
http://apps.ecmwf.int/datasets/data/era40-daily/levtype=sfc/


Water 2020, 12, 3106 6 of 35

2.3.2. Statistical Downscaling Methods

SDSM

The statistical downscaling model (SDSM), developed by Wilby et al. [52], is based on the coupling
principle of multiple linear regression and the stochastic weather generator [53] and is commonly used
in the downscaling of regional climate change and projection of future climate change scenarios [54–56].
Its core concept is to establish the empirical relationships between local-scale predictands (observed
data) and regional-scale predictors (ERA40 reanalysis data).

The downscaling of daily precipitation and maximum, minimum, and mean air temperature by
the SDSM involves five steps: (1) screening of downscaling predictor variables [57,58]. By combining
the correlation matrix, partial correlation, and scatter plots, suitable predictors are screened through
a multiple linear regression model. The structure of the model has two forms: unconditional and
conditional. Precipitation is usually modeled as a conditional process, whereas air temperature is
modeled as an unconditional process. (2) The model is calibrated [59] by adjusting the coefficient of
variance inflation (VIF, where 0 < VIF < 10 indicates no correlation, 10 < VIF < 100 indicates a moderate
correlation, and VIF ≥ 100 indicates a high correlation; the default value is 12) and by bias correction
(BC, ranges from 0 to 2. The default value is 1.0, which indicates no bias correction). The outputs of
SDSM are calibrated with daily observed data. (3) The weather generator [60,61] operation generates
ensembles of synthetic daily weather series given observed (or ERA40 reanalysis) atmospheric predictor
variables. The procedure enables the verification of calibrated models (using independent data) and
the synthesis of artificial time series for present climate conditions. (4) The model is validated [18,61,62].
(5) Climate scenarios are generated for statistical analyses.

Tables A1 and A3 show the selected predictors according to the different predictands of the
meteorological stations. Notably, the selection of a predictor is one of the most challenging stages;
it is affected by climate and terrain conditions. Therefore, to obtain better calibration results, the
number and types of predictors should be different for the two regions. More details about the internal
mechanism of SDSM can be found in Wilby et al. [63,64].

MOS

Model output statistics (MOS) has been increasingly applied to climate change impact
studies [53,65–70]. It was first developed to correct the bias of RCMs and then gradually employed
to correct the bias of GCMs in recent years. MOS can be classified into simple mean-based scaling
and complex distribution-based scaling. The mean-based method uses a constant correction factor for
all climate variables, while the latter scaling uses different correction factors. Many bias correction
methods for precipitation and temperature have been derived. Daily translation (DT) and daily bias
correction (DBC), the methods based on quantiles in MOS, were adopted to downscale the temperature
and precipitation in this study.

Daily Translation (DT)

For the DT method, a distribution mapping technique is used to establish a relationship between
the daily observed data and the daily GCM-simulated data for the calibration period, and then the
relationship is applied to the future time series [65,71]:

Tadj, f ut.d = TGCM, f ut.d +
(
Tobs − TGCM,bas

)
, (2)

Padj, f ut.d = PGCM, f ut.d ×

(
Pobs

PGCM,bas

)
, (3)

where Tadj. f ut.d and Padj. f ut.d represent the adjusted daily air temperature and precipitation in the
future period, respectively; TGCM. f ut.d and PGCM. f ut.d represent the original daily GCM outputs in
the future period; Tobs and Pobs represent the observed daily data for temperature and precipitation,
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respectively; and TGCM.bas and PGCM.bas represent the original daily GCM outputs in the calibration
period. The terms in parentheses are the bias correction factors. For each month, the data series were
divided into four groups by calculating the 87.5, 92.5, and 97.5 percentiles, i.e., four factors would be
determined by subtracting or dividing the mean values of each group. The determination of percentiles
can be adjusted according to the distribution of specific data.

Daily Bias Correction (DBC)

DBC is a hybrid method that combines DT with local intensity scaling (LOCI) [65,72,73] and can
simultaneously correct the bias between precipitation frequency and precipitation amount. This method
involves three steps:

(1) Using the LOCI method, first ensure that the wet-day threshold of the daily GCM precipitation
series (Pm

WET) matches the observed series (Po
WET) to correct the frequency of the precipitation

occurrence [72]; the threshold typically approximates 1 mm. Then, a scaling factor s is calculated from
the wet-day intensities using

s =
〈Po : Po

≥ Po
WET〉 − Po

WET
〈Pm : Pm ≥ Pm

WET〉 − Pm
WET

, (4)

where Po and Pm represent the daily observed and GCM precipitation, respectively; Po : Po
≥ Po

WET is
the daily precipitation series greater than the wet-day threshold at the monthly scale; and the angle
brackets < > represent the average value.

Finally, the downscaled daily precipitation series P is calculated as follows:

P = max
(
Po

WET + s
(
Pm
− Pm

WET

)
, 0

)
. (5)

(2) Using the DT method, the data corrected in the first step are corrected to the frequency
distributions of the precipitation amounts [73].

(3) Each monthly wet-day threshold and factor obtained in the above two steps are used to adjust
the monthly precipitation to the future period of 2021–2050.

2.3.3. Evaluation Metrics for Model Calibration and Validation

In general, random errors are the main source of uncertainty for short time series, whereas the
primary source of uncertainty for long time series is systematic model errors [74]. The mean value
is one of the simplest and most widely used diagnostic methods for detecting systematic errors,
which can be eliminated through deviation correction. However, a single index cannot accurately
evaluate different variables, such as precipitation and air temperature, which have different distribution
characteristics. Therefore, multiple evaluation indices were considered to diagnose the downscaling
model performance in this study.

For precipitation, evaluation indices including the mean value (Mean), 90% quantile (X90),
standard deviation (SD), wet-day frequency (PWET), and precipitation intensity (iWET) were used to
comparatively evaluate the two statistical downscaling models. For air temperature, evaluation indices
included the mean value (mean), 90% quantile (X90), 10% quantile (X10), and standard deviation (SD).
The evaluation metrics played an important role in reproducing the model properties including the
mean, standard deviation, and numerical distribution.

To distinctively determine the difference between SDSM and MOS in simulating precipitation
(P) and air temperature (T), each evaluation index was assigned a numerical label (Table A4).
Numerical labels were used as the x-coordinate of the following portrait diagram during the calibration
and validation periods of the two statistical downscaling models.
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3. Results and Discussion

3.1. Performance Evaluation of GCMs

3.1.1. Rank Scoring of Different Climate Variables

From the evaluation results of 11 individual statistical values of different climate variables
(Tables A5–A12), taking ZRB as the example, we found that the differences in NRMSE, Cv, PDF, and EOF
were not significant among the 23 GCMs, while the differences in the mean, temporal, and spatial
correlation coefficients and Mann–Kendall (M–K) test statistics were more marked. Most GCMs
overestimated the mean precipitation in the ZRB, and opposite results were obtained for the spatial
correlation coefficients and M–K trend analysis, further emphasizing the necessity of multi-criteria
evaluation. Notably, the performance of multi-GCMs based on the score-based method was determined
by comprehensively evaluating multiple criteria rather than using the good performance indicated
by a single evaluation index [32,44,75]. GFDL-CM3 in Table A5 ranked last but showed good spatial
correlation performance. Overall, we concluded that both the category and quantity of statistical
metrics critically affect the performance evaluation of GCMs; using multiple evaluation metrics to
improve the credibility of the adaptive assessment of GCMs is vital.

Figure 2 presents the comprehensive RS results of 23 GCMs for precipitation, mean air temperature,
maximum air temperature, and minimum air temperature in two regions. In the ZRB, the optimal
model for precipitation was CSIRO-MIK3-6-0 (RS = 8.6). The preferred models for mean air
temperature, maximum air temperature, and minimum air temperature were BCC-CSM1-1-M (RS = 7.0),
GISS-E2-R (RS = 7.8), and MPI-ESM-MR (RS = 7.8), respectively. Compared with the different preferred
GCMs for each climate variable in the HRB, i.e., CNRM-CM5 (RS = 7.13) for precipitation and
CESM1-CAM5 (RS = 8.25), MPI-ESM-LR (RS = 7.62), and CCSM4 (RS = 8.6) for the mean, maximum,
and minimum air temperature, respectively, the significantly different advantages and disadvantages
of the individual GCMs in different climate regions are highlighted.

3.1.2. Sensitivity Analysis of the Multi-Criterion Score-Based Method

To investigate the sensitivity of different climate variables to the final rank, the average RS of each
GCM was calculated by removing the score of each climate variable in turn. As shown in Figure 3a,
in the ZRB, the variation patterns of the RS values for the 23 GCMs with a single climate variable
removed were similar to the initial pattern, demonstrating that it is difficult to judge which variable
had the dominant impact on GCM performance in the ZRB. Therefore, taking the average RS of four
climate variables as the assessment basis, the five preferred GCMs in the ZRB were BCC-CSM1-1-M,
CESM1-CAM5, GISS-E2-R, CCSM4, and FIO-ESM. Due to missing and unavailable daily data for
GISS-E2-R, CCSM4, and FIO-ESM, they were substituted by three GCMs: MIROC5, CSIRO-MK3-6-0,
and FGOALS-g2, respectively. In the HRB (Figure 3b), RS values were most sensitive to precipitation,
so the preferred GCMs exhibiting the best precipitation performance were selected for future climate
change projection: CNRM-CM5, MPI-ESM-LR, MPI-ESM-MR, MRI-CGCM3, and CanESM2.
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3.2. Calibration and Validation of Downscaling Models

3.2.1. SDSM Model

The Heihe River Basin

Figure 4 presents the standardized absolute errors in terms of evaluation indices for the observed
and GCM data (the optimal model CNRM-CM5 was taken as the example here, the other four
preferred models had similar performance), including four climate variables downscaled by SDSM
during the calibration period (1961–1990, left) and validation period (1991–2000, right) in the HRB.
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The deeper the red color, the greater the absolute difference in model errors between the calibration
and validation periods.Water 2020, 12, x FOR PEER REVIEW 11 of 35 
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by vertical solid lines). Similarly, the four types of evaluation indices for air temperature are the mean 
(Mean), 90% quantile (X90), 10% quantile (X10), and standard deviation (SD). 

The Zhanghe River Basin 

Figure 5 shows the evaluation results of precipitation performed similarly overall in the 
validation and calibration periods. We found that all the evaluation indices on the annual daily scale 
were appropriately corrected, while the simulation errors were mainly concentrated in the period 
from June to August. Regarding the three air temperature variables, the SDSM eliminated the biases 
of the mean value during the calibration period; however, slight biases remained during the 
validation period. For mean and maximum air temperature, the absolute errors of the X90, X10, and 
SD increased in the validation period. Considering the limited area of the ZRB, most meteorological 
stations used in this study were outside of the basin, not exactly matching the corresponding gridded 
data of the predictors from GCMs, which hindered the construction of the SDSM. 

Figure 4. The standardized absolute errors in terms of evaluation indices between the observed
data and the CNRM-CM5 outputs downscaled by statistical downscaling model (SDSM) in the HRB.
(Left) Calibration period for 1961–1990; (Right) validation period for 1991–2000. Note: The y-axis
represents the 17 meteorological stations (the specific locations are presented in Figure 1); the x-axis
represents the numerical labels of evaluation indices for precipitation and air temperature (explained
in Table A1). From left to right, the five evaluation indices for precipitation are the mean (Mean),
90% quantile (X90), standard deviation (SD), wet-day frequency (PWET), and precipitation intensity
(iWET) (separated by vertical solid lines). Similarly, the four types of evaluation indices for air
temperature are the mean (Mean), 90% quantile (X90), 10% quantile (X10), and standard deviation (SD).

The results showed that the performance of SDSM constructed for the HRB was reasonable,
and the simulation effect of precipitation was more accurate than that of air temperature. In detail,
for precipitation, the simulation effect represented by PWET and iWET was basically within the lower
error range in the two periods, which could be explained by the SDSM internal mechanism based
on the coupling principle of multiple linear regression and the stochastic weather generator [22].
However, in the middle and lower reaches of the HRB, SDSM did not play a main role due to the
arid climate with rare precipitation and sparse hydrological stations, complicating the capturing of
the main climatic predictands and the establishment of an appropriate linear regression relationship.
The findings of a previous study indicated that the extreme natural variability (time and space) of
desert climates will increase the uncertainty of climate change modeling in arid regions [11]. For air
temperature, the simulation effect indicated by the Mean, X90, and X10 showed that the biases of the
three variables were similarly removed in most months, while the maximum air temperature and
minimum air temperature exhibited better performance from the perspective of the standard deviation.
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The Zhanghe River Basin

Figure 5 shows the evaluation results of precipitation performed similarly overall in the validation
and calibration periods. We found that all the evaluation indices on the annual daily scale were
appropriately corrected, while the simulation errors were mainly concentrated in the period from June
to August. Regarding the three air temperature variables, the SDSM eliminated the biases of the mean
value during the calibration period; however, slight biases remained during the validation period.
For mean and maximum air temperature, the absolute errors of the X90, X10, and SD increased in the
validation period. Considering the limited area of the ZRB, most meteorological stations used in this
study were outside of the basin, not exactly matching the corresponding gridded data of the predictors
from GCMs, which hindered the construction of the SDSM.Water 2020, 12, x FOR PEER REVIEW 12 of 35 
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The Heihe River Basin 
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Figure 6 presents the evaluation indices for the observed and GCM data, including four climate 
variables downscaled by MOS for the calibration period (1961–1990, left) and validation period (1991–
2005, right) in the HRB. 

In terms of precipitation, the performance of MOS was excellent, as indicated by all five 
evaluation indices during the calibration period, while it performed slightly worse during the 
validation period due to the poor simulation effect (labeled using the darkest red) from June to 
August. However, the X90 of precipitation in most months was zero in the HRB, due to its arid climate, 
which severely restricts the ability of the MOS model to capture the probability distribution of the 
climate variables. We further revealed that hidden nonlinear and complex factors, such as natural 
climate variability, inevitably affected the simulation effect. 

The air temperature variables were accurately simulated, as demonstrated by the results of the 
Mean and X90 in the calibration periods. During the validation period, there were relatively larger 
biases, mainly concentrated in the period from January to March, indicating that the DT method of 

Figure 5. The standardized absolute errors in terms of evaluation indices between the observed
data and the BCC-CSM1-1-M outputs downscaled by SDSM in the ZRB. (Left) Calibration period of
1961–1990; (Right) validation period of 1991–2000. Note: The y-axis represents the five meteorological
stations (the specific locations are shown in Figure 1) surrounding the Zhanghe River Basin; the x-axis
represents the numerical labels of the evaluation indices for precipitation and air temperature (explained
in Table A3). From left to right, the five types of evaluation indices for precipitation are the mean
(Mean), 90% quantile (X90), standard deviation (SD), wet-day frequency (PWET), and precipitation
intensity (iWET) (separated by vertical solid lines). Similarly, the four types of evaluation indices for air
temperature are the mean (Mean), 90% quantile (X90), 10% quantile (X10), and standard deviation (SD).

3.2.2. MOS Model

The Heihe River Basin

The CNRM-CM5, which exhibited the best performance in the HRB, is used for illustration.
Figure 6 presents the evaluation indices for the observed and GCM data, including four climate



Water 2020, 12, 3106 12 of 35

variables downscaled by MOS for the calibration period (1961–1990, left) and validation period
(1991–2005, right) in the HRB.
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Figure 6. The standardized absolute errors in terms of evaluation indices between the observed data and
the CNRM-CM5 outputs downscaled by model output statistics (MOS) in the HRB. (Left) Calibration
period of 1961–1990; (Right) validation period of 1991–2005.

In terms of precipitation, the performance of MOS was excellent, as indicated by all five evaluation
indices during the calibration period, while it performed slightly worse during the validation period
due to the poor simulation effect (labeled using the darkest red) from June to August. However, the X90

of precipitation in most months was zero in the HRB, due to its arid climate, which severely restricts
the ability of the MOS model to capture the probability distribution of the climate variables. We further
revealed that hidden nonlinear and complex factors, such as natural climate variability, inevitably
affected the simulation effect.

The air temperature variables were accurately simulated, as demonstrated by the results of the
Mean and X90 in the calibration periods. During the validation period, there were relatively larger
biases, mainly concentrated in the period from January to March, indicating that the DT method of
MOS might be not suitable for bias correction of GCMs in regions with a large diurnal temperature
range, such as the HRB, located in the inland arid region of northwestern China.

Figure 7 presents the performance of the evaluation indices for the observed and GCM data
including four climate variables downscaled by MOS during the calibration period (1961–1990, left)
and validation period (1991–2006, right) in the ZRB. Similarly, the results driven by the optimal model
of BCC-CSM1-1-M are displayed for demonstration.
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Figure 7. The standardized absolute errors in terms of evaluation indices between the observed data
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(Right) validation period of 1991–2006.

In terms of precipitation, all five types of evaluation indices indicated excellent simulation
performance during the calibration period and a relative poorer but acceptable performance during
the validation period. Compared with the performance in the arid HRB, the MOS method, which is
based on distribution mapping, showed significant superiority in simulating precipitation in the ZRB,
which has a relatively humid climate. This result is consistent with those of previous studies [65,76].

For the three temperature variables, the biases of the four evaluation indices, especially the mean
index, were basically removed in the calibration period. Per the SD index, the simulation effect of the
minimum air temperature was more accurate than that of the mean and maximum air temperature.
This finding could be related to the subtropical humid climate of the ZRB, where the annual maximum
air temperature changes dramatically, resulting in difficulty in capturing the regular variation pattern.

3.3. Optimization Assessment of SDSM and MOS for the Two Basins

3.3.1. Assessment of the HRB

Cumulative distribution functions (CDFs) of the annual precipitation and mean, maximum,
and minimum air temperature were built to compare the differences between SDSM and MOS for
the period of 1991–2005 based on the simulation results of four monitoring stations (Jiuquan, Gaotai,
Zhangye, and Shandan) located in the middle irrigated region of the HRB. As shown in Figure 8,
both CDF curves representing the distribution characteristics of precipitation simulated by the two
methods were similar to those of the observed data, with a consistent overestimation of precipitation.
The observed monthly precipitation ranged between 0 and 80 mm, while the range of precipitation
simulated by MOS exceeded 100 mm for each station. Compared with MOS, the results simulated by
SDSM were relatively closer to the CDF curve of the observed data. In addition, precipitation extremes
simulated by MOS were much larger than the observed values.
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Figure 8. Cumulative distribution functions (CDFs) of the annual precipitation and mean, maximum,
and minimum air temperature during the period of 1991–2000 in the HRB. The blue dotted line
represents the observed data, the red solid line represents the GCM output downscaled by MOS,
and the green dashed line represents the GCM output downscaled by statistical downscaling model
(SDSM). The CNRM-CM5 model, which produced the best simulation results, was used here for the
GCM output.

In terms of air temperature, the SDSM underestimated the three temperature variables of each
station, and its simulation of the minimum and mean air temperatures at the Shandan and Zhangye
stations was more distributed in the lower temperature range. For maximum air temperature, except for
the simulation effect of the Shandan station, the value distribution of the other stations as shifted to the
left compared with the measured data, that is, the overall variation range of maximum air temperature
decreased. In contrast to the SDSM model, the MOS model more accurately simulated the distribution
of the three air temperature variables, only underestimating the larger value area of the maximum air
temperature at Jiuquan Station.

Accurate simulation of regional precipitation has long remained a challenge in downscaling [77–79].
Hence, one essential criterion by which to judge the suitability of a downscaling model for a certain
region is whether the model can capture precipitation characteristics. For the HRB, although the
simulation of air temperature variables by SDSM was inferior to that of MOS, which was still acceptable,
SDSM was found to be the more suitable downscaling model for the HRB due to its more accurate
precipitation simulation.

3.3.2. Assessment in the ZRB

Based on the observed and simulated data from the five gauging stations (Nanzhang, Xiangfan,
Zhongxiang, Yichang, and Jingzhou), the CDFs of the annual precipitation and mean, maximum,
and minimum air temperature were built during the period of 1991–2006. As shown in Figure 9,
the performance of the precipitation distribution characteristics simulated by MOS was much better
than that of SDSM, which was consistent with the CDF of the observed data. However, the SDSM
model significantly overestimated the frequency of precipitation extremes. For example, the observed
annual monthly precipitation was within 200 mm for the Nanzhang, Yichang, and Jingzhou stations,
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with relatively higher annual precipitation, while the values simulated by SDSM almost reached
500 mm for these three stations.Water 2020, 12, x FOR PEER REVIEW 16 of 35 
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increasing trend, with the highest increase in November, whereas the simultaneous changes under 
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Figure 9. CDFs of the annual precipitation and mean, maximum, and minimum air temperature during
the period of 1991–2000 simulated by SDSM and MOS in the ZRB. The blue dotted line represents the
observed data, the red solid line represents the GCM output downscaled by MOS, and the green dashed
line represents the GCM output downscaled by SDSM. The BCC-CSM1-1-M model, which produced
the best simulation results, was used as the GCM output here.

In terms of air temperature simulation results, the SDSM model underestimated the values of the
three air temperature variables at each station. Different from the HRB, the distribution characteristics
of the mean, maximum, and minimum air temperature were underestimated in the higher temperature
zone, indicating that the distribution of monthly air temperature in the ZRB simulated by SDSM was
lower than the observed data. For MOS, the simulation performance was excellent from both the
perspective of the overall range and cumulative frequency of different intervals.

Overall, compared with the performance of SDSM in the ZRB, the precipitation and air temperature
simulated by MOS were more accurate, so MOS was determined to be a suitable downscaling model
for future climate change projection in the ZRB.

3.4. Climate Change Projections

Results for the HRB were projected in the study by Wang et al. [31]; the results for the ZRB are
presented here for illustration.
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3.4.1. Precipitation Scenarios

The five optimal GCMs were used to project the precipitation in the ZRB under the RCP2.6,
RCP4.5, and RCP8.5 scenarios based on the constructed MOS model. Future changes in precipitation
were analyzed based on the differences between the baseline period (1991–2006) and a future period
(2021–2050). Figure 10 depicts the temporal variation patterns of precipitation at monthly, seasonal,
and annual scales. Mean annual precipitation projected by multi-GCMs under most scenarios showed
an increasing trend, ranging from −3.9% to +13.8%. At the seasonal scale, the changes were most
obvious in autumn and winter, with significant fluctuations, whereas changes in precipitation in
spring and summer varied between −10% and +20%. At the monthly scale, most changes in the future
under different scenarios ranged from −20% to +45%. The largest increase occurred in January when
simulated by FGOALS-g2 under the RCP8.5 scenario, reaching 177.5%, whereas the largest decline
occurred in October, also simulated by FGOALS-g2 under the RCP 2.6 scenario, at a rate of 40.3%.
The simulation results under the RCP2.6 scenario at various temporal scales all presented an increasing
trend, with the highest increase in November, whereas the simultaneous changes under the RCP8.5
scenario were relatively smaller.Water 2020, 12, x FOR PEER REVIEW 17 of 35 
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Figure 10. Projected changes in precipitation at different time scales in the ZRB relative to the baseline
period (1991–2006). The solid lines represent the results of the multi-model ensemble mean under
different representative concentration pathway (RCPs).

Spatial variations in precipitation in the upper and lower reaches of the Zhanghe River Basin
under the three RCPs are shown in Figure 11. The mean annual precipitation under the RCP2.6 and
RCP4.5 scenarios showed an increasing trend, and the increase in the upstream area was slightly higher
than that in the downstream. Under the RCP8.5 scenario, except for FGOALS-g2, the precipitation
projected by the other four GCMs either showed a decreasing trend or a slight increasing trend. Overall,
the projected changes in precipitation in the HRB during 2021–2050 ranged from −4.29% to +14.51%
and from −3.2% to +12.81% in the upstream and downstream regions, respectively. With the increase in
CO2 concentration defined in the RCPs, i.e., RCP8.5 > RCP4.5 > RCP2.6, the increases in precipitation
projected by CESM1-CAM5, MIROC5, and CSIRO-MK3-6-0 gradually decreased, whereas an opposite
changing pattern was projected by FGOALS-g2. We found no consistent variation in precipitation
with the rising CO2 concentration projected by BCC-CSM1-1-M, showing a significant increase under
RCP2.6 with a rate of 14.5% in the upstream and 12.8% in the downstream areas, and a smaller change
ranging from −1.55% to +0.51% in the whole basin under RCP4.5 and RCP8.5.
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Figure 11. Projected spatial variations relative to the baseline period (1991–2006) in mean annual
precipitation in the ZRB under RCP2.6 (a), RCP4.5 (b), and RCP8.5 (c) scenarios, calculated by averaging
the corresponding grids in the upstream and downstream regions.

3.4.2. Maximum Air Temperature Scenarios

As shown in Figure 12, the changes in maximum air temperature projected by multi-GCMs
under the three RCP scenarios in the ZRB at different time scales mostly exhibited an increasing trend,
ranging from 0.5 to 2.5 ◦C. The increases in maximum air temperature projected by BCC-CSM1-1-M
were mainly located in the upper-value region of the variation ranges, while changes projected by
FGOALS-g2 were distributed in the lower-value region of the variation ranges. At the seasonal scale,
projected increases mainly occurred in summer, ranging between 0.4 and 2.4 ◦C, and in winter, ranging
between 0.6 and 2.5 ◦C. The increases in annual maximum air temperature projected by the multi-GCMs
under the three RCP scenarios were all higher than 1 ◦C.
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Figure 12. Projected changes in maximum air temperature at different time scales in the ZRB relative
to the baseline period (1991–2006). The solid lines represent the results of the multi-model ensemble
mean under different RCPs.

In Figure 13, the mean annual maximum air temperature projected by all GCMs under the three
RCP scenarios demonstrated a consistent warming trend throughout the whole basin, and the increasing
rates gradually amplified as the CO2 emission concentration increased. However, the increases in
different regions exhibited visible differences. Compared with changes projected by the same GCM
under different RCP scenarios, the maximum air temperature projected by BCC-CSM1-1-M under
RCP8.5 increased most significantly, i.e., 1.94 ◦C in the upstream and 1.9 ◦C in the downstream region.
The lowest increase was projected by FGOALS-g2 under RCP2.6 in the downstream, i.e., 0.86 ◦C.
Compared with the increases in the lower reaches ranging from 0.86 to 1.9 ◦C, the increases in the
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upper reaches projected by the five preferred GCMs under the three RCP scenarios were slightly larger,
ranging from 0.86 to 1.94 ◦C.
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Figure 13. Projected spatial variations relative to the baseline period (1991–2006) in maximum air
temperature in the ZRB under RCP2.6 (a), RCP4.5 (b), and RCP8.5 (c), calculated by averaging the
corresponding grids in the upstream and downstream regions.

3.4.3. Minimum Air Temperature Scenarios

The minimum air temperature simulated by different GCMs also exhibited an increasing trend
under all three RCP scenarios at different time scales (Figure 14), consistent with the temporal variations
in the maximum air temperature. The minimum air temperature simulated by the five preferred GCMs
under RCP8.5 mostly contributed to the upper limits of the variation ranges at different time scales,
with a maximum increase of 2.4 ◦C, while the changes projected by the five GCMs under RCP2.6
and RCP4.5 fluctuated between the upper and lower limit values of the variation ranges. In terms
of changes at the seasonal scale, the increase in minimum air temperature mainly ranged from 0.5
to 2.0 ◦C, i.e., slightly less than that of the maximum air temperature. The maximum fluctuation
occurred in winter, varying between 0.3 and 2.0 ◦C, while the increase in the mean annual minimum
air temperature ranged between 0.7 and 1.7 ◦C.
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Similar to the maximum air temperature, the minimum air temperature exhibited a consistent
warming trend throughout the whole basin (Figure 15), and the increasing rates gradually amplified
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as the CO2 emission concentration increased. However, the increases showed spatial differences in
the upper and lower reaches. CSIRO-MK3-6-0, under the RCP8.5 scenario over the whole basin,
projected the most obvious increase, i.e., 1.76 ◦C in the upstream and 1.66 ◦C in the downstream region.
The lowest increase was projected by FGOALS-g2 under RCP 2.6 in the downstream region, i.e., 0.68 ◦C.
Compared with the increases in the lower reaches ranging from 0.68 to 1.66 ◦C, the increases in the
upper reaches projected by the five preferred GCMs under the three RCP scenarios were slightly higher,
ranging from 0.7 to 1.76 ◦C. Although increases in both maximum and minimum air temperatures
in the upper reaches projected under the three scenarios were larger than those in the lower reaches,
the increases in the maximum air temperature were more significant compared with those of the
minimum air temperature.Water 2020, 12, x FOR PEER REVIEW 20 of 35 
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4. Conclusions

In this study, to explore the influences of multi-GCMs and different downscaling methods
on climate change projection in various climate zones in detail, the Heihe River Basin, located in
northwestern China, and the Zhanghe River Basin, located in the lower reaches of the Yangtze River
Basin, were selected to represent the north–south discrepancy in climate in China. Our conclusions are
summarized as follows:

(1) According to the results of the score-based method and sensitivity analysis, five optimal
GCMs were selected for each basin: CNRM-CM5, MPI-ESM-LR, MPI-ESM-MR, MRI-CGCM3,
and CANESM2 were suitable for the HRB (arid climate) in North China; BCC-CSM1-1-M,
CESM1-CAM5, MIROC5, CSIRO-MK3-6-0, and FGOALS-g2 were more appropriate for the ZRB
(humid climate) in South China.

(2) For different climate variables, SDSM and MOS showed superiority in different climatic basins.
In the HRB, the performance of SDSM in downscaling precipitation was better than that of MOS,
whereas MOS performed better in downscaling the temperature variables. In the ZRB, for both
precipitation and temperature, MOS performed better than SDSM.

(3) As indicated by the cumulative distribution functions (CDFs), MOS better captured the
precipitation distribution characteristics in the humid region, but not in the arid region, implying
that the climate characteristics of a specific region significantly impact the selection of the
downscaling method, which is critical to the reliability of future climate change projections.

(4) In the HRB, which is characterized as an inland arid climate, the multi-GCM-projected mean
annual precipitation under the three RCP scenarios showed a decreasing trend, ranging between
−12.3% and 4.4%. The most significant decrease appeared in the upstream [33]. In the ZRB,
located in the middle reaches of the Yangtze River, the projected mean annual precipitation
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mostly exhibited an upward tendency ranging between −3.9% and 13.8%. The air temperature
was projected to consistently increase in the HRB and ZRB, and the increase in the maximum air
temperature was slightly larger than that of the minimum air temperature.

The specific suggestions inferred from this study include: (1) Considering the use of available
observations as much as possible. In this study, ERA-40 reanalysis data starting in 1961 was used
instead of ERA-Interim, which were of superior quality starting in 1979, which might be helpful for the
calibration of statistical downscaling models. (2) With the release of Phase 6 of the Coupled Model
Inter-comparison Project (CMIP6), a further study will be conducted to explore the superiority of the
latest model outputs and provide more reliable and accurate prediction results for regional future
climate change prediction using a variety of downscaling technologies. The climate change projection
framework developed and recommended in this study for the north and south of China provides
scientific support for sustainable water resource management subject to climate change.
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Appendix A

Table A1. Selected predictors according to different variables of the meteorological stations.

Area Stations Tmax Tmin Tmean Precipitation

HRB 1 Jikede mslp, p5ta,
p7ta, p8ta, ta2m

mslp, p5ta, p7ta,
p8ta, ta2m, p7hu, p8hu

mslp, p5ta,
p7ta, p8ta, ta2m

lspr, mslp, p7ta, p8ta,
ta2m, p7hu, p8hu

2 Ejin Banner mslp, p7ta,
p8ta, ta2m

mslp, p5ta, p7ta, p8ta,
ta2m, p7hu, p8hu

mslp, p5ta,
p7ta, p8ta, ta2m

lspr, p7ta, p8ta, ta2m,
p5hu, p7hu, p8hu

3 Guaizihu mslp, p7ta,
p8ta, ta2m

mslp, p5ta, p7ta,
p8ta, ta2m

mslp, p7ta,
p8ta, ta2m

lspr, p7ta, p8ta, ta2m,
p5hu, p7hu, p8hu

4 Yumen Town mslp, p7ta,
p8ta, ta2m

mslp, p5ta, p7ta, p8ta,
ta2m, p7hu

mslp, p7ta,
p8ta, ta2m

lspr, mslp, p7ta, p8ta,
ta2m, p7hu, p8hu

5 Jiuquan mslp, p7ta,
p8ta, ta2m

mslp, p5ta, p7ta, p8ta,
ta2m, p7hu

mslp, p7ta,
p8ta, ta2m

lspr, mslp, p7ta, p8ta,
ta2m, p7hu, p8hu

6 Jinta mslp, p7ta,
p8ta, ta2m

mslp, p5ta, p7ta, p8ta,
ta2m, p7hu, p8hu

mslp, p7ta,
p8ta, ta2m

lspr, mslp, p7ta, p8ta,
ta2m, p7hu, p8hu

7 Dingxin mslp, p7ta,
p8ta, ta2m

mslp, p5ta, p7ta, p8ta,
ta2m, p7hu, p8hu

mslp, p7ta,
p8ta, ta2m

lspr, mslp, p7ta, p8ta,
ta2m, p7hu, p8hu

8 Gaotai mslp, p7ta,
p8ta, ta2m

p5ta, p8ta, ta2m,
p7hu, p8hu

mslp, p7ta,
p8ta, ta2m

lspr, mslp, p7ta, p8ta,
ta2m, p7hu, p8hu

9 Alxa Right Banner mslp, p7ta,
p8ta, ta2m

mslp, p5ta, p7ta,
p8ta, ta2m

mslp, p7ta,
p8ta, ta2m

lspr, mslp, p7ta, p8ta,
ta2m, p7hu, p8hu

10 Tuole mslp, p5ta,
p7ta, p8ta, ta2m p5ta, ta2m, p8hu p5ta, p7ta,

p8ta, ta2m
lspr, mslp, p7ta, p8ta,

ta2m, p8hu

11 Yeniugou mslp, p5ta,
p7ta, p8ta, ta2m

p5ta, ta2m, p5hu,
p7hu, p8hu

p5ta, p7ta,
p8ta, ta2m

lspr, mslp, p7ta, p8ta,
ta2m, p7hu, p8hu

http://data.cma.cn/
http://apps.ecmwf.int/datasets/data/era40-daily/levtype=sfc/
http://apps.ecmwf.int/datasets/data/era40-daily/levtype=sfc/
http://cmip-pcmdi.llnl.gov/cmip5/
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Table A1. Cont.

Area Stations Tmax Tmin Tmean Precipitation

12 Zhangye mslp, p7ta,
p8ta, ta2m

p5ta, ta2m, p5hu,
p7hu, p8hu

mslp, p5ta,
p7tap8ta, ta2m

lspr, mslp, p7ta, p8ta,
ta2m, p7hu, p8hu

13 Qilian mslp, p5ta,
p7ta, p8ta, ta2m

ta2m, p5hu,
p7hu, p8hu

mslp, p5ta,
p7tap8ta, ta2m

lspr, mslp, p7ta, p8ta,
ta2m, p7hu, p8hu

14 Gangcha mslp, p5ta
p7ta, p8ta, ta2m

p5ta, ta2m,
p5hup7hu, p8hu

p5ta, p7ta,
p8ta, ta2m

lspr, mslp, p7ta, p8ta,
ta2m, p7hu, p8hu

15 Shandan mslp, p7ta,
p8ta, ta2m

p5ta, p8ta, ta2m,
p5hu, p7hup8hu

mslp, p5ta,
p7ta, p8ta, ta2m

lspr, mslp, p7ta, p8ta,
ta2m, p7hu, p8hu

16 Yongchang mslp, p7ta,
p8ta, ta2m

p5ta, p8ta, ta2m,
p5hu, p7hu, p8hu

mslp, p7ta,
p8ta, ta2m

lspr, mslp, p7ta, p8ta,
ta2m, p7hu, p8hu

17 Menyuan
mslp, p5ta,

p7ta,
p8ta, ta2m

p5ta, ta2m,
p5hu, p7hu, p8hu

mslp, p5ta
p7ta, p8ta, ta2m

lspr, mslp, p7ta, p8ta,
ta2m, p7hu, p8hu

ZRB 1 Nanzhang mslp, p500,
p5ta, p8ta, ta2m

mslp, p5_u, p500, p5ta,
p850, p8ta,

ta2m

mslp, p500,
p5ta, p8ta, ta2m

mslp, p500, p5ta, p7_u,
p850, p8ta, va10

2 Xiangfan
mslp, p5_u,

p500,
p5ta, p8ta, ta2m

mslp, p5_u, p500, p5ta,
p850, p8ta, ta2m

mslp, p500,
p5ta, p8ta, ta2m

mslp, p500, p5ta, p850,
p8ta, va10

3 Zhongxiang
mslp, p5_u,
p500, p5ta,
p8ta, ta2m

mslp, p5_u, p500, p5ta,
p850, p8ta,

ta2m

mslp, p500,
p5ta, p8ta, ta2m

mslp, p500, p5ta, p850,
p8ta

4 Yichang
mslp, p5_u,
p500, p5ta,
p8ta, ta2m

mslp, p5_u, p500p5ta,
p850, p8ta, ta2m

mslp, p500,
p5ta, p5_u, p8ta

ta2m

mslp, p500, p5ta, p850,
p8ta, ta2m

5 Jingzhou

mslp, p5_u,
p500, p5ta,
p850, p8ta,

ta2m

mslp, p5_u, p500, p5ta,
p850, p8ta,

ta2m

mslp, p500,
p5ta, p5_u,
p8tata2m

mslp, p500, p5ta, p850,
p8ta

Table A2. Information of 23 GCMs from CMIP5.

ID Model Name Source Horizontal Resolution
(lat × lon)

1 BCC-CSM 1.1 Beijing Climate Center, China Meteorological Administration, China 2.7906◦ × 2.8125◦

2 BCC-CSM1.1-M Beijing Climate Center, China Meteorological Administration, China 1.1215◦ × 1.125◦

3 CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada 2.7906◦ × 2.8125◦

4 CCSM4 National Center for Atmospheric Research (NCAR), USA 0.9424◦ × 1.25◦

5 CESM1-CAM5 National Center for Atmospheric Research (NCAR) Boulder, CO, USA 0.9424◦ × 1.25◦

6 CNRM-CM5 Centre National de Recherches Meteorologiques, Meteo-France, France 1.4007◦ × 1.4063◦

7 CSIRO-Mk3.6.0 Australian Commonwealth Scientific and Industrial Research
Organization, Australia 1.8653◦ × 1.875◦

8 FGOALS-g2 Institute of Atmospheric Physics, Chinese Academy of Sciences, China 2.7906◦ × 2.8125◦

9 FIO-ESM The First Institute of Oceanography, SOA, China 2.7906◦ × 2.8125◦

10 GFDL-CM3 Geophysical Fluid Dynamics Laboratory, USA 2◦ × 2.5◦

11 GFDL-ESM2G Geophysical Fluid Dynamics Laboratory, USA 2◦ × 2.5◦

12 GISS-E2-H NASA Goddard Institute for Space Studies, USA 2◦ × 2.5◦

13 GISS-E2-R NASA Goddard Institute for Space Studies, USA 2◦ × 2.5◦

14 HadGEM2-ES Met Office Hadley Centre, UK 1.25◦ × 1.875◦

15 IPSL-CM5A-LR Institut Pierre-Simon Laplace, France 1.8947◦ × 3.75◦

16 IPSL-CM5A-MR Institut Pierre-Simon Laplace, France 1.2676◦ × 2.5◦

17 MIROC5
Atmosphere and Ocean Research Institute (The University of

Tokyo),National Institute for Environmental Studies, and Japan Agency
for Marine-Earth Science and Technology, Japan

1.4005◦ × 1.4063◦

18 MIROC-ESM
Atmosphere and Ocean Research Institute (The University of Tokyo),
National Institute for Environmental Studies, and Japan Agency for

Marine-Earth Science and Technology, Japan
2.7906◦ × 2.8125◦

19 MIROC-ESM-CHEM
Atmosphere and Ocean Research Institute (The University of Tokyo),
National Institute for Environmental Studies, and Japan Agency for

Marine-Earth Science and Technology, Japan
2.7906◦ × 2.8125◦

20 MPI-ESM-LR Max Planck Institute for Meteorology, Germany 1.8653◦ × 1.875◦

21 MPI-ESM-MR Max Planck Institute for Meteorology, Germany 1.8653◦ × 1.875◦

22 MRI-CGCM3 Meteorological Research Institute, Japan 1.1215◦ × 1.125◦

23 NorESM1-M Norwegian Climate Centre, Norway 1.8947◦ × 2.5◦
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Table A3. Predictors used for downscaling in the SDSM.

Long Name Short Name Long Name Short Name

Large-scale precipitation lspr Specific humidity at 850 hPa p8hu
Mean sea level pressure mslp Temperature at 500 hPa p5ta

Mean temperature at 2 m ta2m Temperature at 700 hPa p7ta
10 m meridional velocity va10 Temperature at 850 hPa p8ta

10 m zonal velocity ua10 500 hPa meridional velocity p5_v
500 hPa geopotential height p500 700 hPa meridional velocity p7_v
700 hPa geopotential height p700 850 hPa meridional velocity p8_v
850 hPa geopotential height p850 500 hPa zonal velocity p5_u
Specific humidity at 500 hPa p5hu 700 hPa zonal velocity p7_u
Specific humidity at 700 hPa p7hu 850 hPa zonal velocity p8_u

Table A4. Evaluation metrics for precipitation and air temperature.

Evaluation Indices Mean X90 X10 SD PWET iWET

Variables P T P T T P T P P

January 1 1 14 14 27 27 40 40 53
February 2 2 15 15 28 28 41 41 54

March 3 3 16 16 29 29 42 42 55
April 4 4 17 17 30 30 43 43 56
May 5 5 18 18 31 31 44 44 57
June 6 6 19 19 32 32 45 45 58
July 7 7 20 20 33 33 46 46 59

August 8 8 21 21 34 34 47 47 60
September 9 9 22 22 35 35 48 48 61

October 10 10 23 23 36 36 49 49 62
November 11 11 24 24 37 37 50 50 63
December 12 12 25 25 38 38 51 51 64

Daily average
precipitation/temperature 13 13 26 26 39 39 52 52 65
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Table A5. Evaluation results of statistical characteristic values of precipitation over ZRB.

Model Mean CV NRMSE rtom rspa
M-K

EOF1 EOF2
PDF

RS
Zc β SB SS

Observation 84.46 0.87 −0.09 0.0003 0.5 −0.015
BCC-CSM 1.1 111.16 0.67 1.19 0.45 −0.91 −0.10 −0.0014 0.5 0.016 0.011 0.69 5.87

BCC-CSM1-1-M 63.6 0.91 1.11 0.35 0.98 0.01 0.0013 0.5 −0.030 0.004 0.82 8.45
CanESM2 132.65 0.64 1.53 0.26 0.87 0.43 0.0114 0.5 −0.038 0.012 0.68 4.56
CCSM4 120.23 0.83 1.23 0.47 0.75 −0.71 −0.0113 0.5 −0.028 0.005 0.79 7.76

CESM1-CAM5 121.05 0.76 1.3 0.52 0.5 −0.45 −0.0079 0.5 −0.005 0.007 0.77 7.19
CNRM-CM5 82.16 0.68 1.34 0.39 0.41 0.1 0.0046 0.49 0.024 0.008 0.75 6.14

CSIRO-MK3-6-0 86.24 0.86 1.06 0.47 0.78 −0.58 −0.0063 0.5 −0.019 0.007 0.76 8.61
FGOALS-g2 86.24 0.73 1.02 0.48 −0.54 0.22 0.0039 0.5 −0.006 0.008 0.73 7.47

FIO-ESM 136.86 0.7 1.42 0.55 0.61 −0.19 −0.0026 0.5 −0.034 0.009 0.7 6.34
GFDL-CM3 107.08 0.6 1.32 0.26 0.91 −1.90 −0.0338 0.5 −0.021 0.015 0.62 3.66

GFDL-ESM2G 91.68 0.82 1.17 0.4 −0.36 −1.12 −0.0176 0.5 0 0.007 0.74 6.55
GISS-E2-H 108.82 0.67 1.13 0.49 0.36 −0.66 −0.0103 0.5 −0.014 0.008 0.75 6.95
GISS-E2-R 112.02 0.64 1.13 0.49 0.4 −0.53 −0.0082 0.5 0.001 0.01 0.72 6.51

HadGEM2-ES 106.79 0.84 1.29 0.47 0.9 −2.03 −0.0333 0.48 −0.138 0.009 0.75 4.42
IPSL-CM5A-LR 82.12 0.71 1.02 0.46 −0.36 −1.46 −0.0195 0.5 0.005 0.009 0.72 6.22
IPSL-CM5A-MR 77.26 0.78 1.08 0.43 0.02 −1.15 −0.0141 0.5 0.038 0.006 0.78 7.15

MIROC5 128.75 0.7 1.35 0.52 0.96 −0.39 −0.0068 0.5 −0.018 0.007 0.75 6.98
MIROC-ESM 79.84 0.87 1.13 0.4 −1.00 0.3 0.0056 0.5 0.013 0.005 0.79 7.5

MIROC-ESM-CHEM 82.88 0.83 1.09 0.44 −0.99 0.62 0.0107 0.5 0.007 0.005 0.78 7.31
MPI-ESM-LR 123.54 0.68 1.35 0.4 0.78 −0.50 0.0029 0.5 0.003 0.011 0.66 5.1
MPI-ESM-MR 126.05 0.68 1.35 0.45 0.7 0.35 0.0089 0.5 0.001 0.01 0.69 5.91
MRI-CGCM3 57.04 0.82 1.15 0.25 0.21 −0.30 −0.0019 0.5 −0.001 0.007 0.76 6.97
NorESM1-M 122.14 0.74 1.38 0.43 −0.54 0.04 0.0031 0.5 0.004 0.008 0.72 6.02
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Table A6. Evaluation results of statistical characteristic values of mean air temperature over ZRB.

Model Mean CV NRMSE rtom rspa
M-K

EOF1 EOF2
PDF

RS
Zc β SB SS

Observation 16.22 0.53 0.66 0.0015 0.5 0.014
BCC-CSM 1.1 12.29 0.78 0.54 0.98 0.78 0.58 0.0017 0.5 −0.006 0.007 0.67 4.45

BCC-CSM1-1-M 13.88 0.68 0.39 0.97 0.82 0.56 0.0014 0.5 0.01 0.006 0.71 6.99
CanESM2 13.86 0.7 0.4 0.97 0.75 0.79 0.002 0.5 0.002 0.005 0.74 6.46
CCSM4 13.63 0.71 0.41 0.98 0.59 1.01 0.0022 0.5 −0.002 0.008 0.67 5.45

CESM1-CAM5 13.78 0.63 0.37 0.98 0.58 0.62 0.0013 0.5 −0.003 0.007 0.68 6.23
CNRM-CM5 12.73 0.69 0.49 0.98 0.37 −0.07 0.0001 0.5 0.007 0.009 0.64 3.44

CSIRO-MK3-6-0 14.7 0.69 0.37 0.97 0.32 0.66 0.0017 0.5 −0.007 0.008 0.66 5.77
FGOALS-g2 12.88 0.73 0.47 0.98 0.88 0.85 0.0021 0.5 −0.003 0.006 0.72 5.29

FIO-ESM 14.29 0.59 0.34 0.97 0.74 0.69 0.0015 0.5 −0.005 0.004 0.76 6.91
GFDL-CM3 12.04 0.76 0.56 0.97 0.75 0.24 0.0007 0.5 −0.012 0.006 0.7 5.09

GFDL-ESM2G 13.6 0.58 0.41 0.96 0.93 0.74 0.0017 0.5 −0.011 0.01 0.62 5
GISS-E2-H 14.69 0.49 0.34 0.97 0.64 −0.31 −0.0004 0.5 −0.003 0.005 0.73 5.12
GISS-E2-R 14.76 0.47 0.35 0.97 0.69 0.24 0.0006 0.5 −0.007 0.006 0.71 5.99

HadGEM2-ES 13.23 0.66 0.42 0.98 0.5 0.71 0.0017 0.5 0.014 0.008 0.71 5.84
IPSL-CM5A-LR 14.13 0.66 0.38 0.97 0.78 0.98 0.0021 0.5 −0.009 0.004 0.75 6.32
IPSL-CM5A-MR 15.03 0.64 0.33 0.97 0.56 1.1 0.0026 0.5 0.003 0.007 0.7 6.1

MIROC5 15.85 0.55 0.26 0.98 0.39 0.28 0.0007 0.5 −0.001 0.008 0.67 6.57
MIROC-ESM 16.33 0.54 0.27 0.97 0.81 0.38 0.0009 0.5 −0.002 0.011 0.6 5.62

MIROC-ESM-CHEM 16.04 0.55 0.28 0.97 0.82 0.68 0.0014 0.5 −0.002 0.011 0.61 5.96
MPI-ESM-LR 14.5 0.56 0.33 0.97 0.63 0.83 0.0019 0.5 −0.015 0.006 0.72 5.81
MPI-ESM-MR 14.53 0.56 0.32 0.97 0.65 1.32 0.003 0.5 0.016 0.005 0.73 5.4
MRI-CGCM3 13.78 0.74 0.45 0.97 0.32 0.12 0.0006 0.5 −0.01 0.009 0.64 3.3
NorESM1-M 12.23 0.79 0.54 0.98 0.75 0.59 0.0013 0.5 −0.01 0.006 0.72 5.25
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Table A7. Evaluation results of statistical characteristic values of maximum air temperature over ZRB.

Model Mean CV NRMSE rtom rspa
M-K

EOF1 EOF2
PDF

RS
Zc β SB SS

Observation 20.99 0.41 0.29 0.0008 0.5 0.005
BCC-CSM 1.1 16.81 0.61 0.61 0.96 0.34 0.55 0.0018 0.5 −0.004 0.006 0.72 6.03

BCC-CSM1-1-M 18.99 0.54 0.44 0.96 0.9 0.53 0.0017 0.5 −0.008 0.004 0.76 7.5
CanESM2 18.58 0.54 0.46 0.96 0.13 0.57 0.0016 0.5 −0.002 0.001 0.72 6.66
CCSM4 19.77 0.43 0.35 0.96 −0.01 0.88 0.0021 0.5 0.003 0.006 0.71 6.86

CESM1-CAM5 19.34 0.4 0.39 0.96 −0.15 0.45 0.0011 0.5 −0.006 0.005 0.73 7.66
CNRM-CM5 18.31 0.48 0.49 0.95 −0.35 −0.12 −0.0008 0.5 0.001 0.01 0.64 5.38

CSIRO-MK3-6-0 19.51 0.51 0.42 0.95 −0.27 0.71 0.002 0.5 0.012 0.005 0.72 6.03
FGOALS-g2 17.26 0.57 0.55 0.96 0.65 0.79 0.0023 0.5 −0.004 0.004 0.76 6.52

FIO-ESM 18.61 0.45 0.42 0.95 0.31 0.78 0.0018 0.5 −0.011 0.005 0.73 6.67
GFDL-CM3 16.15 0.61 0.66 0.96 0.25 0.25 0.0009 0.5 0.014 0.004 0.76 6.65

GFDL-ESM2G 17.2 0.46 0.55 0.95 0.74 0.81 0.002 0.5 0.012 0.008 0.67 5.79
GISS-E2-H 18.28 0.39 0.47 0.95 0.04 −0.38 −0.0006 0.5 0.007 0.004 0.77 7.26
GISS-E2-R 18.39 0.38 0.47 0.95 0.17 0.21 0.0006 0.5 0.011 0.005 0.75 7.76

HadGEM2-ES 17.47 0.5 0.51 0.96 −0.59 0.26 0.0001 0.5 −0.015 0.005 0.75 5.77
IPSL-CM5A-LR 26.53 0.27 0.77 0.91 0.3 1.23 0.0021 0.5 0.021 0.007 0.68 2.47
IPSL-CM5A-MR 27.72 0.28 0.88 0.93 −0.10 1.11 0.0022 0.5 0.017 0.007 0.68 2.52

MIROC5 20.55 0.44 0.35 0.96 −0.29 0.01 0.0003 0.5 −0.007 0.006 0.71 6.61
MIROC-ESM 21.84 0.41 0.39 0.94 0.31 0.27 0.0007 0.5 −0.004 0.009 0.64 6.92

MIROC-ESM-CHEM 21.32 0.42 0.39 0.94 0.34 0.7 0.0017 0.5 −0.003 0.008 0.66 6.39
MPI-ESM-LR 18.75 0.42 0.43 0.94 0.04 0.83 0.0018 0.5 −0.010 0.005 0.72 5.59
MPI-ESM-MR 18.8 0.41 0.42 0.95 0.1 1.25 0.003 0.5 0.014 0.005 0.74 5.51
MRI-CGCM3 18.85 0.56 0.48 0.96 −0.43 −0.06 0.0002 0.5 −0.005 0.007 0.69 5.32
NorESM1-M 17.7 0.49 0.48 0.96 0.2 0.47 0.0011 0.5 −0.012 0.006 0.71 6.58
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Table A8. Evaluation results of statistical characteristic values of minimum air temperature over ZRB.

Model Mean CV NRMSE rtom rspa
M-K

EOF1 EOF2
PDF

RS
Zc β SB SS

Observation 12.46 0.68 1.15 0.0024 0.5 −0.0067
BCC-CSM 1.1 8.1 1.17 0.58 0.98 0.83 0.56 0.0015 0.5 0.006 0.006 0.72 6.18

BCC-CSM1-1-M 9.3 0.98 0.44 0.98 0.8 0.76 0.0015 0.5 0.0096 0.009 0.64 5.81
CanESM2 9.18 1.09 0.5 0.98 0.85 1.04 0.0025 0.5 −0.0045 0.005 0.72 7.6
CCSM4 8.97 1.14 0.51 0.98 0.76 1.01 0.0021 0.5 0.0058 0.006 0.72 7.16

CESM1-CAM5 9.46 1 0.43 0.98 0.78 0.71 0.0015 0.5 0.0032 0.007 0.69 6.61
CNRM-CM5 8.4 1.05 0.54 0.98 0.61 0.13 0.0005 0.5 0.0054 0.007 0.69 4.97

CSIRO-MK3-6-0 10.1 1.01 0.42 0.98 0.51 0.69 0.0015 0.5 −0.0028 0.008 0.67 6.05
FGOALS-g2 8.77 1.06 0.5 0.98 0.89 0.84 0.002 0.5 0.0022 0.006 0.71 6.98

FIO-ESM 10.39 0.85 0.35 0.97 0.79 0.57 0.7893 0.5 0.0013 0.004 0.76 7.05
GFDL-CM3 7.69 1.15 0.63 0.97 0.83 0.26 0.0007 0.5 0.0065 0.006 0.7 5.25

GFDL-ESM2G 9.83 0.84 0.42 0.96 0.91 0.71 0.0016 0.5 0.0078 0.008 0.67 5.83
GISS-E2-H 11.02 0.71 0.29 0.98 0.79 −0.18 −0.0002 0.5 −0.0014 0.005 0.73 6.37
GISS-E2-R 11.02 0.68 0.3 0.98 0.81 0.31 0.0007 0.5 −0.0060 0.006 0.72 7.21

HadGEM2-ES 9.41 0.94 0.42 0.98 0.81 0.18 0.0006 0.5 0.0115 0.006 0.71 6.7
IPSL-CM5A-LR 3.06 3.7 1.19 0.96 0.81 0.7 0.0021 0.5 −0.0019 0.005 0.73 4.49
IPSL-CM5A-MR 3.83 3.1 1.1 0.97 0.72 0.56 0.0017 0.5 −0.0005 0.007 0.7 4.2

MIROC5 11.99 0.74 0.23 0.98 0.64 0.58 0.0011 0.5 −0.0041 0.008 0.66 6.52
MIROC-ESM 12.07 0.75 0.24 0.98 0.88 0.3 0.0006 0.5 −0.0006 0.011 0.61 5.76

MIROC-ESM-CHEM 11.94 0.75 0.26 0.98 0.88 0.49 0.0009 0.5 0.0003 0.009 0.64 6.13
MPI-ESM-LR 10.86 0.77 0.29 0.98 0.79 0.88 0.0018 0.5 0.0174 0.007 0.7 7.28
MPI-ESM-MR 10.83 0.77 0.3 0.98 0.79 1.32 0.0029 0.5 0.0155 0.005 0.74 7.75
MRI-CGCM3 9.2 1.09 0.49 0.98 0.59 0.3 0.0009 0.5 0.0055 0.009 0.64 5.63
NorESM1-M 8 1.29 0.63 0.98 0.85 0.68 0.0016 0.5 −0.0090 0.006 0.7 6.57
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Table A9. Evaluation results of statistical characteristic values of precipitation over HRB.

Model Mean CV NRMSE rtom rspa
M-K

EOF1 EOF2
PDF

RS
Zc β SB SS

Observation 11.31 1.64 0.136 2.03 × 10−4 0.229 −0.140
BCC-CSM 1.1 32.06 0.67 1.14 0.56 0.88 0.32 5.44 × 10−5 0.275 −0.181 0.296 0.357 4.33

BCC-CSM1-1-M 23.44 0.71 1.16 0.53 0.92 −0.489 −4.32 × 10−5 0.264 0.186 0.265 0.388 2.79
CanESM2 30.48 1.15 1.12 0.79 0.83 0.385 5.43 × 10−5 0.279 0.13 0.077 0.7 6.25
CCSM4 26.36 0.93 1.14 0.74 0.92 0.572 8.88 × 10−5 0.272 −0.175 0.197 0.529 5.83

CESM1-CAM5 25.75 1.06 1.14 0.75 0.92 −0.401 −3.54 × 10−5 0.268 0.054 0.101 0.662 5.62
CNRM-CM5 20.43 1.35 1.16 0.77 0.99 0.133 2.06 × 10−5 0.224 0.108 0.028 0.793 7.13

CSIRO-MK3-6-0 19.49 1.06 1.16 0.75 0.87 1.053 9.62 × 10−5 0.235 0.085 0.127 0.629 5.51
FGOALS-g2 30.78 0.54 1.14 0.52 0.93 1.369 1.77 × 10−4 0.275 −0.182 0.298 0.341 3.88

FIO-ESM 26.36 0.93 1.14 0.74 0.92 0.572 8.88 × 10−5 0.272 −0.175 0.197 0.529 5.83
GFDL-CM3 26.44 0.88 1.15 0.64 0.9 −0.480 −5.06 × 10−5 0.262 −0.197 0.186 0.531 4.71

GFDL-ESM2G 23.41 0.9 1.16 0.54 0.92 0.551 4.97 × 10−5 0.248 0.188 0.124 0.584 4.49
GISS-E2-H 52 0.64 1.08 0.64 0.65 0.236 5.92 × 10−5 0.311 −0.098 0.298 0.333 4.6
GISS-E2-R 41.05 0.55 1.11 0.57 0.73 1.428 1.72 × 10−4 0.319 −0.082 0.301 0.284 3.3

HadGEM2-ES 25.3 1.04 1.15 0.57 0.94 0.478 6.68 × 10−5 0.281 0.168 0.134 0.61 4.8
IPSL-CM5A-LR 20.41 0.72 1.16 0.58 0.89 0.253 2.94 × 10−5 0.269 −0.171 0.241 0.414 4.35
IPSL-CM5A-MR 24.31 0.9 1.16 0.72 0.94 0.752 8.39 × 10−5 0.222 −0.037 0.1 0.616 6.12

MIROC5 31.86 0.82 1.13 0.74 0.93 0.037 2.37 × 10−5 0.276 −0.104 0.212 0.52 5.84
MIROC-ESM 42.15 0.85 1.09 0.8 0.9 0.084 2.35 × 10−5 0.301 −0.129 0.248 0.484 6.23

MIROC-ESM-CHEM 41.18 0.84 1.1 0.78 0.91 0.419 9.45 × 10−5 0.298 0.137 0.264 0.453 5.41
MPI-ESM-LR 22.32 1.37 1.16 0.69 0.93 −0.047 7.90 × 10−6 0.251 −0.159 0.064 0.723 6.85
MPI-ESM-MR 23.34 1.32 1.15 0.68 0.94 −0.236 −1.59 × 10−5 0.255 −0.164 0.058 0.737 6.6
MRI-CGCM3 11.48 1.19 1.18 0.73 0.98 0.55 3.72 × 10−5 0.214 0.029 0.04 0.757 6.25
NorESM1-M 27.28 0.83 1.13 0.69 0.84 −0.200 −9.32 × 10−6 0.282 0.172 0.259 0.458 3.86
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Table A10. Evaluation results of statistical characteristic values of mean air temperature over HRB.

Model Mean CV NRMSE rtom rspa
M-K

EOF1 EOF2
PDF

RS
Zc β SB SS

Observation 5.88 −0.17 1.272 0.003 0.33 −0.044
BCC-CSM 1.1 2 27.41 0.44 0.98 0.99 0.855 0.002 0.332 −0.029 0.015 0.542 5.99

BCC-CSM1-1-M 3.65 −0.19 0.3 0.98 0.98 0.994 0.003 0.33 −0.046 0.013 0.595 7.2
CanESM2 1.83 3.25 0.42 0.98 0.95 1.441 0.003 0.331 −0.033 0.015 0.566 5.44
CCSM4 4.25 0.79 0.28 0.98 0.97 0.985 0.003 0.329 −0.050 0.009 0.678 7.99

CESM1-CAM5 5.24 0.54 0.25 0.99 0.98 0.805 0.002 0.33 −0.048 0.008 0.698 8.25
CNRM-CM5 1.23 3.51 0.47 0.98 0.98 −0.152 0 0.332 −0.023 0.01 0.655 4.54

CSIRO-MK3-6-0 2.18 3.74 0.38 0.99 0.92 0.614 0.002 0.329 −0.051 0.017 0.526 4.83
FGOALS-g2 −0.17 28.3 0.57 0.97 0.95 0.964 0.003 0.331 −0.037 0.013 0.579 5.73

FIO-ESM 4.16 3.71 0.37 0.98 0.98 0.907 0.002 0.332 −0.023 0.011 0.618 6.38
GFDL-CM3 2.93 1.38 0.34 0.98 0.96 0.892 0.002 0.331 −0.038 0.013 0.583 6.09

GFDL-ESM2G 3.98 4.38 0.31 0.98 0.91 0.919 0.002 0.331 −0.037 0.014 0.572 5.71
GISS-E2-H 4.7 −3.96 0.41 0.97 0.94 0.171 0 0.331 −0.023 0.014 0.606 4.56
GISS-E2-R 3.27 −0.40 0.64 0.85 0.97 1.271 0.003 0.328 −0.056 0.015 0.578 4.84

HadGEM2-ES 3.27 −0.40 0.64 0.85 0.97 1.271 0.003 0.328 −0.056 0.015 0.578 4.84
IPSL-CM5A-LR 1.22 −0.36 0.48 0.98 0.95 1.022 0.003 0.331 −0.035 0.01 0.669 6.3
IPSL-CM5A-MR 1.05 4.81 0.52 0.98 0.99 1.448 0.003 0.33 −0.037 0.009 0.704 7.22

MIROC5 6.44 0.34 0.24 0.99 0.96 0.932 0.002 0.33 −0.045 0.015 0.555 6.87
MIROC-ESM 3.69 3.5 0.36 0.97 0.99 0.51 0.001 0.331 0.039 0.017 0.536 4.71

MIROC-ESM-CHEM 3.61 3.9 0.37 0.97 0.99 1.025 0.003 0.331 0.036 0.015 0.57 5.74
MPI-ESM-LR 6 2.28 0.25 0.98 0.95 0.967 0.002 0.33 −0.050 0.013 0.614 7.3
MPI-ESM-MR 5.78 3.57 0.25 0.99 0.94 1.291 0.003 0.33 −0.047 0.012 0.642 7.92
MRI-CGCM3 3 2.12 0.35 0.98 0.97 0.508 0.001 0.332 −0.031 0.014 0.605 5.56
NorESM1-M 3.26 −1.04 0.37 0.99 0.97 0.866 0.002 0.332 −0.032 0.012 0.607 6.22
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Table A11. Evaluation results of statistical characteristic values of maximum air temperature over HRB.

Model Mean CV NRMSE rtom rspa
M-K

EOF1 EOF2
PDF

RS
Zc β SB SS

Observation 14.07 0.85 0.937 0.002 0.327 0.062
BCC-CSM 1.1 7.4 1.58 0.62 0.98 0.99 0.736 0.002 0.332 −0.033 0.014 0.541 5.59

BCC-CSM1-1-M 9.72 1.41 0.47 0.98 0.97 0.887 0.003 0.33 −0.050 0.012 0.618 6.7
CanESM2 10.24 1.41 0.45 0.98 0.97 1.196 0.003 0.33 0.041 0.014 0.58 6.82
CCSM4 10.02 3.52 0.47 0.98 0.95 0.853 0.002 0.328 −0.057 0.011 0.635 7.45

CESM1-CAM5 11.02 1.88 0.39 0.98 0.96 0.713 0.002 0.329 −0.055 0.011 0.648 7.38
CNRM-CM5 13.64 1.41 0.35 0.98 0.9 −0.209 0 0.331 −0.043 0.014 0.605 5.49

CSIRO-MK3-6-0 8.14 3.15 0.61 0.98 0.95 0.477 0.001 0.329 −0.052 0.016 0.558 5.7
FGOALS-g2 5.15 2.51 0.83 0.97 0.93 0.851 0.002 0.331 −0.040 0.013 0.573 4.7

FIO-ESM 8.56 1.22 0.54 0.98 0.99 0.814 0.002 0.332 −0.030 0.013 0.572 6.05
GFDL-CM3 7.46 2.56 0.64 0.98 0.97 0.876 0.002 0.33 −0.044 0.014 0.573 6.04

GFDL-ESM2G 7.96 1.59 0.59 0.98 0.87 0.85 0.002 0.331 −0.038 0.013 0.582 4.9
GISS-E2-H 8.84 1.54 0.59 0.97 0.97 0.128 0 0.331 −0.020 0.015 0.596 5.15
GISS-E2-R 10.29 0.98 0.47 0.97 0.95 0.586 0.001 0.33 −0.040 0.011 0.647 6.43

HadGEM2-ES 9.42 1.46 0.72 0.85 0.98 1.008 0.003 0.328 −0.059 0.013 0.602 5.04
IPSL-CM5A-LR 13.32 0.89 0.32 0.97 0.96 1.172 0.003 0.331 −0.042 0.009 0.673 7.43
IPSL-CM5A-MR 13.21 −0.67 0.42 0.97 0.97 1.477 0.004 0.328 −0.053 0.01 0.676 6.68

MIROC5 12.05 1.2 0.33 0.98 0.97 0.818 0.002 0.33 −0.045 0.014 0.571 6.98
MIROC-ESM 9.15 1.61 0.55 0.97 0.99 0.415 0.001 0.33 0.041 0.016 0.562 6.28

MIROC-ESM-CHEM 9.07 1.63 0.56 0.97 0.99 0.902 0.002 0.33 0.041 0.018 0.524 6.32
MPI-ESM-LR 12.29 0.95 0.3 0.98 0.97 0.941 0.002 0.329 −0.054 0.012 0.637 7.62
MPI-ESM-MR 12.05 0.98 0.31 0.98 0.97 1.183 0.003 0.329 −0.052 0.013 0.613 7.06
MRI-CGCM3 9.41 0.27 0.54 0.98 0.98 0.407 0.001 0.33 −0.043 0.013 0.615 5.74
NorESM1-M 8.56 1.56 0.56 0.99 0.96 0.875 0.002 0.331 −0.035 0.013 0.592 6.07
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Table A12. Evaluation results of statistical characteristic values of minimum air temperature over HRB.

Model Mean CV NRMSE rtom rspa
M-K

EOF1 EOF2
PDF

RS
Zc β SB SS

Observation −1.42 6.71 1.754 0.004 0.331 −0.033
BCC-CSM 1.1 −3.67 −3.06 0.41 0.98 0.98 0.897 0.002 0.333 −0.020 0.012 0.584 6.76

BCC-CSM1-1-M −2.53 1.68 0.29 0.98 0.97 1.086 0.003 0.331 −0.038 0.009 0.66 8.56
CanESM2 −5.60 −2.47 0.46 0.98 0.89 1.557 0.004 0.333 −0.020 0.012 0.61 6.19
CCSM4 −1.44 25.09 0.26 0.98 0.96 1.159 0.003 0.329 −0.040 0.01 0.673 8.6

CESM1-CAM5 −0.68 −0.24 0.27 0.98 0.97 0.815 0.002 0.331 −0.038 0.013 0.623 7.85
CNRM-CM5 −7.85 −2.10 0.63 0.98 0.96 0.038 0 0.333 −0.006 0.01 0.665 5.04

CSIRO-MK3-6-0 −3.98 −5.33 0.34 0.99 0.9 0.765 0.002 0.33 −0.045 0.016 0.545 5.52
FGOALS-g2 −6.02 −1.97 0.53 0.97 0.87 1.047 0.003 0.331 −0.035 0.012 0.643 6.2

FIO-ESM −0.78 11.99 0.36 0.98 0.98 0.963 0.002 0.333 −0.017 0.01 0.647 7.66
GFDL-CM3 −2.66 23.6 0.3 0.98 0.92 0.792 0.002 0.332 −0.030 0.01 0.65 7.8

GFDL-ESM2G −0.86 1.12 0.29 0.98 0.92 0.982 0.002 0.332 −0.034 0.012 0.604 7.36
GISS-E2-H 0.51 1.46 0.46 0.96 0.91 0.14 0 0.332 −0.023 0.011 0.658 6.02
GISS-E2-R 1.23 0.2 0.5 0.97 0.92 0.921 0.002 0.331 −0.027 0.009 0.69 7.14

HadGEM2-ES −3.28 −5.85 0.65 0.85 0.94 1.544 0.004 0.33 −0.049 0.014 0.556 4.89
IPSL-CM5A-LR −10.79 −1.17 0.91 0.95 0.91 0.655 0.002 0.332 −0.025 0.009 0.67 4.89
IPSL-CM5A-MR −11.28 −1.29 0.96 0.95 0.98 1.07 0.003 0.332 −0.021 0.01 0.642 5.46

MIROC5 0.65 10.69 0.31 0.98 0.95 0.908 0.002 0.33 −0.040 0.013 0.581 7.34
MIROC-ESM −1.55 −2.17 0.34 0.97 0.99 0.626 0.002 0.332 −0.027 0.015 0.551 6.99

MIROC-ESM-CHEM −1.66 −52.70 0.35 0.97 0.99 1.088 0.003 0.332 −0.026 0.013 0.598 6.93
MPI-ESM-LR 0.42 −1.04 0.32 0.98 0.91 1.124 0.002 0.33 −0.045 0.012 0.635 7.03
MPI-ESM-MR 0.25 −0.13 0.31 0.98 0.91 1.433 0.003 0.331 −0.041 0.01 0.686 7.97
MRI-CGCM3 −2.80 0.09 0.29 0.98 0.96 0.652 0.002 0.332 −0.021 0.011 0.666 7.33
NorESM1-M −2.32 21.3 0.34 0.99 0.95 0.891 0.002 0.332 −0.032 0.013 0.593 7.79
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