Supplementary Material

Under-sink activated carbon water filters effectively remove lead from private well water for over six months

Riley Mulhern^a and Jacqueline MacDonald Gibson^b

^a Department of Environmental Science and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC

^b Department of Environmental and Occupational Health, Indiana University Bloomington, Bloomington, IN

Contents

Figure S1. Map of study participant recruitment areas across three geographic clusters (A, B, and C) in Orange County and Robeson County, North Carolina
Figure S2. Histogram of the daily mean and maximum flow rates among all participating households over the course of the study. Vertical dashed lines show the average mean and average max daily flow rates, respectively.
Figure S3. Influent and effluent nickel concentrations over time showing median effluent concentrations approaching and surpassing median influent concentrations after approximately four months of use7
Figure S4. Distribution of Cd, Cu, Pb, and Zn concentrations during first-draw sequential profile sampling in five homes before the filter was installed highlighting elevated concentrations in the first 250 mL of the profile due to interaction with the faucet fixture. 9
Figure S5. Histogram of cumulative water usage after six months of use (excluding three households where the filter clogged before the six-month mark was reached)
Figure S6. Distribution of pH levels in the filter influent and effluent samples at each sampling month11
Table S1. Household-specific information of study participants within each geographic cluster
Table S2. Influent groundwater quality of each participating household compared to the required water quality conditions for POU lead removal certification according to NSF/ANSI 53. pH, electrical conductivity, temperature, DOC, and alkalinity measurements are averaged from monthly influent samples from each household. [Ca2+], [Mg2+], [Cl-], and [SO42-] show single baseline measurement values.
Table S3. Range of removal performance observed for various metals for all households over the entire study period. 6
Table S4. Pb results in baseline samples collected from each house (250 mL first draw without filter)compared to the average filter influent at each household during the study \pm one standard deviation. Allresults in $\mu g/L$

Figure S1.Map of study participant recruitment areas across three geographic clusters (A, B, and C) in Orange County and Robeson County, North Carolina

Table S1. Household-specific information of study participants within each geographic cluster.

House ID	House type	Year of home construction	Year of well construction	Well depth (ft)	Baseline Pb – 250 mL first draw from faucet (ug/L)	Preexisting treatment
Cluster A						
5	Single family home	1985	Unknown	Unknown	2.72	Water softener
8	Single family home	1985	Unknown	Unknown	1.57	Water softener
9	Single family home	1987	1987	145	0.13	None
10	Single family home	1990s	Unknown	Unknown	0.41	None
Cluster B						
19	Single family home	1972	Unknown	25-30	34.33	None
21	Single family home	1955	1955	26	0.40	None
Cluster C						
1	Manufactured home/trailer	10	Pre-2000	35	9.93	None
2	Single family home	2000	2000	Unknown	26.26	None
3	Manufactured home/trailer	1993	1996	35 ft	7.99	None
4	Manufactured home/trailer	1990s	2000	35	14.00	None
7*	Manufactured home/trailer	1976	Pre-1995	Unknown	0.69	None
11	Manufactured home/trailer	2002	Unknown	Unknown	2.83	None
13	Manufactured home/trailer	2018	2000	25-30	5.47	None
14	Single family home	1998	2014	75	8.46	None
15	Single family home	1997	Unknown	Unknown	20.27	None
16*	Manufactured home/trailer	1970s	Pre-1995	Unknown	-	None
17	Single family home	1983	1986	Unknown	9.36	None

*Two homes connected to the same well

Table S2. Influent groundwater quality of each participating household compared to the required water quality conditions for POU lead removal certification according to NSF/ANSI 53. pH, electrical conductivity, temperature, DOC, and alkalinity measurements are averaged from monthly influent samples from each household. [Ca2+], [Mg2+], [Cl-], and [SO42-] show single baseline measurement values.

		Electrical conductivity	Temp.	DOC	Ca2+	Mg2+	Hardness (mg/L	CI	SO4 ²⁻		HCO3 ⁻	CO3 ²⁻	Carbonate Alkalinity (mg/L	Langelier Saturation
House ID	pH	(µS/cm)	(°C)	(mg/L)	(mg/L)	(mg/L)	CaCO3)	(mg/L)	(mg/L)	CSMR	(mg/L)	(mg/L)	CaCO3)	Index
	0.5 ± 0.25	<180	20 ± 2.5	>1.0	-	-	10-30	-	-	-	-	-	10-30	
53	8.5		20				100						100	
Cluster A														
5	6.73	212	17.2	0.75	29.9	1.35	80.2	5.45	7.64	0.71	75.48	0.0	61.9	-1.6
8	7.78	457	17.1	1.46	15.3	5.30	60.0	17.9	2.66	6.73	196.38	0.6	162.1	-0.5
9	7.09	452	17.7	1.64	70.5	3.88	192.1	14.8	9.20	1.61	197.44	0.1	162.2	-0.5
10	6.75	281	17.0	0.78	35.9	4.90	109.8	14.2	8.59	1.66	82.43	0.0	67.6	-1.5
Mean	7.09	350.24	17.23	1.16	37.89	3.86	110.54	13.10	7.02	2.68	137.93	0.20	113.47	-1.05
SD	0.43	107.01	0.25	0.40	20.25	1.54	50.32	4.63	2.58	2.37	59.03	0.25	48.71	0.54
Cluster B														
19	4.29	359	18.0	0.44	10.4	3.20	39.1	36.7	1.08	34.04	0.12	0.0	0.1	-7.3
21	6.56	76	18.5	1.88	5.54	1.85	21.4	4.49	3.00	1.50	17.70	0.0	14.5	-3.1
Mean	5.43	217.30	18.25	1.16	7.96	2.52	30.25	20.59	2.04	17.77	8.91	0.00	7.31	-5.23
SD	1.13	141.55	0.23	0.72	2.42	0.68	8.84	16.10	0.96	16.27	8.79	0.00	7.21	2.12
Cluster C														
1	4.90	76	17.6	0.34	2.73	0.627	9.4	3.42	1.53	2.23	0.44	0.0	0.4	-6.7
2	4.48	169	19.1	0.79	8.40	2.15	29.8	12.4	9.23	1.34	0.18	0.0	0.1	-7.0
3	4.23	115	18.4	0.28	5.62	3.81	29.7	8.60	1.05	8.19	0.04	0.0	0.0	-8.1
4	4.41	124	21.5	0.22	4.10	3.11	23.0	6.60	1.17	5.62	0.05	0.0	0.0	-7.9
7	4.26	134	18.4	3.40	2.48	1.21	11.1	11.8	28.5	0.41	0.13	0.0	0.1	-7.9
11	4.30	118	18.5	0.37	5.95	2.38	24.6	13.7	1.05	13.09	0.09	0.0	0.1	-7.7
13	4.70	54	18.6	0.36	3.66	1.46	15.1	6.87	1.24	5.52	0.16	0.0	0.1	-7.2
14	4.25	89	18.3	0.27	3.45	1.90	16.4	9.50	1.62	5.85	0.07	0.0	0.1	-8.0
15	4.55	54	20.0	0.32	2.92	1.68	14.2	6.98	1.21	5.77	0.43	0.0	0.4	-7.0
16	4.71	130	17.7	0.29	2.48	1.21	11.1	11.8	28.5	0.41	0.19	0.0	0.2	-7.3
17	3.93	131	17.6	0.32	2.61	1.47	12.6	9.48	12.7	0.75	0.03	0.0	0.0	-8.9
Mean	4.43	108.66	18.68	0.63	4.04	1.91	17.92	9.20	7.99	4.47	0.16	0.00	0.13	-7.62
SD	0.26	34.51	1.12	0.89	1.80	0.87	7.19	2.94	10.37	3.76	0.14	0.00	0.11	0.61

Figure S2. Histogram of the daily mean and maximum flow rates among all participating households over the course of the study. Vertical dashed lines show the average mean and average max daily flow rates, respectively.

Table S3. Range of removal performance observed for various metals for all households over the entire study period.

	Mean	Med	Min.	Max.
AI	4%	91%	-2213%	100%
As	50%	61%	-57%	97%
Cd	66%	85%	-171%	99%
Cu	90%	100%	-13%	100%
Fe	-43%	93%	-3873%	100%
Mn	-92%	-6%	-2326%	100%
Ni	14%	10%	-233%	96%
Pb	98%	100%	65%	100%
Sn	20%	0%	0%	99%
U	75%	93%	0%	99%
Zn	34%	93%	-1448%	100%

Figure S3. Influent and effluent nickel concentrations over time showing median effluent concentrations approaching and surpassing median influent concentrations after approximately four months of use.

Table S4. Pb results in baseline samples collected from each house (250 mL first draw without filter) compared to the average filter influent at each household during the study \pm one standard deviation. All results in μ g/L.

House ID	Baseline sample (250 mL first draw from faucet)	Average filter influent (1 L first draw from beneath the sink)
Cluster A		
5	2.72	2.24 ± 1.4
8	1.57	0.29 ± 0.1
9	0.13	0.13 ± 0.1
10	0.41	1.12 ± 0.8
Cluster B		
19	34.33	5.09 ± 3.6
21	0.40	0.42 ± 0.5
Cluster C		
1	9.93	8.36 ± 0.8
2	26.26	6.93 ± 2.6
3	7.99	4.13 ± 0.8
4	14.00	4.71 ± 0.7
7	0.69	3.45 ± 1.8
11	2.83	2.56 ± 0.9
13	5.47	1.28 ± 0.3
14	8.46	4.31 ± 1.4
15	20.27	4.42 ± 2.8
16	-	5.09 ± 3.6
17	9.36	4.90 ± 6.9

Figure S4. Distribution of Cd, Cu, Pb, and Zn concentrations during first-draw sequential profile sampling in five homes before the filter was installed highlighting elevated concentrations in the first 250 mL of the profile due to interaction with the faucet fixture.

Figure S5. Histogram of cumulative water usage after six months of use (excluding three households where the filter clogged before the six-month mark was reached).

Figure S6. Distribution of pH levels in the filter influent and effluent samples at each sampling month.