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Abstract: Over the years, several studies have been carried out to investigate how the statistics of
annual discharge maxima vary with the size of basins, with diverse findings regarding the observed
type of scaling (i.e., simple scaling vs. multiscaling), especially in cases where the data originated
from regions with significantly different hydroclimatic characteristics. In this context, an important
question arises on how one can effectively conclude on an approximate type of statistical scaling of
annual discharge maxima with respect to the basin size. The present study aims at addressing this
question, using daily discharges from 805 catchments located in different parts of the United Kingdom,
with at least 30 years of recordings. To do so, we isolate the effects of the catchment area and the
local rainfall climatology, and examine how the statistics of the standardized discharge maxima vary
with the basin scale. The obtained results show that: (a) the local rainfall climatology is an important
contributor to the observed statistics of peak annual discharges, and (b) when the effects of the local
rainfall climatology are properly isolated, the scaling of the standardized annual discharge maxima
with the area of the catchment closely follows that commonly met in actual rainfields, deviating
significantly from the simple scaling rule. The aforementioned findings explain to a large extent the
diverse results obtained by previous studies in the absence of rainfall information, shedding light on
the approximate type of scaling of annual discharge maxima with the basin size.

Keywords: peak annual discharges; index flood method; statistical scaling; stochastic hydrology;
multifractal theory

Highlights:

• The statistical scaling of annual discharge maxima with the drainage area A of catchments is
revisited in the light of rainfall climatology.

• Neglecting the dependence of annual discharge maxima on rainfall characteristics may lead to
diverse findings regarding the observed type of scaling.

• The multiplicative fluctuations of discharge maxima relative to their corresponding means closely
follow the scaling properties of actual rainfields.

• For spatial scales below approximately 100 km2, where rainfall deviates from multiflactal scale
invariance, a break of scaling is also observed for the multiplicative fluctuations.

1. Introduction

Since the early works of Dalrymple [1] and Benson [2], regional frequency analysis (RFA) has
been an important tool to model the spatial variation of hydrologic fluxes, and improve estimation of
hydrologic quantities at ungauged locations see e.g., [3–12].
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In general terms, RFA includes the transfer of statistical information of hydrologic quantities
between catchments in a homogeneous region (see e.g., the detailed review in Hosking and Wallis [13]),
and exhibits a long history with starting point the index flood method initially developed by
Dalrymple [1] in 1960, who made a first attempt to standardize the maximum annual discharges
measured within a statistically homogeneous geographical region by the corresponding local means,
and describe them using a single probability distribution model see e.g., [4,6,7,10,11,14,15]. Soon
afterwards, USGS suggested a quantile regression technique where flood quantiles are regressed
against catchment characteristics to develop regional flood prediction equations see [2,16], thus creating
a shift towards the direction of modeling regional variability of river discharges based on rainfall
climatology and catchment physical variables see e.g., [6,17–27].

More than half a century later, river flow prediction in ungauged basins (PUB) still remains
an open challenge in hydrology, as it becomes apparent also from the PUB initiative set by the
International Association of Hydrological Sciences (IAHS) for the decade 2003–2012 (see https:
//iahs.info/pub/index.php), with primary aim to reduce uncertainty in hydrological predictions.

In the context of PUB initiative, an attractive approach to model the statistical characteristics
of maximum annual discharges at ungauged locations of a river network, is to use scale
invariance arguments to link them to the statistical properties of maximum annual discharges
measured at gauged locations within the same statistically homogeneous geographical region see
e.g., [3,4,8–10,14,17,19–21,28–32]. More precisely, define Q(i)

max(Ai) to be the annual maximum discharge

at gauged location i of a river network that drains area Ai, and Q( j)
max

(
A j

)
to be the annual maximum

discharge at an ungauged location j upstream of i that drains area A j < Ai. In the most general case of
statistical scale invariance, referred to as stochastic self-similarity, multiscaling, or multifractality see

e.g., [3,4,7–11,14,17,19,20,28,30,32,33] one can obtain the statistical properties of Q( j)
max

(
A j

)
as a function

of the statistical properties of Q(i)
max(Ai) through (see e.g., the review in Veneziano and Langousis [32]

and references therein):

Q( j)
max

(
A j

) d
= G

(
Ai/A j

)
Q(i)

max(Ai) (1)

where G is a random function that depends on the ratio r = Ai/A j and is stochastically independent

from Q(i)
max(Ai), and

d
=

denotes equality in all finite dimensional distributions. Note that Equation (1)

includes self-similarity (also referred to as simple scaling) as a sub-case when G is deterministic.
It follows from Equation (1) that the moments E

[{
Qmax(A)

}q
]

of different orders q depend on the
catchment size A in a log-linear way see e.g., [3,4,32]:

E
[{

Qmax(A)
}q
]
∝ Aq−K(q) (2)

where K(q) is a non-linear (linear) function of q in the multiscaling (simple-scaling) case. Note that
Equation (2) is a necessary but not sufficient condition for stochastic self-similarity to hold, as it describes
the marginal statistics of Qmax as a function of scale A. More precisely, Equation (2) implies that:

Q( j)
max

(
A j

) md
= G

(
Ai/A j

)
Q(i)

max(Ai) (3)

where md
= denotes equality in the marginal distributions of Qmax (i.e., obtained across independent

basins of various areas A), whereas Equation (1) refers to all finite dimensional distributions of the
maxima field (i.e., obtained across all sub-catchments of various areas A of a basin). Gupta and
Waymire [3] (see also Lovejoy and Schertzer [34]) introduced the term “wide sense multiscaling” for
the scaling of the marginals imposed by Equations (2) and (3), and “strict sense multiscaling” for the
scaling imposed by Equation (1). In what follows, and since the present study deals with scaling of
annual discharge maxima as a function of the drainage area A across geographically distinct basins, we
skip the qualification term “wide sense” and refer to the scaling imposed solely by Equations (2) and
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(3) as multiscaling (simple scaling), in case the K(q) function in Equation (2) is a non-linear (linear)
function of q.

Based on Equation (2), a convenient way to distinguish between multiscaling and simple scaling
(or self-similarity) of annual discharge maxima, is by studying the form of the moment scaling function
K(q), defined as:

K(q) = − logA E
[{

Q′max(A)
}q
]

(4)

Where Q′max(A) = Qmax(A)/A . An alternative way that has been suggested in order to distinguish
between these two different types of scaling, is to study the dependence of the coefficient of variation
(CV) of Q′max(A) as a function of the drainage area A see e.g., [4,6,7,10,11,14,17,19,33]. In the simple
scaling case, CV is independent of A, whereas in the case of multiscaling, CV becomes a function of
scale see e.g., [4,10,32].

The idea that the catchment area A can serve as the most critical factor in explaining flood variability
has a long history, as briefly outlined below. The starting point was in the late 20th century, where
new methods were developed to estimate design floods see e.g., [4,6,10,15,28,32,35,36]. For example,
NERC [37] argued that E[Q] ∝ Aθ with θ = 0.73 can explain approximately 69% of the sample
variability of mean annual floods in Great Britain and Ireland. Cadavid [38] analyzed instantaneous
streamflow records from different regions of the United States, pointing towards multiscaling behavior.
Smith [14] studied flood records from the Appalachia, showing that Qmax varies approximately
log-linearly with A, with CV values displaying an ascending trend with A for basins smaller than a
critical area Ac 50 km2, and a descending trend for basins with larger areas.

In a subsequent study, Gupta et al. [4] studied the scaling properties of Qmax using daily discharges
from 270 drainage basins in central Appalachia, including the 104 catchments studied by Smith [14].
The study concluded that there is a break of scaling for catchment sizes larger than a critical area
Ac 50 km2, characterized by significant uncertainties due to the dispersion of the considered sample.
Robinson and Sivapalan [7] used the CV concept outlined above, to analyze the same dataset as Gupta
et al. [4]. They concluded that the CV values exhibited significant variability with a slight descending
trend for catchments larger than a critical area Ac 100 km2, and an ascending trend for catchments
with A < Ac.

A moment scaling analysis was also performed by Pandey [8] using streamflow records from
180 stations in Canada. The main conclusion of the study, obtained by studying how the moments
E
[{

Qmax(A)
}q
]

of different orders q vary with the catchment area A, was that Qmax displays simple-scaling
behavior with A. Similar findings on the self-similarity of annual discharge maxima using moment
scaling analysis have been reported by Bhatti [39], who studied annual discharge maxima from
2150 unregulated basins from the USGS database, Vogel and Sankarasubramanian [40] who used
streamflow records from 1433 river basins across the United States, and Ishak et al. [11] who used
streamflow data from 91 catchments from New South Wales (NSW) in Australia. Additionally, Dodov
and Foufoula-Georgiou [10] provided further evidence on the self-similar behavior of peak annual
discharges, by using 99 daily flow series from the US and showing that E

[{
Qmax(A)

}q
]
∝ Aθq exhibits

two distinct simple-scaling regimes: θ ≈ 0.7 for A < 700 km2 and θ ≈ 0.3 for A > 700 km2.
It follows from the discussion above that while some type of scaling of Qmax(A) with A exists, one

cannot easily conclude on its precise type. This is primarily due the type of the conducted analysis,
and the large dispersion of the analyzed samples. Regarding the first issue, all aforementioned
analyses were performed by studying the log-linearity of the moments of Qmax(A) against A. Since
Qmax(A) increases almost proportionally with the drainage area A, the strong log-linear dependence of
E
[{

Qmax(A)
}q
]

on A makes statistical interpretation of any type of non-linear behavior almost impossible
from data. Regarding the second issue, note that for rainfall-triggered flood events, river discharges
increase almost proportionally with both the drainage area A and the rainfall depth Ī. Hence, unless
all catchments fall within the same hydrologically homogeneous geographical region (i.e., in terms
of rainfall accumulations; see e.g., Gupta et al. [31]), regressing Qmax solely against A cannot resolve
the variability induced by the different hydroclimatologies and, more importantly, it may produce
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biased results in favor of a simple scaling rule (see discussion below). This explains to an extent the
significant dispersion of the samples analyzed by the aforementioned studies, as well as some of the
findings in favor of a simple scaling rule.

More precisely, according to the main assumption of the index flood method see e.g., [1,7],
the discharge maxima at different locations within the same statistically homogeneous geographical
region exhibit the same probability distribution when standardized by their mean, or some other
index discharge. For example, considering that the mean discharge E

[
Q( j)

]
at some location j increases

almost proportionally with the annual rainfall depth, thus, being indicative of the local climatology,
the index flood method can be written in the form:

Q( j)
max

E
[
Q( j)

] md
=

Q(i)
max

E
[
Q(i)

] (5)

where Q( j)
max denotes the maximum annual discharge at location j. Assuming proportionality of

discharges with rainfall intensity and some power θ (0, 1) of the drainage area (i.e., generalized
rational method; see [15,26,41–44]), if the mean annual rainfall intensity is assumed constant over the

region of interest, then the assumption E
[
Q( j)

]
/E

[
Q(i)

]
=

(
A j/Ai

)θ
holds in good approximation, and

the index flood approach in Equation (5) reduces to a simple scaling rule of annual discharge maxima
with the drainage area A:

Q( j)
max

md
=

(A j

Ai

)θ
Q(i)

max (6)

Evidently, in the most general case when locations i, j exhibit different hydroclimatic characteristics,
as is the case when investigating data originating from different regions, Equation (5) may lead to more
complex types of scaling than the simple scaling rule in Equation (6).

It follows from the discussion above that, from a theoretical point of view, any type of moment
scaling analysis of Qmax with A cannot be conclusive regarding the actual type of scaling of Qmax. This
is because when regressing the moments of Qmax against A, one a priori assumes a constant mean
rainfall intensity field over the region of interest (see discussion on the derivation of Equation (6)) and,
consequently, a simple scaling rule for the annual discharge maxima.

In this context, an important question arises on how one can effectively conclude on an approximate
type of scaling of annual discharge maxima. Here we aim at answering this question, by investigating
the effect of rainfall climatology on the spatial scaling of maximum annual floods using daily discharge
data from 805 stations located in different parts of the United Kingdom. To the best of our knowledge,
no such investigation has been conducted so far. This is done by: (1) studying how the mean value of
the standardized discharge maxima Q′max = Qmax/A depends on the catchment area A and the average
precipitation in 30-year climatic periods, hereafter referred to as SAAR (Standard-period Average
Annual Rainfall), and (2) studying how the distribution of the ratio Qmax/E[Q] , also referred to as
index flood ratio (see e.g., Hosking and Wallis [13]) or amplification factor (see e.g., Langousis and
Veneziano [45]), scales with the area A, along the lines of the index flood concept in Equation (5).

Section 2 provides necessary information regarding the data used. In Section 3, we start by
illustrating the strong linkage between the rainfall characteristics of catchments and the statistics
of annual discharge maxima, and then focus on the application of two alternative standardization
approaches to study the scaling properties of annual discharge maxima with the size of basins A, while
discussing the origins of the observed differences: (a) standardization by the catchment area A, through
the ratio Q′max = Qmax/A (i.e., used in most studies focusing on the scaling of peak discharges; see
above), and (b) standardization by the corresponding discharge mean, through the amplification factor
γmax = Qmax/E[Q] (i.e., following the original version of the index flood method in Equation (5)). A
comprehensive summary of the main findings of the study, as well as future research directions are
presented in Section 4.
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2. Data

The hydrologic information used in this study originates from NRFA (National River Flow Archive;
see https://nrfa.ceh.ac.uk/), an extensive open access database of flow information and catchment
descriptors in the United Kingdom, hosted by the Centre for Ecology and Hydrology (CEH), holding
over 60,000 station-years of data. Information used in this paper includes: (a) daily discharges from
805 catchments with at least 30 years of recordings, located in different parts of the United Kingdom,
(b) catchment size information, and (c) average annual rainfall in mm for two standard 30-year periods;
i.e., 1941–1970 and 1961–1990 referred to as SAAR1 and SAAR2, respectively. Catchment sizes vary
from 0.9 to 9948 km2 with a mean value of 359 km2. For the total of 805 stations, the average SAAR
value (i.e., SAAR = (SAAR1 + SAAR2)/2), corresponding to the mean annual precipitation in mm
for the 60-year period 1941–1990, varies from 558.5 to 2910.5 mm with a mean value of 1059.5 mm.
Figure 1 shows the spatial distribution of the average SAAR for the 805 considered catchments across
the United Kingdom. SAAR values tend to decrease when moving from the West to the East coast,
with lowest values located in the southeastern region of the United Kingdom. The observed rainfall
gradient is directly linked to Gulf Stream and the local topography, as moist air masses from the sea
move upslope and cool causing precipitation to form see e.g., [44,46].
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Figure 1. Spatial distribution of the average SAAR values for the 805 considered catchments across the
United Kingdom.

3. Analysis and Results

Figure 2 illustrates how the mean value of the standardized annual discharge maxima E[Q′max] =

E[Qmax/A] varies spatially, following the same pattern as SAAR (see Figure 1), indicating its strong
linkage to the local rainfall climatology. The aforementioned linkage can also be observed in Figure 3,
where the means of the standardized discharges E[Q′] = E[Q/A] (Figure 3a), and the means of the
standardized annual discharge maxima E [Q′max] = E [Qmax/A] (Figure 3b) of all considered basins are
plotted against their corresponding SAAR values. Standardization of Q and Qmax by the catchment
area A is important for the effects of local rainfall climatology to be revealed, as river discharges
increase with both the basin size and accumulated rainfall.

https://nrfa.ceh.ac.uk/
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Figure 2. Spatial distribution of the mean value of the standardized discharge maxima Q′max = Qmax/A .

The strong dependence of the statistics of Qmax/A on the local rainfall climatology explains to a
large extent the diverse findings of previous studies see e.g., [8,10,11,28,39,40] for evidence on simple
scaling, and [4,14,17] for evidence on multiscaling, when the effects of rainfall signature are not taken
into account; see below.

A way to simultaneously isolate the effects of the area of the basin A, and the local rainfall
characteristics when studying the scaling properties of annual discharge maxima, it is to follow the
exact version of the index flood method in Equation (5) (i.e., without additional assumptions on the

functional dependence of E[Q] on A), standardize the annual discharge maxima Q( j)
max at each location j

by the corresponding discharge mean E
[
Q( j)

]
, and study the distribution of the amplification factor

γmax = Qmax/E[Q] .
In what follows, we examine how the distributions of: (a) the standardized discharge maxima

Q′max = Qmax/A (i.e., used in most studies focusing on the scaling of peak discharges; see Introduction),
and (b) the amplification factor γmax = Qmax/E[Q], which removes the variability induced by the
different sizes and rainfall characteristics of the considered catchments (see above), vary with the
drainage area A of the basin. We do so by: (1) classifying the selected 805 catchments, according to
their size, into 10 approximately equally sized groups (i.e., ~80 catchments per group; see Table 1), and
(2) studying how the ensemble averages of the initial moments E

[
(Q′max)

q
]

and E
[
(γmax)

q
]

of different
orders q inside each group vary with the average area Ā of the grouped catchments. Similar plots have
been used in the literature to study the scaling properties of discharges as a function of the basin size
see e.g., [4,8–11,14,19,28,39,40].
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Figure 3. (a) Scatterplot (points) and linear least-squares (LS) fit (solid line) of the mean values E[Q′]
of the standardized discharges Q′ = Q/A for the 805 considered catchments, with respect to their
corresponding SAAR values. (b) Same as (a) but for the means E[Q′max] of the standardized annual
discharge maxima Q′max = Qmax/A.

Table 1. Classification of the selected catchments, according to their size, into 10 approximately equally
sized groups.

Group Catchment Area A (km2)
Number of
Catchments Mean Value (km2) Median Value (km2)

1 A < 31.6 80 18.09 19
2 31.6 ≤ A < 52.3 82 41.62 41.75
3 52.3 ≤ A < 74.4 83 63.24 62.8
4 74.4 ≤ A < 109.2 81 89.99 89.9
5 109.2 ≤ A < 148.1 81 128.87 128.9
6 148.1 ≤ A < 195.4 82 170.72 170.95
7 195.4 ≤ A < 272.1 79 228.73 229
8 272.1 ≤ A < 407.3 81 335.38 334.6
9 407.3 ≤ A < 900 80 602.97 570.35
10 A ≥ 900 76 2240.1 1490



Water 2020, 12, 610 8 of 14

Figure 4 shows log-log plots of the empirical moments E
[
(Q′max)

q
]

(points) of the standardized
discharge maxima inside each group, as a function of the average area Ā of the grouped catchments, for
different moment orders q = 0.5, 1, 1.5, 2, 2.5, 3. The reason why we limit our analysis to moment
orders q ≤ 3, is because for highly variable random fields (as is the case of discharge maxima), higher
moment orders are underestimated with high probability see e.g., [32,47–53].
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Figure 4. Log-log plots of the empirical moments E
[
(Q′max)

q
]

of standardized annual discharge maxima
Q′max = Qmax/A , as a function of the catchment area A, for different moment orders q = 0.5 : 0.5 : 3.
Black solid lines correspond to least-squares (LS) fits.

Similar to the findings of previous studies see e.g., [4,8–11,14,19,28,40], one sees that for all moment
orders q considered, the initial moments of the standardized discharge maxima Q′max vary log-linearly
with the drainage area A (see least-squares (LS) fitted lines), with negative slopes corresponding to
the empirical moment scaling function K(q) in Equation (4). Clearly, the shape of the K(q) function is
non-linear (see circles in Figure 5), indicating significant deviations from the simple scaling rule. Since
river discharges are the hydrological response of a catchment to the rainfall input, runoff maxima can
be seen as the filtered output of a rainfall signal, and therefore any observed type of scaling is expected
to be inherited (at least to some extent) from the statistical properties of the input see e.g., [32,54–56].
Therefore, the observed deviations from simple scaling can be attributed to the multifractal structure
of actual rainfields within finite but practically important ranges of scales: typically from below 1
hour to several days in time and from a few kilometers (say 9 to 10) to more than 100 km in space see
e.g., [32,34,51,57–86]. For smaller spatial scales, a break of the log-linearity of the initial moments of
areal rainfall with the scale of spatial averaging occurs see e.g., [32,50,61,62,73,85,87], with much smaller
log-log slopes, indicating a power deficit of high frequency fluctuations. This break of scaling is not
observable in Figure 4, as it is smeared out by the considerable variability of the rainfall climatologies
of the analyzed basins; see discussion above.
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Figure 5. Empirical moment scaling functions K(q) for the standardized discharge maxima
Q′max = Qmax/A (circles), and the amplification factor γmax = Qmax/E[Q] (stars).

Along these lines, Figure 6 shows log-log plots of the empirical moments E
[
(γmax)

q
]

(points) of the
amplification factors inside each group as a function of the average area Ā of the grouped catchments,
for different moments q = 0.5, 1, 1.5, 2, 2.5, 3. One sees that a break of the log-linearity occurs
for spatial scales below approximately 100 km2, with much smaller slopes, which concurs with the
observed break of scaling in spatial rainfall (see above). In addition, for spatial scales larger than
100 km2, the empirical moment scaling function K(q) in Equation (4) (see stars in Figure 5), estimated
as the negative log-log slopes of the LS fitted lines in Figure 6, remains non-linear and close to that of
the standardized discharge maxima Q′max.
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Figure 6. Log-log plots of the empirical moments E
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of the amplification factor γmax =

Qmax/E[Q], as a function of the catchment area A, for different moment orders q = 0.5 : 0.5 : 3. Black
solid lines correspond to least-squares (LS) fits.
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Similar findings on the scaling properties of flood annual maxima recorded in Southern Italy
have been obtained, also, by Iacobellis et al. [56]. The latter study reported a break of scaling around
100 km2 and, also, showed that although significantly influenced by soil infiltration and abstraction
mechanisms, the dependence of the CV of flood annual maxima on the area A of basins is theoretically
linked to rainfall scaling. In any case, a definite argument on the origins of the observed scaling cannot
be reached in the absence of concurrent rainfall and discharge data at high temporal resolution (i.e., at
least hourly).

Based on the aforementioned findings, one may conclude that by neglecting the dependence
of the statistics of annual discharge maxima on the rainfall climatology, the dispersion/variability of
the analyzed samples increases, with important consequences on the diversity of the corresponding
findings, and the accuracy of the assessments made (see Introduction).

4. Conclusions

The present work aimed at investigating the marginal statistics of annual discharge maxima after
proper standardization, so that the effects of the catchment area and the local rainfall climatology are
effectively isolated. The analysis was conducted using daily discharge data from 805 stations located
in different parts of the United Kingdom, with at least 30 years of recordings, by: (a) standardizing

the annual discharge maxima Q( j)
max at each location j by the corresponding discharge mean E

[
Q( j)

]
,

following the exact version of the index flood method in Equation (5) (without additional assumptions
on the functional dependence of E[Q] on A; see discussion on the derivation of Equation (6)), and (b)
studying the scaling of the initial moments of the amplification factor γmax = Qmax/E[Q] with the area
A of the basin. Note that γmax corresponds to the multiplicative fluctuations of the annual discharge
maxima relative to the discharge mean E[Q], with the latter been strongly linked to both the sizes and
rainfall characteristics of catchments.

The obtained results show that the regional rainfall climatology significantly affects the mean
value of the standardized discharge maxima Qmax/A (see Figures 2 and 3b, and discussion in Section 3)
and, therefore, by neglecting the dependence of the statistics of annual discharge maxima on rainfall,
the dispersion/variability of the analyzed samples increases, with important consequences on the
diversity of the obtained findings, and the accuracy of the assessments made. This explains to a large
extent the diverse results of previous studies regarding the observed type of scaling (i.e., simple scaling
vs. multiscaling) of peak annual discharges with the catchment area (see Introduction).

When the effects of the local rainfall climatology are properly isolated, through proper
standardization of annual discharge maxima by the corresponding discharge means, the resulting
multiplicative fluctuations closely follow the scaling properties of actual rainfields, deviating
significantly from the simple scaling rule. In addition, for spatial scales below 100 km2

where significant deviations of rainfall from multiflactal scale invariance have been observed see
e.g., [32,50,61,62,73,85,87], a break of scaling is also observed for the amplification factor γmax (see
Figure 6). This break is not observable when studying the initial moments of Qmax (or the ratio
Qmax/A ) with A (see Figure 4), as it is smeared out by the considerable variability of the rainfall
characteristics of basins.

While the presented analysis and findings shed light on the important role of local rainfall
climatology on the statistical scaling of annual discharge maxima, one should not neglect the important
influence of catchment properties and runoff routing mechanisms, as well as the space-time rainfall
distribution embodied in different precipitation patterns see e.g., [88], especially at small temporal
resolutions (below daily) where infiltration and abstraction effects become more influential see
e.g., [54–56]. The aforementioned topics and, in particular, how the statistical scaling of annual
discharge maxima with the size of basins depends on the characteristics of dominant rainfall generating
mechanisms, and the scale of temporal averaging (i.e., resolution) of observed discharges, still constitute
an open research challenge that remains to be addressed in the context of a large-scale study, when
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concurrent rainfall and discharge data at high temporal resolution (e.g., at least hourly) become
openly available.
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