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Abstract: In some arid regions, groundwater is the only source of water for human needs,
so understanding groundwater potential is essential to ensure its sustainable use. In this study,
three machine learning models (Genetic Algorithm for Rule-Set Production (GARP), Quick Unbiased
Efficient Statistical Tree (QUEST), and Random Forest (RF)) were applied and verified for spatial
prediction of groundwater in a mountain bedrock aquifer in Piranshahr Watershed, Iran. A spring
location dataset consisting of 141 springs was prepared by field surveys, and from this three different
sample datasets (S1–S3) were randomly generated (70% for training and 30% for validation). A total of
10 groundwater conditioning factors were prepared for modeling, namely slope percent, relative slope
position (RSP), plan curvature, altitude, drainage density, slope aspect, topographic wetness index
(TWI), terrain ruggedness index (TRI), land use, and lithology. The area under the receiver operating
characteristic curve (AUC) and true skill statistic (TSS) were used to evaluate the accuracy of models.
The results indicated that all models had excellent goodness-of-fit and predictive performance, but that
RF (AUCmean = 0.995, TSSmean = 0.89) and GARP (AUCmean = 0.957, TSSmean = 0.82) outperformed
QUEST (AUCmean = 0.949, TSSmean = 0.74). In robustness analysis, RF was slightly more sensitive
than GARP and QUEST, making it necessary to consider several random partitioning options for
preparing training and validation groups. The outcomes of this study can be useful in sustainable
management of groundwater resources in the study region.

Keywords: spatial modeling; machine-learning; algorithms; distribution models

1. Introduction

Groundwater is the most vital natural resource in many arid and semi-arid regions, where it is
often the only source of water for human needs. Groundwater resources are related to some important
social issues such as environment, resources, and population. Population growth leads to increasing
demand for water in the domestic, industrial, and agricultural sectors. In both rural and urban areas
in arid and semi-arid regions, almost 90% of all water used primarily derives from groundwater [1].
As the demand for groundwater increases around the world, groundwater potential mapping is
becoming an essential tool in enabling successful groundwater management schemes, determination,
and safety [2].

The methods used for groundwater potential mapping can be grouped into two main categories:
knowledge-driven techniques based on the conceptual component and data-driven techniques based
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on the empirical component of groundwater evaluations. The knowledge-driven techniques, e.g.,
analytical hierarchy process (AHP), are based on expert experience [3,4] and are thus affected by the
knowledge and subjectivity of experts, while they are also generally site-specific. The data-driven
techniques involve probabilistic, statistical, and data mining approaches, and the quality and quantity
of data are the major characteristics affecting the predictive accuracy. In the literature, various types of
probabilistic and statistical techniques utilizing bivariate and multivariate methods have been employed
for preparing groundwater potential zone maps such as frequency ratio [5,6], the weight-of-evidence
method [7], Dempster-Shafer theory [8,9], logistic regression [10,11], evidential belief function [12,13],
certainty factor [14,15], statistical index [9], and index of entropy [16]. In recent years, machine learning
techniques (MLTs) have been applied for mapping of groundwater potential. Various MLTs, such as
aquifer sustainability factor [17], classification and regression tree [18], random forest [19–21], boosted
regression tree [22], maximum entropy [19], artificial neural network model [23], and generalized
additive model [2], have been found to be helpful for modeling groundwater potential. In previous
studies, MLTs have provided better accuracy in many situations due to their ability to handle, in a robust
manner, data characterized by a non-linear format, representing different scales, and deriving from
different sources [24–26]. Recently, Chen et al. [27] devised methodology for preparing groundwater
potential maps that involves kernel logistic regression, random forest, and alternating decision tree
models. The results of their research indicated that the artificial intelligence technique can be considered
an accurate and valid approach for groundwater potential mapping. Bui et al. [28] proposed a hybrid
computational intelligence technique, “AB-ADTree”, which is a combination of alternating decision
tree classifier and AdaBoost ensemble, for groundwater potential mapping and compared it with other
models, including single ADTree, support vector machine, stochastic gradient descent, logistic model
tree, logistic regression, and random forest (RF). The results revealed that the hybrid AB-ADTree was a
robust and powerful model for groundwater potential mapping in the study area, and significantly
improved the predictive capability of the ADTree-based classifier [28]. Davoudi Moghaddam et al. [29]
evaluated the effect of sample size on the accuracy of various individual and hybrid techniques,
including adaptive neuro-fuzzy inference system, ANFIS-imperial competitive algorithm, alternating
decision tree, and RF, to model groundwater potential for a number of springs ranging from 177 to 714.
The outcomes of their study provide valuable reference and practical guidelines for choosing machine
learning models when a complete spring inventory in a watershed is unavailable.

The aim of the present study was to delineate potential zones for groundwater springs by employing
Genetic Algorithm for Rule-Set Production (GARP), Quick Unbiased Efficient Statistical Tree (QUEST),
and Random Forest (RF), three state-of-the-art machine-learning models. The GARP modeling
technique uses a training and testing process to analyze the relationships between environmental
variables and spatial data. A benefit of the GARP model compared with other models is that it allows
various outputs to be run to reach an optimum result [30]. On the other hand, the QUEST model has
many benefits over other algorithms, as it is a fast, efficient, and impartial statistical tree, it employs an
unbiased or linear variable selection model, and it applies imputation instead of substitute splits to
handle missing values [31]. The RF model, a modern nonparametric method, has proven to be one of
the best learning techniques in recent years. The RF model can be applied for a large dataset and can
make precise classifications [32].

All three models can be used for accurate identification of complex relationships between variables
in a dataset [33]. They were used here to analyze the relationship between groundwater occurrence
and hydrogeological and geological parameters that act as conditioning factors for groundwater
occurrence. The novelty of this research and its contribution to the literature is that it describes, for the
first time, application of the GARP and QUEST models in groundwater research in a mountain bedrock
aquifer (north-western Iran). The results can be useful in future natural resources planning and
management. Specific objectives of the study were to: (i) spatially predict groundwater potential by
applying the GARP, QUEST, and RF models; (ii) assess the importance of selected geo-environmental
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spring-affecting factors in modeling; (iii) compare the predictive performance of these techniques by
means of cutoff-dependent and cutoff-independent indices, and (iv) conduct robustness analysis.

2. Materials and Methods

2.1. Description of the Study Area

The study area was Piranshahr Watershed (36◦39′–36◦56′ N; 44◦49′–45◦11′ E) in Western
Azerbaijan province, Iran, which is characterized by mountainous morphology and occupies an
area of approximately 42,617 ha (Figure 1). The topographical elevation of the watershed varies
between 1433 and 3563 m above mean sea level. Mean annual precipitation is 650 mm and most falls
in the form of snow in winter. According to the Emberger classification, Piranshahr Watershed is
characterized by a cold semi-arid climate. Rangeland is the major land use in the watershed, occupying
68.5% of total area. The lithology of the watershed varies, with 45% falling within the Precambrian units
and Late Cretaceous units, including amphibolite and diabase, respectively (Table 1) [34]. Evaluation
of groundwater is vital within this area, because groundwater supplies drinking water and irrigation
requirements, and many people living in the area depend on irrigated and dryland farming for
their livelihood.
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Figure 1. Map of the study area in north-western Iran, showing the 141 spring locations used in the
present study.

2.2. Methodology

In this study, we used groundwater springs as good indications of groundwater availability for
groundwater potential mapping. This is because in the study area, as in most other mountainous
environments, few hydrogeological and hydrological data (i.e., groundwater levels, well yields, and
stream discharge) are available due to a lack of piezometric wells in these high-elevation settings [35].
The methodology used in this research comprised several steps. First, the datasets were prepared for
modeling. GARP, QUEST, and RF algorithms were then applied for mapping of groundwater potential.
Next, the relative importance of conditioning factors was determined. Then, the area under the ROC
curve (AUC), and true skill statistic (TSS) were applied for validation of algorithms in the novel
application tested in this study. Finally, robustness analysis was applied to compare the capabilities of
the three machine learning models (Figure 2).
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Table 1. Lithology of the study area.

Geological Unit Description Age

pCmt1
Medium-grade, regional

metamorphic rocks
(Amphibolite Facies)

Pre-Cambrian Proterozoic

Pr
Dark grey medium-bedded to

massive limestone
(Ruteh Limestone)

Permian Paleozoic

db Diabase Late Cretaceous Mesozoic

Cm
Dark grey to black fossiliferous

limestone with
subordinate black shale (Mobarak FM)

Carboniferous Paleozoic

pCam Amphibolite Pre-Cambrian Proterozoic

pCmb Marble Pre-Cambrian Proterozoic

Qft2 Low level pediment fan and valley
terrace deposits Quaternary Cenozoic

pd Peridotite including harzburgite, dunite,
lerzolite, and websterite Triassic-Cretaceous Mesozoic

Klsm Marl, shale, sandy limestone,
and sandy dolomite Early Cretaceous Mesozoic

Kfsh Dark grey argillaceous shale Cretaceous Mesozoic
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2.2.1. Springs Dataset

The occurrence locations of springs depict groundwater potential across the study area. Hence, a
total of 141 spring occurrence locations in Piranshahr Watershed were determined by field surveys and
using handheld GPS. For this modeling, the spring inventory locations were randomly divided into
two groups, of 70% (99 spring locations) and 30% (42 spring locations), for training and validation
steps, respectively. To clarify, the validation group was determined through randomization, and was
not applied in model building. It is generally suggested in spatial modeling to apply approximately
equal proportions of spring-present (1) and spring-absent (0) pixels [10]. Keeping this in mind, the 141
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spring-present pixels and 141 randomly generated spring-absent pixels were applied in the modeling.
Note that to investigate the robustness of the models, three training and three validation datasets
(S1–S3) were created by performing random selection of the dependent variable (spring occurrence
locations) in a GIS environment (Figure 3) [36,37]. The training datasets included 99 spring occurrence
locations, while the validation datasets consisted of 42 spring occurrence locations.
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2.2.2. Geo-Environmental Factors

Drawing on a comprehensive literature review, the most representative groundwater conditioning
factors were chosen to model groundwater potential. Regarding data availability, 10 groundwater
effective factors were chosen for this investigation, comprising slope percent, relative slope position
(RSP), plan curvature, altitude, drainage density, slope aspect, topographic wetness index (TWI),
terrain ruggedness index (TRI), land use, and lithology.

To evaluate the multicollinearity of groundwater conditioning factors and to avoid bias, we
applied the variance inflation factor (VIF) and tolerance (TOL) indices, which are customarily used
to estimate multicollinearity of predictive variables in geospatial modeling [38]. According to the
literature [38], VIF > 10 or tolerance < 0.1 indicates critical multicollinearity, which itself recommends
that the factor has such a strong correlation to others that it should be eliminated from modeling [38].

Then, a vector-type spatial database was extracted by converting groundwater conditioning factors
using ArcGIS. A digital elevation model (DEM) with 20 × 20 m grid size was prepared using survey
base points, with elevation contours displaying the elevation values extracted from 1:50,000-scale
topographic maps. The DEM was used as input to extract thematic maps of slope percent, RSP,
plan curvature, altitude, slope aspect, TWI, and TRI (Figure 4a–h).
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Figure 4. Maps showing the 10 groundwater conditioning factors considered in groundwater mapping
in Piranshahr Watershed, Iran. (a) Slope, (b) relative slope position (RSP), (c) plan curvature, (d) altitude,
(e) drainage density, (f) aspect, (g) topographic wetness index (TWI), (h) terrain ruggedness index (TRI),
(i) land use, and (j) lithology.

Slope factor has a very significant role in groundwater potential mapping, and therefore a slope
percent map of the study area was prepared [29] (Figure 4a). RSP can be applied to identify topographic
characteristics such as valleys, ridge tops, flat surfaces, mid-slopes, foot-slopes, and upper slopes,
with the value for RSP ranging from 0 (flat surface and valleys) to 1 (upper-slopes and ridge tops) [39].
In this study, a RSP map was prepared using SAGA-GIS (Figure 4b). Regarding plan curvature, positive
curvature indicates convex forms, zero curvature represents flat surfaces and negative curvature
represents concave forms. A plan curvature map of the study area was prepared using SAGA-GIS
(Figure 4c). Elevation has important effects on climate conditions in any area, because of differences
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in vegetation and soil [40]. Accordingly, an altitude map of the study area was prepared (Figure 4d).
Drainage density is calculated as the ratio of the sum of drainage lengths in a grid cell and the area
of the corresponding cell, and displays the potential water flow throughout the study area [6]. Here,
the drainage density map was calculated considering a 20 × 20 m grid cell (Figure 4e). Slope aspect in
the study area was classified into nine groups, including flat land and eight directions (Figure 4f).

Topography plays an essential role in the spatial variation of hydrological characteristics such
as soil moisture and groundwater flow, and hence secondary topographic indices can be applied
to describe spatial soil moisture patterns [41]. Topographic wetness index (TWI) is a subordinate
topographic factor within the runoff model, defined as [41]:

TWI = ln
(
β

tanα

)
(1)

where ß is the cumulative upslope area draining through a point (per unit contour length) and tan α
is the slope angle at the point. The tendency of water to accumulate at any point in a catchment (in
terms of ß) and the tendency of gravitational forces to move that water downslope (illustrated in terms
of tan α as an approximate hydraulic gradient) are reflected by the ln

( β
tanα

)
index. Water infiltration

mainly depends on material characteristics such as permeability, soil strength, and pore water pressure.
Consequently, TWI was considered as a contributing factor in this study (Figure 4g).

Terrain ruggedness index (TRI) is the mean difference between a central pixel and its surrounding
cells and was used here to quantify landscape heterogeneities (Figure 4h). It is defined as [42]:

TRI = (
∑

(zc − zi)2)2 (2)

where zc is the elevation of a central cell and zi is the elevation of one of the eight neighboring cells
(i = 1, 2, 3, . . . , 8).

Using Landsat images and the maximum likelihood and supervised classification algorithms,
a land use map of the study area with spatial resolution 20 × 20 m was generated. Four main land
use categories were identified: agriculture, dryland farming, residential, and rangeland (Figure 4i).
One of the most significant factors in predicting groundwater potential zones is lithology. Using the
1:100,000-scale geological map, a lithology map of the study area was obtained and classified into 10
categories (Figure 4j, Table 1).

All 10 conditioning factors were converted to a raster grid with 20 × 20 m cells for application of
the GARP, QUEST, and RF models.

2.2.3. Description of Models

Genetic Algorithm for Rule-Set Production (GARP)

The GARP model is inspired by algorithms of genetic evolution and is a technique that was
particularly developed in the context of ecological niche modeling [30]. GARP develops predictive
techniques consisting of a set of conditional rules in the form of ‘if-then’ statements that explain the
ecological ‘niches’ of the species [43]. Niches are recognized by searching iteratively for non-random
correlations between known locations of species and a variety of environmental factors. The GARP
technique consists of a set of mathematical rules based on environmental conditions. Given a particular
environmental condition, if all rules are satisfied, the technique predicts presence of the species.
Different types of rules are possible, including atomic, logistic regression, negated bioclimatic envelope,
and bioclimatic envelope. All sets of rules are an individual of a population in the representative
context of a genetic algorithm [44]. GARP creates an initial population, which is assessed in each
iteration to examine if the problem has converged to a solution. Genetic operators (join, cross-over,
and mutation) are used in the start of each new iteration on the best individuals from previous steps,
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generating a new population of solutions. GARP is therefore a non-deterministic technique that
generates boolean responses (present/absent) for each various environment condition.

The GARP model was applied here, as DesktopGarp [45], to predict groundwater potential in the
study area, as a presence-only modeling tool to analyze the relationship between the groundwater
potential dataset and geo-environmental factors through an iterative process, applying conditional
rules for modeling that enhanced the stability of model output [46]. DesktopGarp is an integrated,
user-friendly software and is able to import GIS layers of groundwater conditioning variables directly,
with presence-only occurrence data [47]. This feature makes application of this model easier, since
absence or non-occurrence data are not always available, especially in data-scarce areas such as Iran
and Middle Eastern countries. However, with GARP, which is claimed to be robust with its default
settings, there is a need to be careful with some model parameters, such as the size of quad-rates for
the background environmental variable layers and the extent of the study area [47]. The only data
needed as input for DesktopGarp in the present application were the spring occurrence locations and
the environmental datasets formed of groups of environmental factors. Performing multiple runs to
achieve various outputs of the GARP model and applying the best-subset method are vital in choosing
the best output with optimum parameters. The set of techniques that obtains harmony between
omission (sensitivity) and commission (specificity) error thresholds is defined by the user [46,48].
The output of GARP in this case was a collection of grids of the study area, which was applied in a GIS
environment to identify areas with groundwater potential [46].

Quick Unbiased Efficient Statistical Tree (QUEST)

The QUEST model is a binary split-decision tree model for data mining and classification that
yields subsets of data that are as homogeneous as possible with respect to the response variable [48,49].
QUEST is an efficient, quick, unbiased, and statistical tree-structured classification algorithm that
produces a growing binary-split decision tree [50]. In addition, it employs a sequential tree growing
technique, which uses a linear discriminate analysis method in splitting of tree nodes. This has
many benefits over recursive tree construction techniques such as classification and regression tree
(CART) [51]. Furthermore, it is unbiased in selecting splitting rules and does not use an exhaustive
variable search routine [52]. By using an unbiased variable selection method in modeling, QUEST has
negligible bias [53]. As a result, it can easily cope with categorical and continuous factors [50,54,55].
In other words, the process of tree growing in QUEST consists of choosing a split predictor, choosing
a split point for the selected predictor, and stopping. In this technique, only univariate splits are
considered. The following steps are involved in a choosing split predictor: First, for each continuous
predictor X, carry out an ANOVA F-test that tests if all the various classes of the dependent variable Y
have the same mean of X, and compute the p value in accord with the F statistics. For each categorical
predictor, carry out Pearson’s X2-test of Y and the independence of X, and compute the p value in
accordance with the X2 statistics. Then, find the predictor with the smallest p value and denote it X∗.
If this smallest p value is less than α/M, where α ∈ (0, 1) is a user-specified level of significance and M
is the total number of predictor variables, predictor X∗ is chosen as the split predictor for the node.
If not, for each continuous predictor X, compute Levene’s F statistic in accordance with the absolute
deviation of X from its class mean to test if the variances of X for various classes of Y are the same,
and compute the p value for the test. Then, find the predictor with the smallest p value and denote it
X∗∗. Finally, if this smallest p value is less than α/(M + M1), where M1 is the number of continuous
predictors, X∗∗ is chosen as the split predictor for the node. Otherwise, this node is not split [56].

Random Forest (RF)

The RF model is an ensemble classifier that consists of many decision trees, applying the random
forest algorithm of Breiman for classification and regression [57]. When classifying a new object
from an input vector, RF runs the input vector down each of the trees in the forest. Each tree gives a
classification (which is usually called the tree ‘votes’ for that class). The forest chooses the classification
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with the most votes (from all the trees in the forest). The RF model is not sensitive to the problem of
multicollinearity; it manages correlated variables well. With large databases, it runs efficiently and it
can process thousands of input variables without variable deletion. It prepares estimates of variables
that are important in the classification, it is robust with unbalanced datasets and missing data, and it
offers an experimental technique for detecting variable interactions [57]. RF requires the modeler to
choose two parameters: the number of variables and the number of trees. Furthermore, RF provides
two importance ranking indices, “mean decrease Gini” and “mean decrease accuracy” (also termed
percent increase in mean square error (MSE)) [58]. The higher the MSE percentage, the greater the
importance of the independent variable considered [59]. These indices can be applied to reveal the
sensitivity of the model to input variables and to help decrease uncertainty. In this study, this model
was used by applying the ‘randomForest’ package in R. and the default of 500 trees (parameter “ntree”)
was used as error rate stabilized at 100–150 trees [26]. A random one-third of predictor variables was
used to carry out data partitioning at each node (parameter “mtry”). Two-thirds of the overall dataset
were randomly chosen and utilized to create the RF model, and the other one-third retained for testing
the model.

2.2.4. Accuracy Assessment of Models

The outputs of models (maps) are not reliable without validation [60,61]. In this study, the accuracy
and suitability of the models was assessed using both cutoff-dependent and cutoff-independent methods.
One of the most widely used metrics of performance is receiver operating characteristics (ROC) curve,
which has been used in many hydrological and geo-environmental studies such as susceptibility
and potential modeling of flood inundation, landslide, gully erosion, and groundwater [62,63]. The
area under the ROC curve (AUC-ROC), a cutoff-independent metric, was constructed in this study
using groundwater potential maps and the spring locations allocated to the training dataset [64,65].
Its value ranges from 0 to 1, with higher values indicating better model performance [66,67]. To plot
and calculate the area under the ROC curve, the validation dataset was applied.

Among cutoff-dependent criteria, the true skill statistic (TSS) was selected in this study. TSS can
be computed as [68]:

TSS = TPR − FPR (3)

where TPR describes true positive rate and FPR depicts false positive rate. TPR and FPR can be
computed by applying the following equations [69]:

TPR =
TP

TP + FN
(4)

FPR =
FP

FP + TN
(5)

where TP = true positives, TN = true negatives, FP = false positives (Error Type I), and FN = false
negatives (Error Type II). TP and TN are the numbers of pixels that are correctly grouped, while FP and
FN are the numbers of pixels that are erroneously grouped. The value of TSS ranges from −1 to +1,
where −1 indicates that predictive performance is not better than that of a random model, 0 indicates
an indiscriminate model, and +1 indicates a perfect model [68].
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The robustness of a model can be investigated by assessing the change in model efficiency when
small changes in input data are made [37,70]. In this study, three datasets were applied for both
training and validation steps. The three models were run using the training datasets, and then verified
using the validation datasets. “The robustness of the predictive model can be defined as the constancy
of the model’s prediction accuracy when the training and validation data sets are changed” [71].
The robustness of the models was computed by differentiating the maximum and minimum accuracy
values regarding each evaluation criterion [36]:

RTSS = TSSmax − TSSmin (6)

RAUC = AUCmax − AUCmin (7)

where RTSS, and RAUC are the robustness of a model in terms of TSS and AUC, respectively, TSSmax

and AUCmax are the maximum values of accuracy among the three datasets, and TSSmin and AUCmin

are the minimum values of accuracy among the three datasets. These analyses were carried out in both
training and validation steps.

3. Results

3.1. Multicollinearity Analysis of Predictive Factors

The outputs of multicollinearity analysis revealed that the highest VIF value was 3.547 and the
lowest TOL value was 0.238, which shows that there was no multicollinearity among the predictive
factors (Table 2). Hence, all the predictive factors were applied in modeling.

Table 2. Multicollinearity of predictive factors based on the variance inflation factor (VIF) and tolerance
(TOL) indices.

Factor VIF TOL

Relative slope position (RSP) 2.256 0.563
Lithology 1.484 0.800

Topographic wetness index (TWI) 3.231 0.331
Altitude 3.547 0.238

Drainage density 1.833 0.906
Terrain roughness index (TRI) 2.993 0.410

Slope 1.550 0.956
Aspect 1.665 0.932

Land use 1.622 0.946
Plan curvature 2.837 0.544

3.2. Application of the Models for Groundwater Potential Mapping

Figures 5–7 show groundwater potential maps produced by the GARP, QUEST, and RF models,
respectively, for the three different training datasets (a–c).

The groundwater potential maps created by sample dataset 3 (because of higher accuracy in
validation step) and the GARP (Figure 5c), QUEST (Figure 6c), and RF (Figure 7c) models were then
imported into ArcGIS 10.3 software and, using the quantile classification scheme [19,71], categorized
into five different classes (very low, low, moderate, high, and very high potential) (Figure 8).
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Table 3 shows the watershed area (%) occupied by these five groundwater potential classes
determined according to the different models and sampling dataset 3 (Figure 8).

Table 3. Watershed area occupied by five groundwater potential classes according to the GARP, QUEST,
and RF models.

Class
GARP QUEST RF

Area (km2) Area (%) Area (km2) Area (%) Area (km2) Area (%)

Very low 47.11 11.15 39.83 9.42 35.51 8.40
Low 115.15 27.24 75.77 17.92 82.26 19.46

Medium 107.38 25.40 57.45 13.59 91.04 21.54
High 119.72 28.32 81.45 19.27 87.97 20.81

Very high 33.35 7.89 168.20 39.79 125.93 29.79

Note: GARP, Genetic Algorithm for Rule-Set Production; QUEST, Quick Unbiased Efficient Statistical Tree; RF,
Random Forest.

3.3. Accuracy of the Groundwater Potential Maps

The results of goodness-of-fit are shown in Table 4 and Figures S1 to S9. For GARP, performance
values ranged from 0.81 to 0.86 (mean = 0.82) based on TSS, and from 0.952 to 0.965 (mean = 0.957) based
on AUC-ROC. For RF, TSS and AUC-ROC values were 0.86-0.94 (mean = 0.89), and 0.99–1 (mean = 0.995),
respectively. Accuracy assessment of QUEST results indicated that TSS varied between 0.69 and 0.79
(mean = 0.74), and AUC-ROC ranged between 0.943 and 0.957 (mean = 0.949). Hence, all three models
showed good-excellent performance. In fact, the TSS and AUC-ROC criteria demonstrated substantial
agreement between the trained models and reality. However, as the training datasets were applied to
generate the models, they could not be used to evaluate their prediction capability. In other words,
the goodness-of-fit step only showed how well the models fit the training dataset, and could not be
interpreted as indicating the prediction ability of the model [38]. The validation analysis showed how
well the models predicted groundwater potential in the study area.

Table 4. Goodness-of-fit of the machine learning models based on different performance
evaluation metrics.

Evaluation Criteria Dataset
Models

GARP RF QUEST

TSS

S1 0.81 0.88 0.79
S2 0.86 0.94 0.74
S3 0.81 0.86 0.69

Mean 0.82 0.89 0.74

AUC

S1 0.965 0.99 0.957
S2 0.955 0.99 0.947
S3 0.952 1 0.943

Mean 0.957 0.995 0.949

Note: AUC, area under the receiver operating characteristic curve; TSS, true skill statistic.

In the validation step, the results of the three models were verified by applying validation datasets
and the two evaluation criteria (Table 5) (Figures S1–S9). For GARP, TSS varied between 0.74 and 0.81
(mean = 0.78), and AUC-ROC between 0.892 and 0.925 (mean = 0.910). For RF, the TSS value ranged
from 0.79 to 0.91 (mean = 0.83), and the AUC-ROC value from 0.893 to 0.946 (mean = 0.925). For the
QUEST model, TSS and AUC-ROC values ranged between 0.62 and 0.70 (mean = 0.67) and 0.881 and
0.899 (mean = 0.890), respectively. Thus, the RF model exhibited the highest predictive performance
according to both evaluation criteria (TSS = 0.83, AUC-ROC = 0.925), followed by GARP (TSS = 0.78,
AUC-ROC = 0.910), and QUEST (TSS = 0.67, AUC-ROC = 0.890). In other words, the validation of
the results indicated strong agreement between the distribution of the existing springs (validation
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dataset) and the predictive maps of the RF model. Based on the accuracy classification, RF and GARP
indicated excellent predictive skill (AUC-ROC > 0.9), while the QUEST model exhibited good accuracy
(AUC-ROC = 0.8–0.9).

Table 5. Predictive performance of the machine learning models based on different performance
evaluation metrics.

Evaluation Criteria Dataset
Models

GARP RF QUEST

TSS

S1 0.79 0.81 0.70
S2 0.81 0.91 0.69
S3 0.74 0.79 0.62

Mean 0.78 0.83 0.67

AUC

S1 0.892 0.935 0.891
S2 0.912 0.893 0.881
S3 0.925 0.946 0.899

Mean 0.910 0.925 0.890

3.4. Robustness Analysis

Model robustness results according to the two different evaluation criteria are presented in Figure 9.
There were only slight variations in these results following changes in the training and validation
samples. Therefore, it can be concluded that all three models were stable and robust in both the
training and validation steps. However, as can be seen in Figure 9a, the stability of GARP (RTSS = 0.070)
was slightly better than that of QUEST (RTSS = 0.080) and RF (RTSS = 0.120). As shown in Figure 9b,
QUEST (RAUC ≥ 0.018) displayed high stability and robustness, while GARP (RAUC = 0.033) and RF
(RAUC = 0.053) showed slight asymmetry in their results. In terms of both RTSS and RAUC, RF showed
lower stability than the other models.
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3.5. Importance Analysis of Predictive Factors

The variable importance assessment in this study was conducted using the RF model. As one
of its main benefits, RF can estimate the importance of predictor variables applied in the modeling
process using the index percentage increase in mean square error (PIMSE) [59,71]. Table 6 shows the
importance of predictor variables in predicting groundwater potential. As can be seen, RSP, lithology,
and TWI were the three most important variables for spatially predicting groundwater potential,
with PIMSE equal to 82.6%, 69.2%, and 55.1%, respectively.

Table 6. Results of variable importance analysis of groundwater conditioning factors using the Random
Forest (RF) model.

No. Factor Percentage Increase in Mean Square Error

1 Relative slope position, RSP 82.6
2 Lithology 69.2
3 Topographic wetness index, TWI 55.1
4 Altitude 42.4
5 Drainage density 39.8
6 Terrain ruggedness index, TRI 35.3
7 Slope 31.2
8 Aspect 28.4
9 Land use 24.5

10 Plan curvature 20.7

4. Discussion

Machine learning techniques have been gaining popularity in the field of spatial modeling,
especially groundwater potential modeling. Machine learning models show particular promise when
dealing with the challenge of groundwater potential mapping in mountainous and large regions, which
may not have sufficient hydrogeological and geotechnical data to run numerical and/or physically-based
models [72]. Thus new models must be developed and their capability and applicability evaluated,
to find the most accurate and robust model with the best possible results from the least amount of
input data. However, there are various sources of uncertainty in spatial modeling of groundwater
potential, including those related to input variables, sampling strategy, and the modeling process [73].
According to Garosi et al. [74], random classification of datasets for training and validation steps can
be a significant cause of uncertainty in groundwater potential modeling using groundwater spring
occurrence locations. From the validation findings in this study and based on cutoff-dependent and
cutoff–independent evaluation criteria, it is obvious that all three models tested showed good to
excellent performance in predicting groundwater potential. Importantly, the results demonstrated that
the RF model had the highest TSS and AUC values for all training and validation datasets, even when
based on various evaluation criteria, but this model exhibited slightly lower robustness (but acceptable)
compared with the other models. The values of AUC for the validation dataset showed that GARP
and QUEST achieved excellent and good performance, respectively.

An interesting finding was that, while RF was identified as the best model in terms of accuracy,
it had slightly lower robustness for groundwater potential modeling using spring occurrence locations.
This is partly consistent with findings by Rahmati et al. [20] and Naghibi et al. [75], who concluded
that RF is a powerful predictive model that can run accurately with large databases and can process
thousands of input variables without variable deletion. Similarly, Davoudi Moghaddam et al. [29]
found that RF prepares estimates of the variables that are vital for classification, is robust with
unbalanced datasets and missing data, and offers an experimental technique for detecting variable
interactions [57]. In an earlier study in the Bojnourd Watershed, Iran, RF also demonstrated excellent
performance in groundwater potential modeling [20] and similar findings have been made in some
other areas [75,76]. However, as illustrated by the results in the present study, RF was slightly sensitive
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to random changes in the input data, although its robustness was still within the acceptable range.
Thus while the RF model was found to generate more accurate predictions in the present case, it is
important to recognize the main sources of variations that influence its robustness.

Furthermore, from Figure 5 and Table 3 it is clear that GARP indicated different repartition of
groundwater potential areas than the QUEST and RF models. This can be related to the fact that
GARP is a presence-only approach that is appropriate for most cases in which true absence data are
lacking. Theoretically, it fits models from background and presence data, whereas other presence-only
models either generate pseudo-absence data by sampling points outside the boundary of presence data,
or strictly use presence-only modeling [77,78]. GARP projects the realized niche into a geographical
space without giving weight to observed absence data, which could cause a poorer fit to the current
observed distribution than presence-absence approaches such as RF and QUEST, which are tree-based
models [79]. Therefore, the reason why the outputs of QUEST and RF are more similar is because they
belong to the same (tree-based) model group. Such models provide a transparent tree-like structure
with easily interpreted rules [38]. In addition, they use a type of statistical analysis with no statistical
distribution assumption and they can handle data from various scales. Furthermore, they permit
identification of homogeneous groups with various potential levels, and facilitate construction of rules
for prediction of complex relationships [80]. Overall, according to the groundwater potential maps
obtained (Figure 8), central and eastern parts of Piranshahr Watershed have the highest potential for
groundwater and should be the subject of further investigation and exploitation.

In addition, credible knowledge of the relationships between predictor variables (e.g.,
geo-environmental factors, etc.) and the respective target variable (i.e., groundwater potential)
can help decision-makers achieve sustainable groundwater management, but these associations are
still somewhat complicated and poorly documented [29]. The results of variable importance analysis
using the RF model indicated higher importance of RSP, lithology, TWI, altitude, and drainage density,
which shows the significant impact of DEM-derived factors on groundwater potential modeling
(Table 3). Application of RSP is novel in the field of groundwater potential mapping and proved
here to be a significant conditioning factor in the modeling process. Higher contributions of the RSP
and lithology factors have also been reported in a previous study on groundwater resources [71].
Overall, DEM-derived factors were found to be very important in the present study. This could be
related to the impact of topography on flow speed on slopes, and subsequently on permeability and
erosion ratio. Therefore, these factors should be prepared with higher accuracy and finer spatial
resolution. Focusing on DEM-derived factors might increase the performance of the models. Different
groundwater conditioning factors are reported to be important in groundwater potential modeling,
but so far there are no comprehensive and universal guidelines on choosing independent variables
among geo-environmental factors. For example, Rahmati et al. [8] mention altitude, drainage density,
and lithology as the most significant factors, while Naghibi et al. [2] list NDVI, altitude, and slope angle
as the most significant conditioning factors. This lack of agreement on the importance of conditioning
factors could be associated with variations in climate, geological, and topographical characteristics
between study areas. Importance analysis of conditioning factors is useful for multi-source groundwater
studies and solves the problem of high data dimensionality, by eliminating redundant predictor
variables [71]. This can help decision-makers allocate resources to accurate determination of variables
that significantly affect the accuracy of groundwater potential mapping.

5. Conclusions

This study evaluated the capability of two machine learning techniques, GARP and QUEST,
for predicting groundwater potential for the first time, and also compared their capability and
robustness with that of RF, a state-of-the-art model. The importance of groundwater conditioning
factors was also evaluated. The following main conclusions were reached:

• All three machine learning models showed good-excellent accuracy (AUC > 0.7) in prediction
of groundwater potential, although there were some differences between the models in terms
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of predictive performance and robustness. Thus even when conducting model comparisons
using clear criteria, such as prediction performance and robustness, understanding limitations
and strengths remains somewhat difficult in model selection and identifying the best model.
Here, RF showed the best performance based on two cutoff-dependent and cutoff–independent
evaluation criteria, but exhibited slight sensitivity (lack of robustness) to changes in the
training/validation data. In terms of pure prediction performance, GARP and QUEST showed
slightly lower accuracy than RF. Therefore, RF provides the most accurate groundwater potential
mapping, with acceptable robustness.

• Variable importance analysis demonstrated that RSP was the most important groundwater
conditioning factor, followed by lithology factor, while slope, aspect, and plan curvature were the
least important factors for modeling. These findings could be of practical help for water resources
managers in handling the existing uncertain situation and understanding various aspects that
affect groundwater potential.

• In future research, other metrics could be included in model comparisons, such as time spent in
model generation and prediction calculation. A focus on DEM-derived factors and on obtaining
high accuracy data could enhance the performance of the models. In order to raise the accuracy
and reduce the uncertainties in models, hybrid modeling can be recommended, as it reduces some
problems in classification models such as over-fitting.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/12/3/679/s1.
Figure S1: ROC curves of the training and validation steps for the RF model using dataset S1, Figure S2: ROC curves
of the training and validation steps for the RF model using dataset S2, Figure S3: ROC curves of the training and
validation steps for the RF model using dataset S3, Figure S4: ROC curves of the training and validation steps for
the GARP model using dataset S1, Figure S5: ROC curves of the training and validation steps for the GARP model
using dataset S2, Figure S6: ROC curves of the training and validation steps for the GARP model using dataset S3,
Figure S7: ROC curves of the training and validation steps for the QUEST model using dataset S1, Figure S8: ROC
curves of the training and validation steps for the QUEST model using dataset S2, Figure S9: ROC curves of the
training and validation steps for the QUEST model using dataset S3.

Author Contributions: Conceptualization, D.D.M. and O.R.; methodology, D.D.M., O.R., A.H.; software,
D.D.M. and O.R.; validation D.D.M. and O.R.; investigation, D.D.M., O.R., and A.H.; data curation, D.D.M.;
writing—original draft preparation, D.D.M., O.R., A.H., and Z.K.; writing—review and editing, D.D.M., O.R.,
A.H., and Z.K.; visualization, D.D.M. All authors have read and agree the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: We thank the Iranian Department of Water Resources Management (IDWRM) and Department
of Geological Survey of Iran (GSI) for providing necessary data and maps.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Magesh, N.S.; Chandrasekar, N.; Soundranayagam, J.P. Delineation of groundwater potential zones in
Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geosci. Front. 2012, 3, 189–196.
[CrossRef]

2. Naghibi, S.A.; Davoudi Moghaddam, D.; Kalantar, B.; Pradhan, B.; Kisi, O. A comparative assessment
of GIS-based data mining models and a novel ensemble model in groundwater well potential mapping.
J. Hydrol. 2017, 548, 471–483. [CrossRef]

3. Rahmati, O.; Nazari Samani, A.; Mahdavi, M.; Pourghasemi, H.R.; Zeinivand, H. Groundwater potential
mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arab. J. Geosci. 2014, 8,
7059–7071. [CrossRef]

4. Yin, H.; Shi, Y.; Niu, H.; Xie, D.; Wei, J.; Lefticariu, L.; Xu, S. A GIS-based model of potential groundwater
yield zonation for a sandstone aquifer in the Juye Coalfield, Shangdong, China. J. Hydrol. 2017, 557, 434–447.
[CrossRef]

5. Oh, H.J.; Kim, Y.S.; Choi, J.K.; Park, E.; Lee, S. GIS mapping of regional probabilistic groundwater potential
in the area of Pohang City, Korea. J. Hydrol. 2011, 399, 158–172. [CrossRef]

http://www.mdpi.com/2073-4441/12/3/679/s1
http://dx.doi.org/10.1016/j.gsf.2011.10.007
http://dx.doi.org/10.1016/j.jhydrol.2017.03.020
http://dx.doi.org/10.1007/s12517-014-1668-4
http://dx.doi.org/10.1016/j.jhydrol.2017.12.043
http://dx.doi.org/10.1016/j.jhydrol.2010.12.027


Water 2020, 12, 679 18 of 21

6. Davoodi Moghaddam, D.; Rezaei, M.; Pourghasemi, H.R.; Pourtaghie, Z.S.; Pradhan, B. Groundwater spring
potential mapping using bivariate statistical model and GIS in the Taleghan watershed, Iran. Arab. J. Geosci.
2015, 8, 913–929. [CrossRef]

7. Corsini, A.; Cervi, F.; Ronchetti, F. Weight of evidence and artificial neural networks for potential groundwater
spring mapping: An application to the Mt. Modino area (Northern Apennines, Italy). Geomorphology 2009,
111, 79–87. [CrossRef]

8. Rahmati, O.; Melesse, A.M. Application of Dempster–Shafer theory, spatial analysis and remote sensing for
groundwater potentiality and nitrate pollution analysis in the semi-arid region of Khuzestan, Iran. Sci. Total
Environ. 2016, 568, 1110–1123. [CrossRef] [PubMed]

9. Haghizadeh, A.; Davoodi Moghaddam, D.; Pourghasemi, H.R. GIS-based bivariate statistical techniques for
groundwater potential analysis (an example of Iran). J. Earth Syst. Sci. 2017, 126, 109. [CrossRef]

10. Ozdemir, A. Using a binary logistic regression method and GIS for evaluating and mapping the groundwater
spring potential in the Sultan Mountains (Aksehir, Turkey). J. Hydrol. 2011, 405, 123–136. [CrossRef]

11. Chen, W.; Li, H.; Hou, E.; Wang, S.; Wang, G.; Panahi, M.; Li, T.; Peng, T.; Guo, C.; Niu, C. GIS-based
groundwater potential analysis using novel ensemble weights-of-evidence with logistic regression and
functional tree models. Sci. Total Environ. 2018, 634, 853–867. [CrossRef] [PubMed]

12. Kordestani, M.D.; Naghibi, S.A.; Hashemi, H.; Ahmadi, K.; Kalantar, B.; Pradhan, B. Groundwater potential
mapping using a novel data-mining ensemble model. Hydrogeol. J. 2019, 27, 211–224. [CrossRef]

13. Pourghasemi, H.R.; Beheshtirad, M. Assessment of a data-driven evidential belief function model and GIS for
groundwater potential mapping in the Koohrang Watershed, Iran. Geocarto Int. 2014, 30, 662–685. [CrossRef]

14. Razandi, Y.; Pourghasemi, H.R.; SamaniNeisani, N.; Rahmati, O. Application of analytical hierarchy process,
frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Sci. Inform.
2015, 8, 867–883. [CrossRef]

15. Hou, E.; Wang, J.; Chen, W. A comparative study on groundwater spring potential analysis based on
statistical index, index of entropy and certainty factors models. Geocarto Int. 2018, 33, 754–769. [CrossRef]

16. Al-Abadi, A.M.; Shahid, S. A comparison between index of entropy and catastrophe theory methods for
mapping groundwater potential in an arid region. Environ. Monit. Assess. 2015, 187, 1–21. [CrossRef]

17. Smith, A.J.; Walker, G.; Turner, J. Aquifer Sustainability Factor: A review of previous estimates. In Proceedings
of the Groundwater 2010: The challenge of sustainable management, Canberra, Australia, 31 October–4
November 2010.

18. Naghibi, A.; Pourghasemi, H.R. A comparative assessment between three machine learning models and
their performance comparison by bivariate and multivariate statistical methods for groundwater potential
mapping in Iran. Water Resour. Manag. 2015, 29, 5217–5236. [CrossRef]

19. Rahmati, O.; Pourghasemi, H.R.; Melesse, A.M. Application of GIS-based data driven random forest and
maximum entropy models for groundwater potential mapping, a case study at Mehran Region, Iran. Catena
2016, 137, 360–372. [CrossRef]

20. Rahmati, O.; Davoudi Moghaddam, D.; Moosavi, V.; Kalantari, Z.; Samadi, M.; Lee, S.; Tien Bui, D.
An Automated Python Language-Based Tool for Creating Absence Samples in Groundwater Potential
Mapping. Remote Sens. 2019, 11, 1375. [CrossRef]

21. Zabihi, M.; Pourghasemi, H.R.; Pourtaghi, Z.S.; Behzadfar, M. GIS-based multivariate adaptive regression
spline and random forest models for groundwater potential mapping in Iran. Environ. Earth Sci. 2016, 75,
665. [CrossRef]

22. Chen, W.; Zhao, X.; Tsangaratos, P.; Shahabi, H.; Ilia, I.; Xue, W.; Wang, X.; Bin Ahmad, B. Evaluating the
usage of tree-based ensemble methods in groundwater spring potential mapping. J. Hydrol. 2020, 583, 124602.
[CrossRef]

23. Lee, S.; Hong, S.M.; Jung, H.S. GIS-based groundwater potential mapping using artificial neural network
and support vector machine models: The case of Boryeong city in Korea. Geocarto Int. 2018, 33, 847–861.
[CrossRef]

24. Pham, B.T.; Son, L.H.; Hoang, T.A.; Nguyen, D.M.; Tien Bui, D. Prediction of shear strength of soft soil using
machine learning methods. Catena 2018, 166, 181–191. [CrossRef]

25. Tien Bui, D.; Shahabi, H.; Shirzadi, A.; Chapi, K.; Hoang, N.D.; Pham, B.; Bui, Q.T.; Tran, C.T.; Panahi, M.;
Ahmad, B.B.; et al. A novel integrated approach of relevance vector machine optimized by imperialist
competitive algorithm for spatial modeling of shallow landslides. Remote Sens. 2018, 10, 1538. [CrossRef]

http://dx.doi.org/10.1007/s12517-013-1161-5
http://dx.doi.org/10.1016/j.geomorph.2008.03.015
http://dx.doi.org/10.1016/j.scitotenv.2016.06.176
http://www.ncbi.nlm.nih.gov/pubmed/27358196
http://dx.doi.org/10.1007/s12040-017-0888-x
http://dx.doi.org/10.1016/j.jhydrol.2011.05.015
http://dx.doi.org/10.1016/j.scitotenv.2018.04.055
http://www.ncbi.nlm.nih.gov/pubmed/29653429
http://dx.doi.org/10.1007/s10040-018-1848-5
http://dx.doi.org/10.1080/10106049.2014.966161
http://dx.doi.org/10.1007/s12145-015-0220-8
http://dx.doi.org/10.1080/10106049.2017.1299801
http://dx.doi.org/10.1007/s10661-015-4801-2
http://dx.doi.org/10.1007/s11269-015-1114-8
http://dx.doi.org/10.1016/j.catena.2015.10.010
http://dx.doi.org/10.3390/rs11111375
http://dx.doi.org/10.1007/s12665-016-5424-9
http://dx.doi.org/10.1016/j.jhydrol.2020.124602
http://dx.doi.org/10.1080/10106049.2017.1303091
http://dx.doi.org/10.1016/j.catena.2018.04.004
http://dx.doi.org/10.3390/rs10101538


Water 2020, 12, 679 19 of 21

26. Jaafari, A.; Panahi, M.; Pham, B.T.; Shahabi, H.; Tien Bui, D.; Rezaie, F.; Lee, S. Meta optimization of an
adaptive neuro-fuzzy inference system with grey wolf optimizer and biogeography-based optimization
algorithms for spatial prediction of landslide susceptibility. Catena 2019, 175, 430–445. [CrossRef]

27. Chen, W.; Li, Y.; Tsangaratos, P.; Shahabi, H.; Ilia, I.; Xue, W.; Bian, H. Groundwater Spring Potential Mapping
Using Artificial Intelligence Approach Based on Kernel Logistic Regression, Random Forest, and Alternating
Decision Tree Models. Appl. Sci. 2020, 10, 425. [CrossRef]

28. Tien Bui, D.; Shirzadi, A.; Chapi, K.; Shahabi, H.; Pradhan, B.; Pham, B.T.; Singh, V.P.; Chen, W.; Khosravi, K.;
Bin Ahmad, B.; et al. A Hybrid Computational Intelligence Approach to Groundwater Spring Potential
Mapping. Water 2019, 11, 2013. [CrossRef]

29. Davoudi Moghaddam, D.; Rahmati, O.; Panahi, M.; Tiefenbacher, J.; Darabi, H.; Haghizadeh, A.; Torabi
Haghighi, O.; Asadi Nalivan, O.; Tien Bui, D. The effect of sample size on different machine learning models
for groundwater potential mapping in mountain bedrock aquifers. Catena 2020, 187, 104421. [CrossRef]

30. Stockwell, D. The GARP modelling system: Problems and solutions to automated spatial prediction. Int. J.
Geogr. Inf. Sci. Int. 1999, 13, 143–158. [CrossRef]

31. Sut, N.; Simsek, O. Comparison of regression tree data mining methods for prediction of mortality in head
injury. Expert Syst. Appl. 2011, 38, 15534–15539. [CrossRef]

32. Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification, 2nd ed.; Wiley-Interscience: New York, NY, USA,
2000.

33. Davoudi Moghaddam, D.; Pourghasemi, H.R.; Rahmati, O. Assessment of the Contribution of
Geo-environmental Factors to Flood Inundation in a Semi-arid Region of SW Iran: Comparison of Different
Advanced Modeling Approaches. In Natural Hazards GIS-Based Spatial Modeling Using Data Mining Techniques,
Advances in Natural and Technological Hazards Research; Pourghasemi, H., Rossi, M., Eds.; Springer: Cham,
Switzerland, 2019; Volume 48, pp. 59–78.

34. Geology Survey of Iran (GSI). Available online: https://gsi.ir/en (accessed on 5 October 1997).
35. Voeckler, H.; Allen, D.M. Estimating regional-scale fractured bedrock hydraulic conductivity using discrete

fracture network (DFN) modeling. Hydrogeol. J. 2012, 20, 1081–1100. [CrossRef]
36. Conoscenti, C.; Angileri, S.; Cappadonia, C.; Rotigliano, E.; Agnesi, V.; Märker, M. Gully erosion susceptibility

assessment by means of GIS-based logistic regression: A case of Sicily (Italy). Geomorphology 2014, 204,
399–411. [CrossRef]

37. Angileri, S.E.; Conoscenti, C.; Hochschild, V.; Märker, M.; Rotigliano, E.; Agnesi, V. Water erosion susceptibility
mapping by applying stochastic gradient Treeboost to the Imera Meridionale River Basin (Sicily, Italy).
Geomorphology 2016, 262, 61–76. [CrossRef]

38. Bui, D.T.; Tuan, T.A.; Klempe, H.; Pradhan, B.; Revhaug, I. Spatial prediction models for shallow landslide
hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks,
kernel logistic regression, and logistic model tree. Landslides 2016, 13, 361–378.

39. Choubin, B.; Rahmati, O.; Soleimani, F.; Alilou, H.; Moradi, E.; Alamdari, N. Regional Groundwater Potential
Analysis Using Classification and Regression Trees. In Spatial Modeling in GIS and R for Earth and Environmental
Sciences, 1st ed.; Pourghasemi, H.R., Gokceoglu, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2019;
pp. 485–498.

40. Aniya, M. Landslide-susceptibility mapping in the Amahata river basin, Japan. Ann. Assoc. Am. Geogr. 1985,
75, 102–114. [CrossRef]

41. Moore, I.D.; Grayson, R.B.; Ladson, A.R. Digital terrain modeling: A review of hydrological, geomorphological
and biological applications. Hydro. Process. 1991, 5, 3–30. [CrossRef]

42. Schlögl, M.; Matulla, C. Potential future exposure of European land transport infrastructure to rainfall-induced
landslides throughout the 21st century. Nat. Hazards Earth Syst. Sci. 2018, 18, 1121–1132. [CrossRef]

43. Peterson, A.T.; Ball, L.G.; Cohoon, K.P. Predicting distributions of Mexican birds using ecological niche
modelling methods. Ibis 2002, 144, 27–32. [CrossRef]

44. Mitchell, M. An Introduction to Genetic Algorithms; MIT Press: Cambridge, MA, USA, 1999.
45. Sanchez-Flores, E. GARP modeling of natural and human factors affecting the potential distribution of the

invasives Schismus arabicus and Brassica tournefortii in ‘El Pinacate y Gran Desierto de Altar’ Biosphere
Reserve. Ecolog. Model. 2007, 204, 457–474. [CrossRef]

46. Boeckmann, M.; Joyner, T.A. Old health risks in new places? An ecological niche model for I. ricinus tick
distribution in Europe under a changing climate. Health Place 2014, 30, 70–77. [CrossRef]

http://dx.doi.org/10.1016/j.catena.2018.12.033
http://dx.doi.org/10.3390/app10020425
http://dx.doi.org/10.3390/w11102013
http://dx.doi.org/10.1016/j.catena.2019.104421
http://dx.doi.org/10.1080/136588199241391
http://dx.doi.org/10.1016/j.eswa.2011.06.006
https://gsi.ir/en
http://dx.doi.org/10.1007/s10040-012-0858-y
http://dx.doi.org/10.1016/j.geomorph.2013.08.021
http://dx.doi.org/10.1016/j.geomorph.2016.03.018
http://dx.doi.org/10.1111/j.1467-8306.1985.tb00061.x
http://dx.doi.org/10.1002/hyp.3360050103
http://dx.doi.org/10.5194/nhess-18-1121-2018
http://dx.doi.org/10.1046/j.0019-1019.2001.00031.x
http://dx.doi.org/10.1016/j.ecolmodel.2007.02.002
http://dx.doi.org/10.1016/j.healthplace.2014.08.004


Water 2020, 12, 679 20 of 21

47. Li, X.; Wang, Y. Applying various algorithms for species distribution modelling. Integr. Zool. 2013, 8, 124–135.
[CrossRef] [PubMed]

48. Rattray, A.; Ierodiaconou, D.; Laurenson, L.; Burq, S.; Reston, M. Hydro-acoustic remote sensing of benthic
biological communities on the shallow South East Australian continental shelf. Estuar. Coast. Shelf Sci. 2009,
84, 237–245. [CrossRef]

49. Ture, M.; Tokatli, F.; Kurt, I. Using Kaplan–Meier analysis together with decision tree methods (C&RT,
CHAID, QUEST, C4. 5 and ID3) in determining recurrence-free survival of breast cancer patients. Expert
Syst. Appl. 2009, 36, 2017–2026.

50. Lee, S.; Park, I. Application of decision tree model for the ground subsidence hazard mapping near abandoned
underground coal mines. J. Environ. Manag. 2013, 127, 166–176. [CrossRef] [PubMed]

51. Ierodiaconou, D.; Monk, J.; Rattray, A.; Laurenson, L.; Versace, V.L. Comparison of automated classification
techniques for predicting benthic biological communities using hydroacoustics and video observations.
Cont. Shelf Res. 2011, 31, 28–38. [CrossRef]

52. Zabihi, M.; Pourghasemi, H.R.; Motevalli, A.; Zakeri, M.A. Gully erosion modeling using GIS-Based data
mining techniques in northern Iran: A comparison between boosted regression tree and multivariate adaptive
regression spline. In Natural Hazards GIS-Based Spatial Modeling Using Data Mining Techniques, Advances in
Natural and Technological Hazards Research; Pourghasemi, H., Rossi, M., Eds.; Springer: Cham, Switzerland,
2019; Volume 48, pp. 1–26.

53. Ture, M.; Kurt, I.; Kurum, A.T.; Ozdamar, K. Comparing classification techniques for predicting essential
hypertension. Expert Syst. Appl. 2005, 29, 583–588. [CrossRef]

54. Chou, J.S. Comparison of multilabel classification models to forecast project dispute resolutions. Expert Syst.
Appl. 2012, 39, 10202–10211. [CrossRef]

55. Lee, S.; Lee, C.W. Application of decision-tree model to groundwater productivity-potential mapping.
Sustainability 2015, 7, 13416–13432. [CrossRef]

56. Loh, W.Y.; Shih, Y.S. Split selection methods for classification trees. Stat. Sin. 1997, 7, 815–840.
57. Breiman, L. Statistical modelling: The two cultures. Stat. Sci. 2001, 16, 199–215. [CrossRef]
58. Youssefi, S.; Sadhasivam, N.; Pourghasemi, H.R.; Ghaffari Nazarlou, H.; Golkar, F.; Tavangar, S.; Santosh, M.

Groundwater spring potential assessment using new ensemble data mining techniques. Measurement 2020,
107652. [CrossRef]

59. Hollister, J.W.; Milstead, W.B.; Kreakie, B.J. Modeling lake trophic state: A random forest approach. Ecosphere
2016, 7, 1–14. [CrossRef]

60. Hong, H.; Pradhan, B.; Xu, C.; Bui, D.T. Spatial prediction of landslide hazard at the Yihuang area (China)
using two-class kernel logistic regression, alternating decision tree and support vector machines. Catena
2015, 133, 266–281. [CrossRef]

61. Khosravi, K.; Nohani, E.; Maroufinia, E.; Pourghasemi, H.R. A GIS-based flood susceptibility assessment and
its mapping in Iran: A comparison between frequency ratio and weights-ofevidence bivariate statistical
models with multi-criteria decisionmaking technique. Nat. Hazards 2016, 83, 947–987. [CrossRef]

62. Gaprindashvili, G.; Guo, J.; Daorueang, P.; Xin, T.; Rahimy, P. A new statistic approach towards landslide
hazard risk assessment. Int. J. Geosci. 2014, 5, 38–49. [CrossRef]

63. Pham, B.T.; Khosravi, K.; Prakash, I. Application and comparison of decision tree-based machine learning
methods in landside susceptibility assessment at Pauri Garhwal Area, Uttarakhand, India. Environ. Process.
2017, 4, 711–730. [CrossRef]

64. Tien Bui, D.; Pradhan, B.; Lofman, O.; Revhaug, I.; Dick, O.B. Spatial prediction of landslide hazards in Hoa
Binh province (Vietnam): A comparative assessment of the efficacy of evidential belief functions and fuzzy
logic models. Catena 2012, 96, 28–40. [CrossRef]

65. Brenning, A. Spatial prediction models for landslide hazards: Review, comparison and evaluation.
Nat. Hazards Earth Syst. Sci. 2005, 5, 853–862. [CrossRef]

66. Tien Bui, D.; Hoang, N.D. GIS-based spatial prediction of tropical forest fire danger using a new hybrid
machine learning method. Ecol. Inform. 2018, 48, 104–116. [CrossRef]

67. Ngoc-Thach, N.; Ngo, D.B.T.; Xuan-Canh, P.; Hong-Thi, N.; Thi, B.H.; NhatDuc, H.; Dieu, T.B. Spatial pattern
assessment of tropical forest fire danger at Thuan Chau area (Vietnam) using GIS-based advanced machine
learning algorithms: A comparative study. Ecol. Inform. 2018, 46, 74–85. [CrossRef]

http://dx.doi.org/10.1111/1749-4877.12000
http://www.ncbi.nlm.nih.gov/pubmed/23731809
http://dx.doi.org/10.1016/j.ecss.2009.06.023
http://dx.doi.org/10.1016/j.jenvman.2013.04.010
http://www.ncbi.nlm.nih.gov/pubmed/23702378
http://dx.doi.org/10.1016/j.csr.2010.01.012
http://dx.doi.org/10.1016/j.eswa.2005.04.014
http://dx.doi.org/10.1016/j.eswa.2012.02.103
http://dx.doi.org/10.3390/su71013416
http://dx.doi.org/10.1214/ss/1009213726
http://dx.doi.org/10.1016/j.measurement.2020.107652
http://dx.doi.org/10.1002/ecs2.1321
http://dx.doi.org/10.1016/j.catena.2015.05.019
http://dx.doi.org/10.1007/s11069-016-2357-2
http://dx.doi.org/10.4236/ijg.2014.51006
http://dx.doi.org/10.1007/s40710-017-0248-5
http://dx.doi.org/10.1016/j.catena.2012.04.001
http://dx.doi.org/10.5194/nhess-5-853-2005
http://dx.doi.org/10.1016/j.ecoinf.2018.08.008
http://dx.doi.org/10.1016/j.ecoinf.2018.05.009


Water 2020, 12, 679 21 of 21

68. Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa
and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [CrossRef]

69. Rahmati, O.; Falah, F.; Dayal, K.S.; Deo, R.C.; Mohammadi, F.; Davoudi Moghaddam, D.; Naghibi, S.A.;
Bui, D.T. Machine learning approaches for spatial modeling of agricultural droughts in the south-east region
of Queensland Australia. Stoten 2020, 699, 134230. [CrossRef] [PubMed]

70. Conoscenti, C.; Ciaccio, M.; Caraballo-Arias, N.A.; Gómez-Gutiérrez, Á.; Rotigliano, E.; Agnesi, V. Assessment
of susceptibility to earth-flow landslide using logistic regression and multivariate adaptive regression splines:
A case of the Belice River basin (western Sicily, Italy). Geomorphology 2015, 242, 49–64. [CrossRef]

71. Rahmati, O.; Naghibi, S.A.; Shahabi, H.; Bui, D.T.; Pradhan, B.; Azareh, A.; Rafiei Sardooi, E.; Nazari Samani, A.;
Melesse, A.M. Groundwater spring potential modelling: Comprising the capability and robustness of three
different modeling approaches. J. Hydrol. 2018, 565, 248–261. [CrossRef]

72. Nampak, H.; Pradhan, B.; Manap, M.A. Application of GIS based data driven evidential belief function
model to predict groundwater potential zonation. J. Hydrol. 2014, 513, 283–300. [CrossRef]

73. Refsgaard, J.C.; van der Sluijs, J.P.; Højberg, A.L.; Vanrolleghem, P.A. Uncertainty in the environmental
modelling process-A framework and guidance. Environ. Model. Softw. 2007, 22, 1543–1556. [CrossRef]

74. Garosi, Y.; Sheklabadi, M.; Pourghasemi, H.R.; Besalatpour, A.A.; Conoscenti, C.; Van Oost, K. Comparison of
differences in resolution and sources of controlling factors for gully erosion susceptibility mapping. Geoderma
2018, 330, 65–78. [CrossRef]

75. Naghibi, S.A.; Pourghasemi, H.R.; Dixon, B. GIS-based groundwater potential mapping using boosted
regression tree, classification and regression tree, and random forest machine learning models in Iran.
Environ. Monit. Assess. 2016, 188, 44. [CrossRef]

76. Ye, Y.; Wu, Q.; Huang, J.Z.; Ng, M.K.; Li, X. Stratified sampling for feature subspace selection in random
forests for high dimensional data. Pattern Recogn. 2013, 46, 769–787. [CrossRef]

77. Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modelling of species geographic distributions.
Ecol. Model. 2006, 190, 231–259. [CrossRef]

78. Li, W.K.; Guo, Q.H.; Elkan, C. Can we model the probability of presence of species without absence data?
Ecography 2011, 34, 1096–1105. [CrossRef]

79. Pearson, R.G.; Thuiller, W.; Araujo, M.B. Model-based uncertainty in species range prediction. J. Biogeogr.
2006, 33, 1704–1711. [CrossRef]

80. Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Spatial prediction of flood susceptible areas using rule based decision
tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. J. Hydrol. 2013, 504,
69–79. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/j.1365-2664.2006.01214.x
http://dx.doi.org/10.1016/j.scitotenv.2019.134230
http://www.ncbi.nlm.nih.gov/pubmed/31522053
http://dx.doi.org/10.1016/j.geomorph.2014.09.020
http://dx.doi.org/10.1016/j.jhydrol.2018.08.027
http://dx.doi.org/10.1016/j.jhydrol.2014.02.053
http://dx.doi.org/10.1016/j.envsoft.2007.02.004
http://dx.doi.org/10.1016/j.geoderma.2018.05.027
http://dx.doi.org/10.1007/s10661-015-5049-6
http://dx.doi.org/10.1016/j.patcog.2012.09.005
http://dx.doi.org/10.1016/j.ecolmodel.2005.03.026
http://dx.doi.org/10.1111/j.1600-0587.2011.06888.x
http://dx.doi.org/10.1111/j.1365-2699.2006.01460.x
http://dx.doi.org/10.1016/j.jhydrol.2013.09.034
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Description of the Study Area 
	Methodology 
	Springs Dataset 
	Geo-Environmental Factors 
	Description of Models 
	Accuracy Assessment of Models 


	Results 
	Multicollinearity Analysis of Predictive Factors 
	Application of the Models for Groundwater Potential Mapping 
	Accuracy of the Groundwater Potential Maps 
	Robustness Analysis 
	Importance Analysis of Predictive Factors 

	Discussion 
	Conclusions 
	References

