
water

Article

Improved Landsat-Based Water and Snow Indices for
Extracting Lake and Snow Cover/Glacier in the
Tibetan Plateau

Dajiang Yan 1,3 , Chang Huang 4 , Ning Ma 1,2,* and Yinsheng Zhang 1

1 Key Laboratory of Tibetan Environmental Changes and Land Surface Processes, Institute of Tibetan Plateau
Research, Chinese Academy of Sciences, Beijing 100101, China; yandajiang@itpcas.ac.cn (D.Y.);
yszhang@itpcas.ac.cn (Y.Z.)

2 Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences,
Beijing 100101, China

3 University of Chinese Academy of Sciences, Beijing 100101, China
4 Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity,

Northwest University, Xi’an 710727, China; changh@nwu.edu.cn
* Correspondence: ningma@itpcas.ac.cn

Received: 22 February 2020; Accepted: 26 April 2020; Published: 8 May 2020
����������
�������

Abstract: Identifying water and snow cover/glaciers (SCG) accurately is of great importance for
monitoring different water resources in the Tibetan Plateau. However, discriminating between water
and SCG remains a difficult task because of their similar spectral characteristic according to the
physical principles of remote sensing. To efficiently distinguish different kinds of water resources
automatically, here we proposed two new indices including: (i) the normalized difference water index
with no SCG information (NDWIns) to extract lake water and suppress SCG: and (ii) the normalized
difference snow index with no water information (NDSInw) to extract SCG and suppress lake water.
Both new water and snow indices were tested in the Tibetan Plateau using Landsat series, showing
that the overall accuracies of NDWIns and NDSInw were in the range of 94.6–97.0% and 94.9–97.0%
in mapping the lake water from SCG and mapping the SCG from lake water, respectively. Further
comparisons suggest that these new two indices improved upon the previous normalized difference
snow index/modified normalized difference water index (NDSI/MNDWI) in mapping the water body
and SCG. While the present study only focuses on the validation over certain areas in Tibetan Plateau,
the newly proposed NDWIns and NDSInw have the potential for better monitoring the lake water and
snow/glacier areas over other cold regions around the globe.

Keywords: NDWIns; NDSInw; lake; snow cover and glacier; Tibetan Plateau

1. Introduction

As key components of the water cycle, lakes and snow cover/glaciers (SCG) are vital indicators of
climate change [1]. Lakes and SCG also play an important role in the prevention of water scarcity and
world sustainable development [2]. Therefore, understanding the changes in quantity and areal extent
of lakes and glaciers is necessary to assess regional and global water resources [3].

With an average altitude over 4000 m, the Tibetan Plateau (TP), also known as the “Asian Water
Tower” [4] and the “Third Pole” [5,6], is the headwater of more than ten large rivers in Asia. Because of
the cold climate, there are 36,800 glaciers on the TP (Figure 1), covering an area of 49,873 km2 (~2% of
the total plateau’s area), distributed over the major mountain ranges [7]. Glaciers in the TP were found
to be decreasing according to the reduction of glacier length and area since the 1970s [7] due mainly to
the recent rapid temperature increase [6,8]. In addition, with more than one thousand lakes having
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a total free-water area of ca. 42,521 km2 (Figure 1), the TP has the most inland lakes in number and
area in China and boasts the greatest concentration of high-altitude inland lakes in the world [9,10].
Satellite observations have found that about 81% of the lakes in the TP experienced a trend to increase
in area between the 1970s and 2010, and the glacier-fed lakes expanded faster than lakes without glacier
supplement [11].
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their formidable natural conditions [18]. Therefore, accurately monitoring lakes and snow/glaciers 
using satellite data is important for not only understanding how the water resources in cold regions 
response to climate change but also for estimating water storage and changes related to disasters in 
the Asian Water Tower [6,19]. 

Numerous studies have been conducted to map water bodies [20] and SCG [21] using optical 
remote sensing data over the past three decades. Although manual methods and supervised 
classification usually achieve satisfactory results, both are too time consuming when they are used 
for long-time series at large scales. Index-based methods provide an alternative approach to achieve 
this goal more effectively. For example, the normalized difference water index (NDWI), which 
combines green and near-infrared (NIR) bands, and the snow grain size index (SGI), employing 
similar bands, are used for mapping water bodies and snow cover respectively [22,23]. Hall et al. 
(1995) developed the normalized difference snow index (NDSI) to map snow cover using Moderate 
Resolution Imaging Spectroradiometer (MODIS) data [24]. A decade later, the modified normalized 
difference water index (MNDWI) employing the same bands was introduced for urban water bodies 
mapping [25]. Before the normalized difference forest snow index (NDFSI) was proposed to map 
snow-covered forests as distinguished from snow-free forests [26], it had already been employed to 
estimate the NDWI for shoreline mapping [27]. Moreover, a combination of the green band and short-
wave infrared 2 (SWIR2) band has been applied to map snow cover and water bodies, respectively 
[28,29]. Additionally, before Rogers and Kearney (2004) suggested mapping water bodies using the 
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The above mentioned changes in lakes and glaciers have been suggested to be partially caused
by the significant warming in the past few decades [6,10]. The warming trend in the TP was found
to be significantly higher than the other areas of the world in recent decades [8,12]. The changing
climate also made the distribution of land surface water bodies more uneven [13–15], because the
intensity and frequency of extreme disasters have increased. In this context, the TP is extremely
vulnerable to geological disasters such as landslides, debris flows, glacial lake outbursts, and snow and
ice disasters [16]. However, only a few observation stations have been established for lake monitoring
in the entire TP [9,17]. With the rapid development of remote sensing technology, spatial and temporal
distributions of water resources can be monitored from multiple satellites, which are particularly
useful and important in remote and inaccessible cold regions with few gauging stations owing to their
formidable natural conditions [18]. Therefore, accurately monitoring lakes and snow/glaciers using
satellite data is important for not only understanding how the water resources in cold regions response
to climate change but also for estimating water storage and changes related to disasters in the Asian
Water Tower [6,19].

Numerous studies have been conducted to map water bodies [20] and SCG [21] using optical remote
sensing data over the past three decades. Although manual methods and supervised classification
usually achieve satisfactory results, both are too time consuming when they are used for long-time
series at large scales. Index-based methods provide an alternative approach to achieve this goal more
effectively. For example, the normalized difference water index (NDWI), which combines green and
near-infrared (NIR) bands, and the snow grain size index (SGI), employing similar bands, are used
for mapping water bodies and snow cover respectively [22,23]. Hall et al. (1995) developed the
normalized difference snow index (NDSI) to map snow cover using Moderate Resolution Imaging
Spectroradiometer (MODIS) data [24]. A decade later, the modified normalized difference water index
(MNDWI) employing the same bands was introduced for urban water bodies mapping [25]. Before the
normalized difference forest snow index (NDFSI) was proposed to map snow-covered forests as
distinguished from snow-free forests [26], it had already been employed to estimate the NDWI for
shoreline mapping [27]. Moreover, a combination of the green band and short-wave infrared 2 (SWIR2)
band has been applied to map snow cover and water bodies, respectively [28,29]. Additionally, before
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Rogers and Kearney (2004) suggested mapping water bodies using the red band and short-wave
infrared 1 (SWIR1) band [30], it had been developed by Xiao et al. (2001) to detect and monitor SCG in
Turkey [31]. Note that previous studies used similar methods to extract inland water bodies and SCG
due to the similar reflectance distribution of SCG and water bodies [32], leading to more difficulty in
discriminating between surface water bodies and SCG [1].

Several factors. e.g., mountains, snow, clouds, cloud shadows and turbidity are also stumbling
blocks in extracting land surface water maps with satellite data [33]. Previous researches have devoted
much effort to decrease the noise from cloud surfaces [34,35], vegetation [36], and evergreen coniferous
forests [26] in snow cover mapping, and noise from vegetation [37], built-up land [25] and shadow [38]
in water mapping. However, little attention has been paid to develop and calibrate water and snow
indices in distinguishing water bodies and SCG. Therefore, it is essential to develop an effective new
water index to extract water body data from the background that includes SCG, and a new snow index
to obtain SCG information from the background that includes water bodies.

To solve the above problem, we aim to develop two new indices according to the minor difference
in reflectance between lake water bodies and SCG. To further evaluate the performance of the newly
developed water index in mapping lake water bodies from SCG and the snow index in mapping SCG
from lake water bodies, a comparison was also made between these two new indices and the previous
NDSI/MNDWI. The results presented here will provide a basis for accurately monitoring different
kinds of water resources in the Tibetan Plateau.

2. Materials and Methods

2.1. Regional Setting

In this study, three regions with different land cover types were selected from the TP to test the
performance and robustness of each method (Figure 2). Region I is located in the northeast of the TP
and predominantly covered by snow cover and lake water bodies. The average altitude is 4134 m
above sea level with flat topography and a total area of 1375 km2. Located in the west of the TP, Region
II is characterized by hilly topography, and covered by a glacier, lake water and bare land, with a mean
altitude of 4354 m and a total area of 802 km2. Region III is located in the south of the TP with altitudes
ranging from 5100 m to 6320 m and a total area of 377 km2. The land cover type in Region III is similar
to that in Region II.

2.2. Data

The Landsat imagery captured from Operational Land Imager (OLI), Enhanced Thematic Mapper
Plus (ETM+) and Thematic Mapper (TM) has been extensively used in numerous studies in the field of
remote sensing over the past three decades (Table 1). It has been widely employed in inland water body
and SCG mapping because of its high spatial resolution (http://earthexplorer.usgs.gov). The digital
number value in the three Landsat images is corrected to reflectance by the Fast Line-of-Sight
Atmospheric Analysis of Spectral Hypercubes (FLAASH) module, which is commonly used in
atmospheric correction [29,38,39]. The corresponding high resolution of reference data was acquired
from Google Earth.

2.3. Methods

The methodology mainly consists of six procedures: atmospheric correction, analysis of spectral
signature, formulation of new indices, calculation of contrast value, image threshold segmentation and
validation of classified image. The flowchart of the methodology based on Landsat data in this study
is shown in Figure 3.

http://earthexplorer.usgs.gov
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Table 1. Basic characteristics of Landsat Operational Land Imager (OLI), Enhanced Thematic Mapper
Plus (ETM+) and Thematic Mapper (TM) data.

Landsat OLI Landsat ETM+ Landsat TM

Band
Name

Wavelength
Range (µm)

Band
Name

Wavelength
Range (µm)

Band
Name

Wavelength
Range (µm)

B1-Deep Blue 0.433–0.453
B2-Blue 0.450–0.515 B1-Blue 0.450–0.515 B1-Blue 0.45–0.52

B3-Green 0.525–0.600 B2-Green 0.525–0.605 B2-Green 0.52–0.60
B4-Red 0.630–0.680 B3-Red 0.630–0.690 B3-Red 0.63–0.69
B5-NIR 0.845–0.885 B4-NIR 0.775–0.900 B4-NIR 0.76–0.90

B6-SWIR1 1.560–1.660 B5-SWIR1 1.550–1.750 B5-SWIR1 1.55–1.75
B7-SWIR2 2.100–2.300 B7-SWIR2 2.090–2.350 B7-SWIR2 2.08–2.35Water 2019, 11, x FOR PEER REVIEW 4 of 17 
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Figure 2. (a) the Tibetan Plateau; (b) Landsat-7 ETM+ image (RGB:321; Region II); (c) Landsat-5 TM
image (RGB:321; Region III); (d) Landsat-8 OLI image (RGB:432; Region I).

2.3.1. Spectral Signature of Lake Water and SCG

The spectral reflectance distribution of the three land cover types was sampled in each study region
based on Landsat multispectral images corrected by the FLAASH model (Figure 4). It is apparent that
the reflectance of lake water bodies and SCG shows a declining trend, while the reflectance of bare land
exhibits an increasing trend from the visible to infrared bands in general. Previous studies have used
this characteristic as an asset to enhance water bodies or SCG information and suppress background
information. To distinguish between lake water bodies and SCG, the minor differences in spectral
reflectance between lake water bodies and SCG were investigated. It was found that one difference is
that the reflectance of lake water bodies decreases from the green band to NIR band steadily, while the
reflectance of SCG remains stable or fluctuates slightly from the green band to NIR band. The second
difference is that the reflectance of SCG falls sharply, while the reflectance of lake water bodies remains
steady or decreases slightly from the NIR band to SWIR1 band.
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Figure 4. Reflectance distribution of three land cover types in three study regions. (a–c) are the
reflectance distribution of lake water in Region I, II and III; (d) is the reflectance distribution of snow
cover in Region I; (e,f) are the reflectance distribution of glacier in Region II and III; (g–i) are the
reflectance distribution of bare land in Region I, II and III.
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2.3.2. The Contrast Values of Five Indices between Lake Water and SCG

To discover the optimal band combination in discrimination between lake water bodies and SCG,
the contrast values of the extracted image of five common indices [22–25,28–31] between lake water
bodies and SCG were compared (Table 2). The higher the contrast value, the better the discrimination
between lake water bodies and SCG. The contrast value [29] is calculated from the difference between
lake water bodies and SCG in each index image in the three study regions using Equation (1).

CV = Mf −Mb (1)

where CV is the contrast value between foreground and background, Mf is the mean value of foreground,
and Mb is the mean value of background.

Table 2. Definition of each index (NDI is normalized difference index; ρbandx is the reflectance of the
xth band).

Sensor Basic Formula of Each Index

OLI

NDI53 = (ρband3 − ρband5)/(ρband3 + ρband5);
NDI63 = (ρband3 − ρband6)/(ρband3 + ρband6)
NDI73 = (ρband3 − ρband7)/(ρband3 + ρband7);
NDI64 = (ρband4 − ρband6)/(ρband4 + ρband6)
NDI65 = (ρband5 − ρband6)/(ρband5 + ρband6)

TM/ETM+

NDI42 = (ρband2 − ρband4)/(ρband2 + ρband4);
NDI52 = (ρband2 − ρband5)/(ρband2 + ρband5)
NDI72 = (ρband2 − ρband7)/(ρband2 + ρband7);
NDI53 = (ρband3 − ρband5)/(ρband3 + ρband5)
NDI54 = (ρband4 − ρband5)/(ρband4 + ρband5)

2.3.3. Formulation of Water Index and Snow Index

The formulation of our proposed normalized difference water index with no SCG information
(NDWIns) is as follows. The normalized difference between the green band and NIR band remains at a
high level in lake water areas, but at a low level in SCG areas (Figure 4). Furthermore, the contrast
values between lake water bodies and SCG is great by normalizing the green band and NIR band
difference. Considering the reflectance of lake water bodies is negligible and the reflectance of SCG is
higher than 0.5 in the NIR band, subtracting double reflectance of the NIR band from the reflectance of
the green band maintains the index value of lake water bodies at a high level and decreases the index
value of SCG further. Thus, NDWIns is designed to extract water information with noise from SCG:

NDWIns = (ρGreen − a × ρNIR)/(ρGreen + ρNIR) (2)

where ρGreen is the reflectance of the green band, ρNIR is the reflectance of the NIR band. a is an
empirical parameter that needs to be calibrated for different study sites. Here we used a value of 2.

The formulation of the normalized difference SCG index with no water information (NDSInw) is
as follows. The difference between the NIR band and SWIR1 band remains high in SCG areas and
low in lake water areas (Figure 4). Normalizing the NIR band and SWIR1 band difference maintains
the index value at a high level in SCG areas and a low value in lake water areas. To further reduce
lake water information, a positive value (0.05) is subtracted from the difference value between the NIR
band and the SWIR1 band. Thus, the NDSInw is proposed to extract SCG and suppress noise from lake
water bodies.

NDSInw = (ρNIR − ρSWIR1 − b)/(ρNIR + ρSWIR1) (3)

where ρNIR and ρSWIR1 are the reflectance of the NIR band and the SWIR1 band. b is an empirical
parameter that needs to be calibrated for different study sites. Here we used a value of 0.05.
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2.3.4. NDSI and MNDWI

NDSI was proposed by Hall et al. (1995) by normalizing the green band and SWIR1 band difference
based on the MODIS data [24]. After a decade, MNDWI [25] also used this band combination to
extract different water bodies based on Landsat data. Although the NDSI and MNDWI have the same
equation in terms of remote sensing technology, they are originally designed to map different land
cover types. According to physical principles of remote sensing, the NDSI is based on the fact that
snow reflects visible light more than it reflects middle-infrared light [24], while the MNDWI, designed
to enhance open water bodies, takes advantage of the reflection characteristic that the reflectance of
water bodies in the green band is greater than that in the middle infrared band. The physical principles
of remote sensing of NDSI and MNDWI are similar, because of their similar spectral characteristic in
the field of optical remote sensing. As the NDSI and MNDWI (NDSI/MNDWI) are the most popular
methods in SCG and water bodies mapping, respectively, the performance of NDSI/MNDWI and new
indices are tested and compared in this study.

NDSI/MNDWI = (ρGreen − ρSWIR1)/(ρGreen + ρSWIR1) (4)

in which ρGreen is the reflectance of the green band, and ρSWIR1 is the reflectance of the SWIR1 band.

2.3.5. Image Threshold Segmentation

The threshold is an important factor affecting land cover extraction using the index-based method.
Previous scholars have tended to use the default threshold to classify the MNDWI image and NDSI
image [24,25]. However, the default threshold value can inhibit the index-based methods from
achieving the best mapping result. Thus, the extracted images of the three indices in the three study
regions were classified in binary images using the Otsu (1979) method [40], which is widely used in
separating the foreground from the background [20,29,39]. The procedures of the Otsu threshold are
shown as follows:

A2 = Pb × (Mb −M)2 + Pf × (Mf −M)2 (5)

M = Pb ×Mb + Pf ×Mf

where A is the between-class variance of foreground and background, and M is the mean value of the
index image. Mb is the mean value of background class, and Mf is the mean value of foreground class.
Pb and Pf are the probability of background and foreground classes in each index image.

T* = arg max{Pb × (Mb −M)2 + Pf × (Mf −M)2} (6)

where T* is the optimal threshold and is between the maximum and minimum values in each
index image.

2.3.6. Validation of Classified Image

Obtaining reference data in the field is usually inapplicable, as the water bodies change rapidly over
time [27]. It is acceptable to take advantage of other higher resolution images acquired simultaneously
with the Landsat images [39]. For example, Google Earth imagery was used to validate mapping
results of different kinds of water bodies in Switzerland, Ethiopia, South Africa and New Zealand [38].
The water index images were evaluated with the help of the 2.4-m resolution QuickBird data and OLI
panchromatic images (15 m) [39]. Leica Airborne Digital Sensor imagery and Google Earth imagery
were collected for the reference data in eastern Australia [41]. An independent dataset, ViVaN, with
high spatial resolution was used to assess the accuracy of the proposed method [42].

The Google Earth image with high resolution in the corresponding time-frame was used to
validate the accuracy of the classification results in this study. The validation results are subjected
to the number and quality of reference data [43]. Thus, more than three thousand sampling points
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were selected in each region in the Google Earth imagery, consistent with the Landsat image in time
and space. The sample points were selected randomly at the edge and the middle of each land cover
type. The total number of sample points were 4470, 3908 and 3776 in Region I, Region II and Region
III, respectively. Based on the confusion matrix method which has been widely used in numerous
studies [29,38,39,42,44] (Table 3), the Commission error, Omission error, Overall accuracy (OA), and
Kappa coefficient (KC) were calculated to evaluate the performance of the NDSI/MNDWI and NDWIns

in mapping lake water areas, and the NDSI/MNDWI and NDSInw in mapping SCG areas (7–10).

Commission error = 1 − N11/(N11+N12) (7)

Omission error = 1 − N11/(N11+N21) (8)

Overall accuracy (OA) = (N11 +N22)/(N11+N12+N21+N22) (9)

where N11, N12, N21, N22 are the sample counts between classified binary image and reference point
based on the confusion matrix (Table 3).

Kappa coefficient =
N
∑n

i=1 Nii −
∑n

i=1(Nix ×Nxi)

N2
−
∑n

i=1(Nix ×Nxi)
(10)

where N is the total number of the sample points, and Nii is the number of points with correct
classification, Nix and Nxi are the number of sample points from classified binary data and reference
data, respectively.

Table 3. Confusion matrix of sample points Nij. Classified binary images are in rows and the corresponding
reference points are in columns. N11, N12, N21, N22 are the sample counts between classified binary image
and reference point.

Class SCG Non-SCG Non-SCG

SCG N11 N12 N1j
Non-SCG N21 N22 N2j

Total Ni1 Ni2 N

Class Lake Water Non-Lake Water Total

Lake water N11 N12 N1j
Non-Lake

water N21 N22 N2j

Total Ni1 Ni2 N

3. Results

3.1. The Optimal Band Combination in Identifying between Lake Water and SCG

The contrast values of five indices [22–25,28–31] between lake water and SCG in the three images
were calculated (Table 4). The result suggests that the combination of Green band and NIR band is
more suitable to identify lake water from SCG. Besides, normalizing the band difference between NIR
and SWIR1 bands performs better in extracting SCG with noise derived from lake water, in comparison
with other four indices. This is because the normalized difference of reflectance in lake water areas is
far greater than that in SCG areas from the green band to NIR band, while the normalized difference of
reflectance in SCG areas is far higher than that in lake water areas from the NIR band to SWIR1 band.
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Table 4. The contrast values (CV) of five indices between lake water and snow cover/glaciers (SCG).

Sensor Mean Values or CV NDI53 NDI63 NDI73 NDI64 NDI65

OLI

Mean value of Lake Water 0.844 0.922 0.928 0.737 0.354
Mean value of Snow Cover 0.006 0.832 0.826 0.837 0.831

CV (Lake Water − Snow cover) 0.838 0.090 0.102 −0.100 −0.477
CV (Snow cover − Lake Water) −0.838 −0.090 −0.102 0.100 0.477

Sensor Mean Values or CV NDI42 NDI52 NDI72 NDI53 NDI54

ETM+

Mean value of Lake Water 0.817 0.933 0.931 0.744 0.541
Mean value of Glacier −0.054 0.928 0.945 0.921 0.935

CV (Lake Water − Glacier) 0.871 0.005 −0.014 −0.177 −0.394
CV (Glacier − Lake water) −0.871 −0.005 0.014 0.177 0.394

Sensor Mean Values or CV NDI42 NDI52 NDI72 NDI53 NDI54

TM

Mean value of Lake Water 0.692 0.877 0.871 0.710 0.471
Mean value of Glacier 0.073 0.871 0.904 0.864 0.852

CV (Lake Water − Glacier) 0.619 0.006 −0.033 −0.154 −0.381
CV (Glacier − Lake water) −0.619 −0.006 0.033 0.154 0.381

3.2. Lake Water Mapping with Noise from SCG Using NDSI/MNDWI and NDWIns

The performance of the NDSI/MNDWI and NDWIns in mapping lake water bodies with noise
from SCG was tested and compared based on Landsat data in three study regions. It can be seen
that both lake water bodies and SCG present high positive values in the NDSI/MNDWI image in
Region I, II and III (Figure 5). This is because the reflectance of lake water bodies and SCG shows a
downward trend from the green band to the SWIR1 band. As a result, the overall accuracy of the
classified NDSI/MNDWI image is mainly influenced by the commission error from SCG in lake water
bodies mapping (Table 5). Consequently, the NDSI/MNDWI has an overall accuracy of 78.8–83.8% in
lake water bodies mapping and, thus, is not suitable to identify lake water bodies with noise from
SCG (Table 5). Fortunately, it is apparent that the NDWIns enhances lake water with a positive value
between 0.22–1.00 and suppresses the SCG information with negative values from −0.06 to −0.72 in
Region I, II and III (Figure 5). This is because the reflectance of lake water bodies decreases steadily,
while the reflectance of SCG remains stable in general or fluctuates slightly from the green band to
NIR band (Figure 4). What is more, the NDWIns image exhibits negative values which are less than
−0.5 in bare land areas (Figure 5). Consequently, with overall accuracies of 94.6–97.0% in lake water
mapping (Table 5), the classified NDWIns image is capable of delineating lake water area bodies and
suppressing SCG and bare land effectively (Figure 6). Therefore, the NDWIns is competent to identify
lake water bodies from the background, including SCG.

Table 5. The extraction accuracy of lake water from SCG.

Method Region Thres-
Hold

Commission
Error (%)

Omission
Error (%)

Overall
Accuracy (%)

Kappa
Coefficient

NDSI/MNDWI
I 0.38 27.36 0.27 82.7 0.6607
II 0.33 28.80 7.68 83.8 0.6698
III 0.31 30.40 13.75 78.8 0.5782

NDWIns

I 0.09 0.25 10.34 95.2 0.9018
II −0.01 1.06 7.40 97.0 0.9335
III −0.02 0.74 12.36 94.6 0.8874
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3.3. SCG Mapping with Noise from Lake Water Using NDSI/MNDWI and NDSInw

The performance of the NDSI/MNDWI and NDSInw in mapping SCG with noise from lake water
bodies was also tested and compared in Region I, II and III. In the NDSI/MNDWI image, both SCG
and lake water have high positive values (Figure 5) and display a white tone (Figure 6) because of
their similar variation tendency of spectral distributions from the green band to the SWIR1 band.
The NDSI/MNDWI image overestimates SCG largely due to the commission error from lake water
bodies and, thus, is not suitable to discriminate between lake water bodies and SCG. Consequently,
the accuracy assessment reveals that NDSI/MNDWI is less capable of suppressing lake water areas in
extracting SCG with overall accuracies of 71.5–86.5% (Table 6). However, the NDSInw image achieves a
high positive value between 0.55–0.89 in SCG areas and a low negative value from −1.00 to −0.88 in
lake water areas (Figure 5). This is because the reflectance of SCG falls dramatically from the NIR band
to SWIR1 band, while the reflectance of lake water bodies which is lower than 0.05 remains unchanged
in general or decreases slightly from the NIR band to SWIR1 band (Figure 4). In addition, the NDSInw

image extracts negative values in bare land areas (Figure 5). As a result, the classified NDSInw image
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performs successfully in extracting SCG and suppressing lake water bodies and bare land with an
overall accuracy of 94.9–97.0% (Figure 6; Table 6). Thus, the NDSInw can be suggested to extract SCG
from the background, including lake water bodies.

Water 2019, 11, x FOR PEER REVIEW 12 of 17 

 

Figure 5. The index values in three study regions based on three hundred sample points. (a), (b) and 
(c) are the NDSI/MNDWI value in Region I, II and III; (d), (e) and (f) are the NDWIns value in Region 
I, II and III; (g), (h) and (i) are the NDSInw value in Region I, II and III. 

Table 5. The extraction accuracy of lake water from SCG. 

Method Region 
Thres- 
Hold 

Commission 
Error (%) 

Omission 
Error (%) 

Overall 
Accuracy 

(%) 

Kappa 
Coefficient 

NDSI/MNDW
I 

I 0.38 27.36 0.27 82.7 0.6607 
II 0.33 28.80 7.68 83.8 0.6698 
III 0.31 30.40 13.75 78.8 0.5782 

NDWIns 
I 0.09 0.25 10.34 95.2 0.9018 
II −0.01 1.06 7.40 97.0 0.9335 
III −0.02 0.74 12.36 94.6 0.8874 

 
Figure 6. The index images and classified images. (a), (c) and (e) are the NDSI/MNDWI image in 
region I, II and III; (b), (d) and (f) are classified NDSI/MNDWI image in region I, II and III; (g), (i) and 
(k) are the NDWIns image in region I, II and III; (h), (j) and (l) are classified NDWIns image in region 
I, II and III; (m), (o) and (q) are the NDSInw image in region I, II and III; (n), (p) and (r) are classified 
NDSInw image in region I, II and III; (s) Landsat-8 OLI image in Region I (RGB:432); (t) Landsat-7 
ETM+ image in Region II (RGB:321); (u) Landsat-5 TM image in Region III (RGB:321). 

3.3. SCG Mapping with Noise from Lake Water using NDSI/MNDWI and NDSInw 

The performance of the NDSI/MNDWI and NDSInw in mapping SCG with noise from lake water 
bodies was also tested and compared in Region I, II and III. In the NDSI/MNDWI image, both SCG 
and lake water have high positive values (Figure 5) and display a white tone (Figure 6) because of 
their similar variation tendency of spectral distributions from the green band to the SWIR1 band. The 
NDSI/MNDWI image overestimates SCG largely due to the commission error from lake water bodies 
and, thus, is not suitable to discriminate between lake water bodies and SCG. Consequently, the 
accuracy assessment reveals that NDSI/MNDWI is less capable of suppressing lake water areas in 
extracting SCG with overall accuracies of 71.5―86.5% (Table 6). However, the NDSInw image achieves 
a high positive value between 0.55–0.89 in SCG areas and a low negative value from −1.00 to −0.88 in 
lake water areas (Figure 5). This is because the reflectance of SCG falls dramatically from the NIR 
band to SWIR1 band, while the reflectance of lake water bodies which is lower than 0.05 remains 
unchanged in general or decreases slightly from the NIR band to SWIR1 band (Figure 4). In addition, 

Figure 6. The index images and classified images. (a,c,e) are the NDSI/MNDWI image in region I, II
and III; (b,d,f) are classified NDSI/MNDWI image in region I, II and III; (g,i,k) are the NDWIns image
in region I, II and III; (h,j,l) are classified NDWIns image in region I, II and III; (m,o,q) are the NDSInw

image in region I, II and III; (n,p,r) are classified NDSInw image in region I, II and III; (s) Landsat-8
OLI image in Region I (RGB:432); (t) Landsat-7 ETM+ image in Region II (RGB:321); (u) Landsat-5 TM
image in Region III (RGB:321).

Table 6. The extraction accuracy of SCG from lake water bodies.

Method Region Thres-
Hold

Commission
Error (%)

Omission
Error (%)

Overall
Accuracy (%)

Kappa
Coefficient

NDSI/MNDWI
I 0.38 43.56 6.17 71.5 0.4605
II 0.33 38.43 11.40 86.5 0.6405
III 0.31 26.78 2.87 81.7 0.6360

NDSInw

I 0.32 2.20 6.72 96.8 0.9301
II 0.27 6.70 11.66 94.9 0.8724
III 0.11 4.16 2.04 97.0 0.9396

It should be noted that the NDWI combining the green band and NIR band and the NDFSI
normalizing the NIR band and SWIR2 band difference have the potential to identify lake water bodies
from SCG and detect SCG from lake water bodies to some extent, respectively. This is because the
difference of reflectance from the green band to NIR band in lake water areas is far greater than that in
SCG areas, while the difference of reflectance between the NIR band and SWIR2 band in SCG areas is
far higher than that in lake water areas (Figure 4).

Although the NDSInw image forfeits some SCG information by subtracting a positive value (0.05)
from the difference between the NIR band and SWIR1 band, these losses can be considered negligible,
owing to the high difference of reflectance between the NIR band and the SWIR1 band in SCG areas for
NDSInw. Moreover, optimum thresholds which are supposed to be lower than the default threshold of
NDSI can be found for NDSInw in distinguishing SCG from water bodies. This is because the mean
index value of NDSInw is slightly lower than that of NDSI in SCG areas (Figure 5).
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4. Discussion and Outlook

The accuracy of the index-based method in mapping the extents of lakes and SCG is primarily
determined by the quality of the remote sensing data, e.g., clouds, terrain shadows and haze, which
impact the spectral responses in the remote sensing imagery. To minimize the errors in water bodies
detection, it is necessary to select satellite imagery with minimum contamination of cloud coverage
and haze in the past [42], which limits the usage of most images to a great extent. Fortunately,
several effective clouds and cloud-shadow mapping algorithms have been designed for the Landsat
series [45–47]. It is promising to combine these methods with our new index-based methods to mitigate
the negative effects inherited by satellite data.

In this study, only Landsat images were selected to demonstrate the performance of the new
methods. Other similar optical sensors, such as the Sentinel-2, were not considered. However, as
Sentinel-2 has similar spectral and spatial characteristics to Landsat OLI [48], their data have been
combined to achieve a better temporal observation in the previous studies [47,49]. It is therefore
worthwhile to test the sensitivity of other sensors for the reconstruction of time series of water resources
product with high temporal resolution.

The combination of multispectral data and other kinds of remote sensing data provides new
opportunities to detect temporal variations in land surface water bodies extent. For example, the
Shuttle Radar Topography Missions Water Body Dataset and MODIS reflectance data were used to
produce a new global land surface water map [50]. The Global Inland Water was produced using
the Landsat reflectance data and elevation data [51]. Combining the land surface temperature and
MODIS reflectance data, Pekel et al. (2014) mapped water bodies across Africa from 2004 to 2010 [52].
Lu et al. (2011) detected water bodies based on the Chinese HJ-1A/B satellites, slope information and
the NIR band [53]. However, the main source of current products relies on the index-based methods
from multispectral datasets to map the surface water bodies from the background [33]. In future, the
combination of topography information, elevation data and land surface temperature with the newly
developed water and snow indices in the present study is to be encouraged for better mapping of land
surface water resources.

The threshold for land surface water bodies extraction is subjected to the user’s judgment according
to different classification priorities [53]. Acceptable snow cover maps have been achieved with NDSI
thresholds from 0.25 to 0.45 [24], while a default threshold of zero was suggested to separate water
bodies from the background [25]. Thus, although the NDSI and MNDWI use the same equation, the
suitable threshold of the NDSI/MNDWI is not a constant for snow cover mapping and land surface
water bodies extraction. Besides, the determination of the threshold of the index-based method is
largely dependent upon the study area. In regional water resources mapping, the Otsu’s threshold
performs successfully to segment the foreground from the background. However, for large-scale
regional land surface water bodies mapping, it is less capable of extracting all the water bodies from
surrounding land features using one threshold [29]. Recently, Zhang et al. (2019) demonstrated that
the NDSI threshold of 0.1 is more reasonable than the global NDSI threshold of 0.4 for monitoring snow
cover using MODIS data in China [54]. Thus, a multi-threshold segmentation method is indispensable
when the index-based methods are utilized in global water resource mapping.

Although the NDSInw method achieves high accuracy in open glaciers mapping in Regions II
and III, it is difficult to extract information from glaciers covered by debris, which may influence
the reflectance patterns of glaciers. In addition, the reflectance of water bodies is influenced by the
concentration of sediment. The reflectance peak of water bodies moves to the longer wavelength
with the increase of concentration of sediment. If the reflectance of water bodies in the NIR band was
greater than that of the green band, the NDWIns will become invalid in this spectral reflection pattern.
Thus, the NDWIns and NDSInw should be tested in other land covers and case study regions in future
studies, and a and b in NDWIns and NDSInw should be adjusted in other special study sites to optimize
their performance in extracting more accurate lake water bodies and SCG information.
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By improving the existing water index and snow index, the NDWIns and NDSInw proposed in
the present study open up new opportunities for evaluating the water quality and fractional snow
cover, respectively. First, since the NDWI has been proven useful in evaluating water quality [22], it is
therefore expected that NDWIns may also have a good application prospect in assessing water quality,
such as suspended sediments and chlorophyll-a within a water body. Second, NDSInw opens up a
new opportunity in calculating the percentage of snow cover in the pixel scale, as previous studies
have already found a positive relationship between the old version snow index and fractional snow
cover [28].

5. Conclusions

In this study, two new index-based methods were proposed based on the optimal band combination
for improved discriminating between the lake water bodies and SCG in the Tibetan Plateau. Based
on thorough evaluations using Landsat OLI, ETM+, and TM data, we show that NDWIns is highly
effective in extracting lake water bodies and suppressing SCG information, while NDSInw demonstrates
a proper capability of extracting SCG by ideally removing the contamination of water bodies. Overall,
this study provides more appropriate methods for automatically distinguishing and extracting water
bodies and SCG in an accurate manner over cold regions when compared with the traditional
NDSI/MNDWI methods.

The main contribution of this study is to provide a new methodology for mapping different
kinds of water resources, especially in discriminating between land surface water bodies and SCG.
While the current validations focus only on certain areas in TP, it is believed that two new indices
proposed in the present study will provide new chances for understanding the spatial and temporal
patterns of different kinds of water resources. In particular, under the background of temperature rise
and precipitation increase in the TP, the lakes and SCG in TP may be affected to a large extent. It is
therefore expected to monitor changes in different kinds of water resources such as lake water bodies
and SCG effectively over the entire TP with the help of the NDWIns and NDSInw, which improves
understanding of the hydrological cycle and its responses to climate change in this region.
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