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Abstract: The salinization of freshwater lakes by agricultural activities poses a threat to many lake
ecosystems around the world. Quantitative, medium- to long-term studies are needed to understand
how some common agricultural practices, such as the discharge of crop irrigation in the vicinities of
large lakes, may affect lake salinization. In this study, hydrological, hydrodynamics, water quality
and meteorological datasets were used to analyze the long-term spatial-temporal variations of water
salinities of a major lake, the Chagan Lake, in Northeast China. An integrated hydrodynamics-salinity
model was used to simulate lake water salinity changes taking place at different times and locations,
including (i) salt accumulations during a non-frozen period, and (ii) the time when water salinity may
reach a significant threshold (1 psu) that jeopardizes a major environmental and economic value of
this lake (i.e., the cultivation of local fish species). The results confirmed that Chagan Lake was indeed
undergoing salinization in the ten year period between 2008 and 2018. The spatial-temporal patterns
of the salinization processes were identified. For instance, (i) the mean salinity of the lake water was
found to be 0.55 psu in the summer season of the region and 0.53 psu in the winter, and (ii) between
May to October the salinity was up to 0.62 psu in the western region of the lake. The rate of salt
accumulation was found to be 97 ton per annum during the non-frozen period. The simulation
predicted that by 2024 the lake water will become sub-saline (salinity > 1.07 psu) which is toxic to
fish species, if the current practice of irrigation discharge into the lake continues. In the scenario
that the amount of irrigation discharges into the lake doubles, the western region of the lake will
become sub-saline within one year, and then the whole lake within three years. Overall, this study
has produced results that are useful to authorities around the world, for balancing the risks and
benefits of developing crop irrigation fields in areas surrounding large freshwater lakes.

Keywords: lake salinization; irrigation discharge; hydrodynamics-salinity modeling; Chagan Lake

1. Introduction

The salinization of freshwater has received increasing attention because it can damage
the ecosystem, mainly biological communities [1–5]. Although lake water salinities may vary
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cyclically with climatic processes [6], significant salinization in the past decades has been largely
due to anthropogenic activities, such as agricultural production [7–10], industrial sewage [11],
human-accelerated weathering [12,13], and land clearing [14,15]. In arid and semi-arid regions,
agricultural activities are the dominant factors of lake salinization [16]. Direct discharges of crop
irrigation waters can drastically change the salinity of freshwater lakes [17]. Systematic studies on how
agricultural activities can affect lake salinization are becoming increasingly urgent as the sources of
freshwater become scarcer.

A number of studies have shown that agricultural activities—which use pesticides and fertilizers,
groundwater extraction for irrigation, unreasonable irrigation and drainage methods—have accelerated
the accumulation of salt, causing soil salinization [18–20] and groundwater salinization [21–23].
These are believed to eventually bring about reductions in cropping productivities [24,25]. These studies
focused on the effects of agricultural activities on soil salinization and water body salinization on
irrigation areas. It is also known that irrigation discharge would increase lake salinity. However,
these studies rarely address the effect of irrigation discharge on discharge areas (the area receiving
irrigation discharge), especially long-term simulation and prediction. Previous studies also shown that
intensified irrigation development can cause ecological degradation in areas surrounding freshwater
lakes [26–30], although the degradations may be bufferred by the presence of wetlands in some
areas [31]. Ficker et al. [32] identified that in cases of strongly reduced or ceased salt pollution of lakes,
water renewal could change water density stratification, resulting in reduced oxygen levels in the
bottom of deep lakes.

Most previous studies on lake salinization used Cl−, total dissolved solids (TDS), or electrical
conductivity (EC) rather than salinity to measure how irrigation discharge affects freshwater lake
salinity [33–35]. Some researchers demonstrated that Cl− and TDS cannot replicate inherent variation
of salinity in freshwater lakes, especially in inland waters [36,37]. Therefore, further investigation is
needed to see how and to what extent freshwater lake salinity has changed and will evolve when
considering irrigation areas.

In general, studies on lake salinity are either field-based [38,39] and focused on a static study
modeling the watershed outlet [40], or model-based which involves complex modelling at a plot
scale [41–43]. With the unceasing promotion of computer performance, numerical modeling integrated
with field and laboratory data has proven to be an effective tool for describing the complex
physical [44–46], chemical, and biological processes [47,48] and their interactions between state
variables [49,50]. Since numerical modeling can replicate variation of salinity at any spatial-temporal
scale, extensive studies have been done to explore the effects of agricultural activities on lake
salinity [6,20,51,52]. Moreover, more modeling is necessary to understand the vulnerability of salinity
in various ecosystems [53], to subsequently aid in the formulation of sustainable water management [54]
and development plans in irrigation areas [55]. However, little has been done to simulate the impact
of irrigation discharge on long-term variations of salinity in inland freshwater lakes that receive
agricultural discharge with high salinity.

The majority of China’s saline lakes (salinity > 3 psu) [56] are located in Northwest China [57].
However, freshwater lakes have a high risk of salinization in this region due to further development of
large-scale centralized agriculture. Located in Northeast China, Chagan Lake is among the ten largest
freshwater lakes in China in terms of area, and it is an important base of freshwater fisheries [58].
The lake was once surrounded by natural sodic saline-alkali grassland half a century ago [59].
Its drainage area gradually converted into one of China’s rice production centers primarily during
the 1970s and 1980s [60]. Since then, the lake has been continuously receiving irrigation discharge
from over 8.73 × 104 hectares of rice paddies. The continuous discharge has increased the risk of water
salinization due to a growing amount of discharge from irrigation regions, thus threatening lake water
quality and ecosystem health.

In this study, we analyzed historical datasets collected from monitoring stations and simulated
spatial-temporal changes of lake salinity in Chagan Lake with the aim to: (i) reveal the long-term



Water 2020, 12, 2112 3 of 18

variations and spatial-temporal distribution of salinities of water in this lake; (ii) estimate salt
accumulation during the non-frozen period; and (iii) predict how long it would take to reach the salinity
threshold (1psu) for freshwater fish farming using integrated hydrodynamics and salinity modeling.

2. Materials and Methods

2.1. Study Area

Located on the Songnen Plain, Northeast China (124◦03′–124◦34′ E, 45◦09′–45◦30′ N; Figure 1),
Chagan Lake covers a surface area of 372 km2 and has an average depth of 2.5 m. The regional climate is
semi-arid and sub-humid continental monsoon, with a long-term annual average temperature of 5.5 ◦C
and a long-term annual average evaporation and precipitation of 1449 mm and 430 mm, respectively.

From the 1960s to the present, precipitation, groundwater, and irrigation discharge have been
the main water source inputs into Chagan Lake. In recent years, irrigation discharges that account
for 64% [58] of the inputs have caused increasing concerns over further salinization. The lake
is surrounded by three irrigation districts, including an old irrigation district (Qianguo district)
and two new irrigation districts (Da’an and Qian’an districts) covering 5.07 × 104, 2.19 × 104 and
1.33 × 104 hectares, respectively (Figure 1). As the lake receives discharge from the Qianguo and Da’an
irrigation districts, nutrients, salt, and alkali flowing into the lake have caused eutrophication and
salinity to increase [61,62]. According to the development plan of the Songyuan irrigation district,
‘the irrigation discharge from the Qian’an irrigation district will flow into Chagan Lake in the future.
Some physical and chemical characteristics of the lake water are presented in Table 1.
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Table 1. Physical and chemical characteristics of Chagan Lake.

Parameters Mean Range

Wind (m/s) 2.19a 0–26.6
Water Depth (m) 2.50b 0.5–4.5

Water temperature (◦C) 15.48a 3.5–30.20
Air temperature (◦C) 3.93a

−28.2–33.9
Salinity (psu) 0.49b 0.31–0.78

pH 8.75b 8.20–9.13
Electrical conductivity (µs/cm) 0.94b 0.49–1.07

Precipitation (mm/h) 0.08a 0–28.4
Evaporation (mm/h) 0.12a 0–14.7

Relative humidity (%) 70.38a 7–99
Solar radiation (w m2) 263.00a 0–400.04

Letters a and b represent significance levels of parameters passing the 0.0001 and 0.001 significance test, respectively.
The hourly meteorological datasets including wind, water temperature, air temperature, precipitation, evaporation,
relative humidity and solar radiation were derived from the Qianguo Meteorological Station (http://data.cma.cn).
The water quality data are an average value from May to October in 2018.

2.2. Data Collection and Model Inputs

2.2.1. Sample Collections

A large quantity of data including sets of hydrological, hydrodynamics, water quality and
meteorological data were collected from field samples and data acquisitions from monitoring stations
during the non-frozen period (May to October 2018). Hydrological datasets including irrigation
discharges, water depth, and flow velocity were monitored using a real-time monitoring system at the
main inlet and outlet of Chagan Lake established in 2018. Field investigations started when water
samples were collected from nine monitoring stations (S1–S6; A1–A3), as shown in Figure 2, from May
to October 2018. Among the monitoring stations, A1–A3 are adjacent to the Jiangjia station, Liangdian
station, and Chuantou station. Station (S1) is in the western region of Chagan Lake, station S2, S3, and
S4 are in the middle region of Chagan Lake, and station S5 and S6 are in the eastern region. Immediately
after water sample collection, all the water samples were analyzed in the testing center of the Northeast
Geographic and Agricultural Research Institute of the Chinese Academy of Sciences. The values of
Cl− and SO4

2− were analyzed using an ion chromatograph (IE-009). Mg2+, Ca2+, Na+, and K+ were
analyzed using an atomic absorption spectrophotometer (IE-001). HCO3

− and CO3
2− were analyzed

by acidometer titration method. Additional salinity data were collected from the literature [62–66] and
previous field investigations.

The setting of salinity threshold (1 psu) was based on the Fishery Industry Standard of the People’s
Republic of China (2008). Water temperature and pH in the lake (station A1–A3; S1–S6) were collected
monthly between May to October 2018 using a HANNA measurement probe.

2.2.2. Model Inputs

The meteorological datasets including hourly wind speed, wind direction, precipitation,
evaporation, solar radiation, cloud cover, relative humidity and air temperature, etc. in 2018 were
derived from the Qianguo meteorological station (http://data.cma.cn/) (Table 2). Parameters such as
roughness, Dalton, viscosity and Stanton number used in the hydrodynamics model were obtained
from the literatures [67,68] (Table 2). These datasets of salinity, temperature and water levels between
May and October were used for model calibration and validation, respectively. In addition, geometric
data including bathymetry and land boundaries were obtained based on Google Maps. The tools
of RGFGRID and QUICKIN provided by Delft3D software suite have been used to create grids and
incorporate bathymetry data (Figure 2). A grid of finite difference quadrangular elements was created
for the whole Chagan Lake with 4928 cells as shown in Figure 2.

http://data.cma.cn
http://data.cma.cn/
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Table 2. Physical parameters and coefficients used in the integrated hydrodynamics-salinity model.

Parameters Value Use Category Unit Source

Gravity 9.81 Constants m s−2

Lab valueWater density 1000 Constants kg/m3

Air density 1.0 Constants kg/m3

Wind drag coefficients at wind speed, range of 0–6 m/s 0.00063 Wind stress - [67]
Wind drag coefficients at wind speed, range of 6–26 m/s 0.00723 Wind stress - [67]

Wind drag coefficients at wind speed above 26 m/s 0.00723 Wind stress - [67]
Bed roughness for Manning Roughness formulation 0.022 Roughness - [68]

Background eddy viscosity 2.0 Viscosity m2/s Dependent on grid size
Background eddy diffusivity 2.0 Viscosity m2/s Dependent on grid size

Secchi depth 0.5 Heat flux model m Field survey
Dalton number for evaporative heat flux 0.0013 Heat flux model - [69]

Stanton number for heat convection 0.0013 Heat flux model - [69]

2.3. Model Setup, Calibration and Simulation

2.3.1. Modeling Setup

An integrated hydrodynamics-salinity model was built based on the Delft3D modelling suite
(Figure 3) to simulate unsteady flow, transport phenomena and water temperature of Chagan Lake.
The model also provided the hydrodynamics basis for the salinity simulation. Since the model was
based on the orthogonal curvilinear coordinate system—which included a horizontal moving solution,
a continuous equation, and a transmission equation of anti-corrosion components [70]—the flow was
affected by the law of conservation (mass, momentum, and energy). In shallow water and based on the
Boussinesq hypothesis, the Navier-Stokes equation was used in the hydrodynamics-salinity model for
incompressible fluid [71,72]. If the flow was turbulent, the system also incorporated other turbulent
transport equations that were mathematical descriptions of these constant laws. In this study, the
influence of water temperature on water density was neglected, and the water density of the whole
flow field was considered faithful. At the same time, it was assumed that the pressure in the vertical
direction was hydrostatic pressure distribution.

The observations of water level, salinity, and temperature in May 2018 were first used as initial
conditions. In order to stabilize the model, the spin-up time of the model was four months (from
January to April) with the time step being 1 minute. Then, the initial conditions were reset with a
restart file from this warm-up run. The model stability was also checked with the continuity check
suggested by the delft3D user manual with a constant value of 1.0 over the simulation period.

Given the lake is very shallow with an average depth of less than 2.5 m, it was assumed the
lake was well-mixed with no vertical stratification, and a 2D hydrodynamics model was applied.
The simulation period was 6 months between May and October, whereas the frozen-period between
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November and April was assumed to have no influence on the results (no inflow and outflow into or
out of the lake during this period).

As shown in Figure 3, integrated modeling primarily consisted of four major blocks: (i) the
input dataset including meteorological data, discharge data, and salinity loading; (ii) integrated
process-based modeling; and (iii) salinity simulation and prediction. The initial conditions were read
from a restart file from a previous run. According to the heat balance between oceanography and the
atmospheric system, the total heat flux of the free surface was obtained to simulate salinity variations
in the lake.

Water 2020, 12, x FOR PEER REVIEW 6 of 18 

The observations of water level, salinity, and temperature in May 2018 were first used as initial 
conditions. In order to stabilize the model, the spin-up time of the model was four months (from 
January to April) with the time step being 1 minute. Then, the initial conditions were reset with a 
restart file from this warm-up run. The model stability was also checked with the continuity check 
suggested by the delft3D user manual with a constant value of 1.0 over the simulation period. 

Given the lake is very shallow with an average depth of less than 2.5 m, it was assumed the lake 
was well-mixed with no vertical stratification, and a 2D hydrodynamics model was applied. The 
simulation period was 6 months between May and October, whereas the frozen-period between 
November and April was assumed to have no influence on the results (no inflow and outflow into or 
out of the lake during this period). 

As shown in Figure 3, integrated modeling primarily consisted of four major blocks: (i) the input 
dataset including meteorological data, discharge data, and salinity loading; (ii) integrated process-
based modeling; and (iii) salinity simulation and prediction. The initial conditions were read from a 
restart file from a previous run. According to the heat balance between oceanography and the 
atmospheric system, the total heat flux of the free surface was obtained to simulate salinity variations 
in the lake. 

 

Figure 3. Conceptual diagram of integrated modeling framework, where (i), (ii), and (iii) indicate the 
major regions of the modeling framework. 

2.3.2. Boundary and Discharge 

A grid of finite difference quadrangular elements was created for the whole of Chagan Lake 
with 4928 cells as shown in Figure 2. On the closed boundary of Chagan Lake, water discharge was 
zero. The flow inside the lake was formed by the discharge at the open boundaries, wind stress at the 
free surface, and pressure gradients. The wind and water flow were the main driving forces of salt 
movement in the lake. The inflow into the lake included water supply from the inlet and groundwater 
interchange and outflows included discharge from the outlet and interchange with the groundwater. 
The warm-up period of the model was set from January to April 2018 in order to stabilize the 
operation of the model. Water quantity values of boundaries in 2018 are presented in Table 3. 

Table 3. Water balance of inflow and outflow of Chagan Lake in 2018. 

 Inflow Water (108 m3) Outflow Water (108 m3) 
Boundaries P CT JJ Gin E LD Gout 

Figure 3. Conceptual diagram of integrated modeling framework, where (i), (ii), and (iii) indicate the
major regions of the modeling framework.

2.3.2. Boundary and Discharge

A grid of finite difference quadrangular elements was created for the whole of Chagan Lake
with 4928 cells as shown in Figure 2. On the closed boundary of Chagan Lake, water discharge was
zero. The flow inside the lake was formed by the discharge at the open boundaries, wind stress at the
free surface, and pressure gradients. The wind and water flow were the main driving forces of salt
movement in the lake. The inflow into the lake included water supply from the inlet and groundwater
interchange and outflows included discharge from the outlet and interchange with the groundwater.
The warm-up period of the model was set from January to April 2018 in order to stabilize the operation
of the model. Water quantity values of boundaries in 2018 are presented in Table 3.

Table 3. Water balance of inflow and outflow of Chagan Lake in 2018.

Inflow Water (108 m3) Outflow Water (108 m3)

Boundaries P CT JJ Gin E LD Gout

Water quantity 1.18 1.60 0.91 0.90 2.81 1.54 0.24
Sources a b b c a b c

Letters a and b refer to Qianguo meteorological and yield observation, respectively; c refers to data from
Zhang et al. [73]; P, E, CT, JJ, Gin, LD, and Gout indicate precipitation, evaporation, inflow waters from Chuantou,
Jiangjia, the groundwater, and outflows from Liangdian and the groundwater, respectively.
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2.3.3. Calibration and Validation

Model calibration and validation were conducted by comparing simulated results with the
observations [53,74] from May to October 2018. Given the high uncertainty in the limited dataset, the
calibration was done mainly through adjusting inflow and outflow rates. The parameters such as
roughness, Dalton, viscosity and Stanton number obtained from the literature were slightly adjusted
as presented in Table 2. Figure 4 illustrates the comparison between simulated and measured water
depths at the A1 station. The simulated results showed very good agreement with the measured water
depths. Simultaneously, in order to increase the accuracy of the model, salinity and temperature were
further calibrated using monthly observation data (S1–S6). To assess the performance of the model,
the Nash–Sutcliffe efficiency (NSE) model as standard regression and percent bias (PBIAS) as error
index were used [75]. The performance of the model was considered to be satisfactory when NSE was
above 0.36 and PBIAS was below 25 [76,77]. The calculations of NSE and PBIAS are shown in the
following equations:

NSE = 1− [

∑n
i=1

(
xobs

i − xsim
i

)2

∑n
i=1

(
xobs

i − xmean
i

)2 ] (1)

PBIAS = [

∑n
i=1

(
xobs

i − xsim
i

)
∑n

i=1

(
xobs

i

) ×100] (2)
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The measured and simulated values of salinity and temperature at six stations (S1–S6) covered
three main regions of the lake, namely the western, middle, and eastern regions (Table 4 and Figure 5).
The validation of salinity and temperature used the monthly measured data at three stations (A1–A3),
covering the three main regions of the lake, is illustrated in Table 4 and Figure 5. The NSE values for
salinity are all greater than 0.50, except at station S4 and S6 (Table 4). Overall, the simulated data matched
well with field measurements at nine stations, thereby validating the integrated hydrodynamics-salinity
model for simulating the salinity dynamics in Chagan Lake.
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Table 4. Calibration and validation results of salinity and temperature in Chagan Lake.

Sampling Stations Salinity (psu) Temperature (◦C)
NSE PBIAS NSE PBIAS

Calibration (six observations for each station)

S1 0.62 5.88 0.75 1.65
S2 0.51 4.30 0.94 1.65
S3 0.68 10.54 0.94 3.88
S4 0.41 7.15 0.99 0.68
S5 0.69 9.98 0.94 2.97
S6 0.38 5.01 0.74 2.47

Validation (six observations for each station)

A1 0.81 2.76 0.99 –0.56
A2 0.77 –0.54 0.99 –0.76
A3 0.76 1.71 0.99 –0.67
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2.4. Irrigation Districts Development Scenarios

Multiple irrigation development scenarios were prepared based on two objectives. The first
objective was to explore the salinity trend under different irrigation development areas. The second
objective was to predict when the salinity of lake water wouldl reach the salinity threshold under
different irrigation developments. Scenarios A–C were used to demonstrate the first objective.
The existing irrigation district conditions were set at the baseline scenario (Scenario A). Current designed
discharge volume from the Qianguo and Da’an irrigation districts in the baseline scenario were about 1.6
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× 108 m3/a and 0.91 × 108 m3/a, respectively. Salinity in the discharges was obtained through monthly
field experiments. For Scenario B, on the basis of the baseline scenario, 100% of irrigation discharge
in the Qian’an irrigation district was discharged into Chagan Lake. Scenario C represented that 75%
of irrigation discharge in the Qian’an irrigation district was discharged into Chagan Lake. The 100%
and 75% irrigation discharge of Qian’an irrigation district were 0.60 × 108 m3/a and 0.45 × 108 m3/a,
respectively. Scenarios A–C can intuitively represent the amount of irrigation discharge that Chagan
Lake can currently tolerate. In addition, we can also find the sensitive areas in regard to the lake’s
response to the Qian’an irrigation discharge according to the change in salinity at different observation
stations. Scenarios A–B were used to demonstrate the second objective based on the sensitive
observation stations. The salinity threshold was set to 1 psu based on the regulation of the Fishery
Water Quality Standard in China (GB11607-89). For the Scenario A analysis, a prediction was made
regarding when the lake would reach threshold based on the baseline scenario. For Scenario B, the
analysis predicted the time for the salinity to reach threshold.

3. Results

3.1. Long-Term Variation and Spatial-Temporal Distribution of Salinity in the Lake

As shown in Figure 6, the average mean value of water salinity in Chagan Lake shows increased
from 2008 to 2018, having nearly doubled in salinty from 0.3 psu to 0.58 psu. The maximum salinity
value (0.78 psu) occurred in 2012, and salinity continued to rise after temporarily falling in 2013
(0.5 psu). Seasonally, the salinity values in summer and autumn compared with those in spring at six
stations (S1–S6; Figure 5). The salinity values were highest in June compared to other seasons at the A1
station (Figure 5). Salinity ranged from 0.17 psu to 0.89 psu, which had a peak value at station A1 on
June 14 and a minimum value at station A3 on August 25 (Figure 5). As for the water temperature, in
July it was greater than in other seasons at nine stations (Figure 5). The water temperature ranged
from 5.71 ◦C to 30.80 ◦C, with the maximum and minimum value observed at station A1 on July 23
and October 31, respectively.Water 2020, 12, x FOR PEER REVIEW 10 of 18 
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The patterns of salinity in the study area shows uniform distribution in different months and
regions (Figure 7). There was an increased tendency of salinity from the eastern to western regions in



Water 2020, 12, 2112 10 of 18

the lake (Figure 7). The maximum value observed was in the area adjacent to the Jiangjia Weir, and the
minimum salinity was adjacent to the Chuantou Weir. Water salinity in the western region of the lake
was higher than those in the middle and eastern regions of the lake (Figure 5). The water temperatures
varied insignificantly in different areas of the lake (Figure 5).

Water 2020, 12, x FOR PEER REVIEW 10 of 18 

 
Figure 6. The tendency of salinity in Chagan Lake from 2008 to 2018. Each boxplot illustrates the 
median and inter-quartile range and the whiskers indicate minimum and maximum values. The blue 
solid line indicates the fitting line of salinity. The black points indicate the outliers. 

 
Figure 7. Spatial-temporal distribution of salinity from May to October in Chagan Lake. A–F indicate 
May to October. 

3.2. Salt Accumulation in the Lake 

Salt accumulation in the lake is also estimated based on the water quality data from May to 
October at the main inlet and outlet of the lake in 2018 (Figure 8). The salinity loading was found to 
attribute to input from the groundwater (37.25%), and drainages form the Da’an (41.67%) and the 
Qiangguo (21.08%) irrigation districts. Furthermore, the absorption, resuspension, and settlement of 
salinity (i.e., 71.86%) were based on the mass balance calculation. In terms of salinity, 83.85% of it 
flowed out the lake while 16.15% permeated into groundwater. The annual salt storage from May to 
October in the lake was 96.99 t. 

Figure 7. Spatial-temporal distribution of salinity from May to October in Chagan Lake. (A–F) indicate
May to October.

3.2. Salt Accumulation in the Lake

Salt accumulation in the lake is also estimated based on the water quality data from May to
October at the main inlet and outlet of the lake in 2018 (Figure 8). The salinity loading was found to
attribute to input from the groundwater (37.25%), and drainages form the Da’an (41.67%) and the
Qiangguo (21.08%) irrigation districts. Furthermore, the absorption, resuspension, and settlement of
salinity (i.e., 71.86%) were based on the mass balance calculation. In terms of salinity, 83.85% of it
flowed out the lake while 16.15% permeated into groundwater. The annual salt storage from May to
October in the lake was 96.99 t.Water 2020, 12, x FOR PEER REVIEW 11 of 18 
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3.3. Time to Reach Salinity Threshold for Freshwater Fish Farming

Simulated and predicted results are presented in Figures 9 and 10. A series of salinity without
involvement of the Qian’an irrigation district was simulated within the threshold (1.0 psu; Figure 9A).
Salinity at station A1 and S1 was significantly higher than those of other observations stations.
In contrast, salinity at station A3 and A2 was much lower than those observed at other stations.
The lake water salinity generally trended upwards from May to September, and then decreased from
September to October at stations A1 and S1. Predicted salinity at station S5 exceeded the threshold
over a short period from July to August with a 100% area of Qian’an irrigation district discharge
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(Figure 9B). In this simulation scenario, the values at station S5 were much higher than those values at
other stations. Predicted salinity at all stations was within the threshold when the 75% area of the
Qian’an district drainage was included (Figure 9C). Salinity at station S5 was also higher than any
other station except at station A1 from May to July. Figure 10b,c show that the salinity of station S5 was
more sensitive to the lake salinity increasing with irrigation discharge of the Qian’an irrigation district.
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The predictions of lake salinity increasing above the threshold in scenario (a) and scenario (b) at
different station are presented in Figure 10, which shows that the increase in salinity was attributed to
the irrigation discharge. Salinity of station A1 and S1 was higher than those of other stations (Figure 9A).
Hence, we selected station A1 and S1 to predict the time when salinity reaches the threshold of 1 psu
for freshwater fish farming under scenario (a). Lake salinity showed an increasing tendency after
2018 and the maximum values of station A1 and S1 will reach the threshold in 2024 (Figure 10a).
Predicted salinity at station S1 and S5 was more sensitive than at other stations (Figure 9B). Hence,
station S1 and S5 were chosen to predict time for exceeding the threshold (1 psu) for freshwater fish
farming under scenario (b). Predicted salinity showed an increasing trend starting from the first year
when Qian’an irrigation discharged into the lake. In addition, salinity at station 5 reached the threshold
in the first year, and both station S1 and S5 exceeded the threshold in the third year (Figure 10b).
The predicted peak value was 1.8 psu (Figure 10b) but the rate of increase was predicted to be moderate
after the fifth year. These results indicate that the lake water salinity will increase to 1 psu in 2024
without involvement of the Qian’an district. The salinity will exceed 1 psu in three years if the irrigation
water from the Qian’an irrigation district also drains into the lake.

4. Discussion

4.1. Spatial-Temporal Changes of Lake Water Salinity

Previous studies have shown that salinity decreases with depth and water temperature, that is,
the salinity in summer is lower than in other seasons in the northern hemisphere [5,6,51,78]. However,
this study showed that the salinity of Chagan Lake increases with temperature from spring to summer
(Figure 5). Chagan Lake is located in arid and semi-arid areas and its evaporation is much higher than
precipitation [62]. Its main supplement water is irrigation discharge, which is almost a semi-closed
lake. The outlet of Chagan Lake is an overflow weir, and sufficient water volume and stable water level
could be safeguarded by irrigation discharge in the summer. In addition, Chagan Lake is surrounded
by saline-alkali land, and large amounts of salt and alkali are carried into Chagan Lake with irrigation
discharge [58]. Therefore, there is higher salinity in Chagan Lake in the summer due to higher
temperatures, greater evaporation, and more irrigation discharge. This is similar to the cases for lakes
in arid and semi-arid regions [79–81]. Discharges in Qianguo and Da’an irrigation districts mainly
occurred in May and September due to irrigation mode. [58]. The highest level of salinity in the lake
entrance was in June (Figure 5) and the highest salinity of most lake regions was in summer (Figure 5),
suggesting a possible lead-lag effect of irrigation discharges on salinity dynamics. In addition, the
salinity of the saline-alkali land flowed into the irrigation channel and entered the lake due to the
concentration precipitation in the summer [81,82].

Salt transport caused by irrigation discharge often aggravates water salinization in arid regions [83].
The new irrigation district such as the Da’an irrigation district should bring high salt concentrations
from the saline-alkali land to the lake in a short time (Figures 7 and 8). Old irrigation districts such
as the Qianguo irrigation district have low discharge salinity due to the long-term salt washing
effect [19,84,85], but salinization is predicted to be exacerbated by the addition of the new irrigation
district. Other environmental factors such as wind, may also have an impact on the salinization process.
Wind typically accelerates the diffusion of ions in water by changing the hydrodynamics field [86,87].
The prevailing wind direction was southwestern, which may prevent salinity from spreading from
the northwestern part of the lake to the eastern part of the lake (Figure 7). Nevertheless, this study
demonstrates that evaporation and irrigation discharge are the main driving force for the seasonal
variation of lake salinity in arid and semi-arid regions, while irrigation discharge is the main driving
force for spatial variations of lake salinity.
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4.2. The Effect of Salinization on Lake Ecosystem Health

Lake salinization is particularly prone to damaging freshwater ecosystems, particularly destroying
the biological communities of microbes [88–90], plankton [29,30,82,91], macrophytes [92], fish [93],
mammals [88], and water birds [93]. According to Hammer [56], saline lakes have a salinity level
equal to or in excess of 3.00 psu, freshwater lakes have dissolved salt concentrations of less than
0.5 psu, and sub-saline lakes have a salinity level between 0.5 and 3.0 psu. Based on this classification,
Chagan Lake may eventually evolve from a freshwater lake to sub-saline lake, similar to the process
of salinization of the Boston Lake [28,51]. However, the depth of Chagan Lake is less than Boston
Lake [51,61], hence the ecosystem of Chagan Lake is more vulnerable to water salinization. The fish
community structure and production are limited by the increased salinity of the lake because higher
salinity can inhibit fish embryos from hatching and can reduce plankton production [90,93]. Our results
have shown that salinity is relatively lower in the eastern region of Chagan Lake than in the western
region (Figures 5 and 7), indicating that fishery development may be restricted in the western region.
In addition, excessive irrigation discharge would accelerate lake salinity and thus reach the threshold
for freshwater fish farming (Figures 9 and 10). This finding (i.e., the effects of irrigation discharge
on the spatial-temporal dynamic of lake salinity) is critical to policy making for sustainable water
management in Chagan Lake.

4.3. Strategy for Sustainable Lake Water Management to Control Salinization

A number of short-term and long-term salinity management strategies have been developed
around the world [94,95], promoting the balance of regional ecology and the economy. Previous studies
have shown that conflicts of interest between ecological health of the lake and its surrounding irrigation
areas of development exist worldwide [6,61,62,96]. Accelerating the lake water circulation and
decreasing the salinity loading from the input water are two effective methods to maintain the salinity
below the threshold [97]. Economic benefit also needs to be taken into account as well as the effect on
ecosystem health [98]. Thus, it is extremely important to carry out hydrological and economic analysis
in areas with respect to both water shortage and salinization [99]. Reducing the salinity of a lake is an
urgent problem for the lakes surrounded by irrigation areas. Reducing the salinization of lakes by
increasing water volume has been applied to lakes where the volume of water varies greatly [100,101].
However, the water level of Chagan Lake is stable [58], which means Chagan Lake salinity in water
sources has an even more critical impact. Water diversion and accelerated lake water renewal can
effectively control the concentration of lake pollutants, thereby maintaining the ecological health of the
lakes [102]. Hence, it may be effective to reduce lake salinity by changing the hydrodynamics force
and decreasing the stagnant time of lake water. In addition, desalination for irrigation discharge using
wetlands has the potential for lake salinification control [103]. A study by Yang [39] showed that the
amount of salt removed by harvesting reeds and cattails accounted for 10–26% of the discharged salt
concentration. Thus, salinity of the western region of the lake was lower than that of the eastern region
(Figure 7) which attributed to the effect of the wetland.

In summary, developing sustainable management for irrigation discharge is crucial to prevent
inland freshwater lakes from further salinization, especially those lakes surrounded by irrigation areas.
The following specific suggestions of mitigation measures are meant to alleviate salinization of Lake
Chagan: (1) implement multi-source diversion measures from the Songhua River for diluting lake
salinity; (2) enhance the salinity purification function of the front wetland by expanding the planting
area of reed. However, caution should be taken so that the simulated and predicted salinity values in
this study are not obtained with significant amounts of hourly water quality data and high-density
monitoring station networks, as the lack of these can cause uncertainties in our modeling results.
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5. Conclusions

This case study simulated long-term salinity variations using field monitoring datasets and
assessed the effects of irrigation discharge on spatial-temporal variations of salinity in Chagan Lake
using an integrated hydrodynamics-salinity model. The results support the hypothesis that irrigation
discharge causes lake salinization, especially in the western region of Chagan Lake adjacent to the
new irrigation district. Our model simulations show that Chagan Lake will continue to accumulate
salt, and that the annual average salinity of the lake will reach the threshold of 1 psu which threatens
the current freshwater fish farming. Based on these findings, we stress the importance of considering
water diversion and wetland purification in the arid and semi-arid area to protect degradation of lake
ecosystem functions, especially to prevent lake salinization and to sustain freshwater fish farming.
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