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Abstract: Soil moisture is a vital factor affecting the hydrological cycle and the evolution of soil
and geomorphology, determining the formation and development of the vegetation ecosystem. The
previous studies mainly focused on the effects of different land use patterns and vegetation types on
soil hydrological changes worldwide. However, the spatial heterogeneity and driving factors of soil
gravimetric water content in alpine regions are seldom studied. On the basis of soil sample collection,
combined with geostatistical analysis and the geographical detector method, this study examines
the spatial heterogeneity and driving factors of soil gravimetric water content in the typical alpine
valley desert of the Qinghai–Tibet Plateau. Results show that the average value of soil gravimetric
water content at different depths ranges from 3.68% to 7.84%. The optimal theoretical models of
soil gravimetric water content in 0–50 cm layers of the dune are different. The nugget coefficient
shows that the soil gravimetric water content in the dune has a strong spatial correlation at different
depths, and the range of the optimal theoretical model of semi-variance function is 31.23–63.38 m,
which is much larger than the 15 m spacing used for sampling. The ranking of the influence of
each evaluation factor on the alpine dune is elevation > slope > location > vegetation > aspect. The
interaction detection of factors indicates that an interaction exists among evaluation factors, and no
factors are independent of one another. In each soil layer of 0–50 cm, the interaction among evaluation
factors has a two-factor enhancement and a nonlinear enhancement effect on soil gravimetric water
content. This study contributes to the understanding of spatial heterogeneity and driving factors of
soil moisture in alpine deserts, and guidance of artificial vegetation restoration and soil structure
analysis of different desert types in alpine cold desert regions.

Keywords: geographical detector; alpine dunes; spatial heterogeneity; soil moisture; Qinghai—
Tibet Plateau

1. Introduction

Soil moisture is a vital factor affecting the hydrological cycle and the evolution of
soil and geomorphology, determining the formation and development of the vegetation
ecosystem, especially in alpine deserts [1]. The soil moisture distribution directly controls
the carrying capacity of vegetation and the restoration and reconstruction of degraded
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ecosystems. However, the soil moisture distribution has high variability both spatially and
temporally [2]. The spatial heterogeneity limits the understanding of the spatial pattern of
soil moisture in water resource management and ecosystem restoration [3–6]. Therefore,
examining the spatial heterogeneity of soil moisture and its response to environmental
factors is important in ensuring the sustainability of alpine ecosystems.

In recent decades, research on soil moisture has permeated various ecological and
environmental fields throughout the world, especially in the arid and semiarid areas.
It was reported that the change of soil moisture in sandy soils is affected not only by
topography and vegetation but also by the spatiotemporal variation of precipitation with a
strong dependency. Meanwhile, the previous studies have mainly focused on the effects of
different land use patterns, vegetation types, spatiotemporal factors, and soil properties on
soil hydrological changes in sandy soils [7–13].

In addition, the influencing factors of the spatial heterogeneity of soil water in arid
sandy soils have also been examined [14–16]. For example, ref [17] measured the soil
gravimetric water content and analyzed the observation data in the Yarlung Zangbu River.
Ref [18] identified the spatial patterns and temporal stability of topsoil gravimetric water
content in a Mediterranean fallow cereal field. Ref. [19] analyzed the spatial distribution
characteristics of soil gravimetric water content in the southern part of Iran. With respect
to the spatial heterogeneity of soil water, a distributed parameter model has been proposed
to link soil gravimetric water content as the system input to describe the spatiotemporal
variability of soil gravimetric water content in arid regions [20]. Nevertheless, the spatial
heterogeneity and driving factors of soil gravimetric water content in alpine cold deserts is
seldom studied.

The geographical detector is an effective approach to detecting spatial differences and
revealing the driving factors [21]. Many scholars have studied the spatial heterogeneity
of soil gravimetric water content and its influencing factors through correlational analy-
sis, stepwise linear regression, and principal component analysis [1]. However, few of
them have used the superiority of the geographical detector method to explore spatial
heterogeneity and driving factors.

The objective of this study is to elucidate the spatial heterogeneity of soil gravimetric
water content and its driving factors in the alpine valley desert of the Qinghai–Tibet Plateau.
Geostatistical analysis is conducted to detect the spatial heterogeneity of soil moisture. The
Kriging method is used to draw the contour distribution map of soil moisture at different
depths. The influences of different factors on the soil moisture changes in alpine dunes
are quantified using the geographical detector method. The results of this study clarify
the main influencing factors of soil moisture, the understanding of spatial heterogeneity,
and the guidance of artificial vegetation restoration and soil structure analysis of different
desert types in alpine cold desert regions.

2. Materials and Methods
2.1. Study Area and Data Sources

The study area is located in the northern part of the Himalaya mountains, the upper
reaches of the Yiruzangpo River Basin, and Kamba County of Tibet, China. It covers a lati-
tude of 28◦21′25.51′′ N to 28◦24′8.66′′ N and a longitude of 88◦25′9.63′′ E to 88◦28′12.55′′ E
(Figure 1). The elevation is between 4418 and 4692 m. The area is a representative alpine
desert steppe and sandy desertification land, belonging to the semiarid climate of the
plateau sub-cold monsoon [22]. It is characterized by extreme coldness, with an annual
mean temperature of 0.4 ◦C and an accumulated precipitation of 434.3 mm (Figure 1).
The soil is classified as fluvisols, gleysols, and arenosols by the universal soil classifica-
tion system [23]. The soil bulk density is approximately 1.53 g/cm3. Minimal shrubs are
distributed in the wide valley of the study area.
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Figure 1. Overview of the study area. (a) location and distribution of soil sampling points, (b) an-
nual mean temperature and annual precipitation, (c) soil bulk density in the study area. 

A representative sand dune which runs from north to south was chosen as the study 
location to examine the spatial change of soil moisture of the alpine desert. The length of 
the dune is approximately 500 m from north to south and 117 m from east to west. The 
height is approximately 13.5 m. The west of the dune is a wide valley, and the east adjoins 
the mountain. The soil samples were collected on 23 September 2020, covering the bottom 
of the dune to the leeward slope. The sample plot size is 100 × 100 m. A grid spacing of 
approximately 15 × 15 m was used to lay 60 sampling points. The locations of the sampling 
points were recorded by GPS (Figure 2). The sampling depths are 0–10, 10–20, 20–30, 30–
40, and 40–50 cm. The soil samples of each layer were evenly taken from top to bottom. 
Three time-repetition samples were placed into three aluminum boxes, which were im-
mediately sealed and brought back to the laboratory for soil gravimetric water content. In 
addition, the soil gravimetric water content of 0–50 cm layer, which is the average in 0–
10, 10–20, 20–30, 30–40, and 40–50 cm layers, is used to compare the changes of the overall 
soil gravimetric water content with other different soil layers. 

Since the spatial heterogeneity of soil gravimetric water content in alpine deserts is 
reflected through the soil gravimetric water content change of a 0–50 cm soil layer in a 100 
× 100 m quadrat in the sand dune, the soil gravimetric water content mainly changes in 
different locations of the sand dune. The location, elevation, slope, aspect, and vegetation 
coverage are the main factors controlling the soil water pattern [24]. Therefore, this study 
selected the location of dunes, elevation, slope, aspect, and vegetation coverage as explan-
atory variables to examine the driving factors of soil gravimetric moisture content. In the 
predictor variables, the location of dunes, elevation, and aspect are measured using real-
time kinematic (RTK), while the slope is determined by the gradienter measurement tool. 
The vegetation coverage is measured by normalized difference index (NDI), which is de-
fined as the proportion of the vertical projection of vegetation to the total area. The vege-
tation coverage value of each sampling point is the average of the three repeated quadrats 
from digital photographs [25,26]. 

Figure 1. Overview of the study area. (a) location and distribution of soil sampling points, (b) annual
mean temperature and annual precipitation, (c) soil bulk density in the study area.

A representative sand dune which runs from north to south was chosen as the study
location to examine the spatial change of soil moisture of the alpine desert. The length
of the dune is approximately 500 m from north to south and 117 m from east to west.
The height is approximately 13.5 m. The west of the dune is a wide valley, and the east
adjoins the mountain. The soil samples were collected on 23 September 2020, covering
the bottom of the dune to the leeward slope. The sample plot size is 100 × 100 m. A grid
spacing of approximately 15 × 15 m was used to lay 60 sampling points. The locations
of the sampling points were recorded by GPS (Figure 2). The sampling depths are 0–10,
10–20, 20–30, 30–40, and 40–50 cm. The soil samples of each layer were evenly taken from
top to bottom. Three time-repetition samples were placed into three aluminum boxes,
which were immediately sealed and brought back to the laboratory for soil gravimetric
water content. In addition, the soil gravimetric water content of 0–50 cm layer, which is the
average in 0–10, 10–20, 20–30, 30–40, and 40–50 cm layers, is used to compare the changes
of the overall soil gravimetric water content with other different soil layers.

Since the spatial heterogeneity of soil gravimetric water content in alpine deserts
is reflected through the soil gravimetric water content change of a 0–50 cm soil layer
in a 100 × 100 m quadrat in the sand dune, the soil gravimetric water content mainly
changes in different locations of the sand dune. The location, elevation, slope, aspect, and
vegetation coverage are the main factors controlling the soil water pattern [24]. Therefore,
this study selected the location of dunes, elevation, slope, aspect, and vegetation coverage
as explanatory variables to examine the driving factors of soil gravimetric moisture content.
In the predictor variables, the location of dunes, elevation, and aspect are measured using
real-time kinematic (RTK), while the slope is determined by the gradienter measurement
tool. The vegetation coverage is measured by normalized difference index (NDI), which
is defined as the proportion of the vertical projection of vegetation to the total area. The
vegetation coverage value of each sampling point is the average of the three repeated
quadrats from digital photographs [25,26].
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Figure 2. (a) Sketch of the planform of measuring positions on a sand dune (a = 100 m) and (b) 
sampling location of the dune: A is the middle part of the leeward slope, B is the top, C is the middle 
and upper part of the windward slope, D is the middle part of the windward slope, E is the middle 
and lower part of the windward slope, F is the bottom part of the windward slope, and G is the 
interdune land. 
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The semi-variogram is a function of the semi-variation value of a data point and the 
distance among data points. In this study, the semi-variogram was used to illustrate the 
graphical spatial correlation representation of soil gravimetric water content. The expres-
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Figure 2. (a) Sketch of the planform of measuring positions on a sand dune (a = 100 m) and
(b) sampling location of the dune: A is the middle part of the leeward slope, B is the top, C is the
middle and upper part of the windward slope, D is the middle part of the windward slope, E is the
middle and lower part of the windward slope, F is the bottom part of the windward slope, and G is
the interdune land.

2.2. Methods
2.2.1. Semi-Variogram Model and Kriging Method

The semi-variogram is a function of the semi-variation value of a data point and
the distance among data points. In this study, the semi-variogram was used to illustrate
the graphical spatial correlation representation of soil gravimetric water content. The
expression is written as [27–29]:

γ(h) =
1

2N(h)

N(h)

∑
i=1

[Z(xi)−Z(xi + h)]2 (1)

where γ(h) is the semi-distributed function, Z(xi) and Z(xi + h) are the measured values
of sampling points (xi) and (xi + h) respectively, h is the interval distance between the
sampling points, and N(h) is the number of interval distances of all observation points in
the study area.

To describe the variation characteristics of soil gravimetric water content, three theoret-
ical models of the variogram were established to select the theoretical and optimal curves:

(a) Spherical model [29,30]:

γ(h) =


C0 + C (h > a)
C0 + C ·

[
3
2

h
a −

1
2 (

h
a )

3]
(0 < h ≤ a)

0 (h = 0)

(2)

(b) Exponential model [29,30]:

γ(h) =
{

C0 + C · (1− e−h/a) (h > 0)
0 (h = 0)

(3)

(c) Gaussian model [29,30]:
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γ(h) =

{
C0 + C · (1− e−h2/a2

) (h > 0)
0 (h = 0)

(4)

where C0 is the nugget value, C is the partial sill value, C0 +C is the sill value, a is the range
value, and C0/(C0 + C) is the nugget coefficient, which describes the strong, medium, and
weak heterogeneity, at <25%, 25–75%, and >75%, respectively.

To draw the contour distribution map of soil moisture at different depths, Kriging
interpolation was used to obtain spatial interpolation of the soil moisture in the study area.
The general formula can be given as [31]:

Ẑ(s0) =
N

∑
i=1

λiZ(si) (5)

where Z(s) is the measured value at the ith location, s is the prediction location, λ is
an unknown weight for the measured value at the ith location, and N is the number of
measured values. The interpolation results are illustrated by the contour map.

2.2.2. Geographical Detector Method

The geographical detector is a statistical approach to assessing the impact of different
environmental factors on a target variable. It is composed of four geographical detectors:
factor, ecological, risk, and interaction detectors [21]. In this study, the spatial heterogeneity
of soil moisture is impacted by many environmental factors. The geographical detector
method is used to explore the potential impact factors versus the spatial distribution of soil
moisture and to identify each explanatory variable’s relative importance [32]. In this study,
the elevation, slope, location, vegetation, and aspect were selected as explanatory variables
for considering being the main driving factors [2,33–35].

If an explanatory factor X drives the spatial distribution of soil moisture at 0–10, 10–20,
20–30, 30–40, 40–50, and 0–50 cm depth, the spatial distribution of soil moisture is similar
to that of X, which can present the pattern of soil moisture completely. The degree of spatial
association between X and stratified heterogeneity of soil moisture can be quantified using
the factor detector. The mathematical expression is shown by the q -statistic:

q = 1−

L
∑

h=1
Nhδ2

h

Nδ2 (6)

where δ2 is the population variance of soil moisture, δ2
h is the variance of stratum h, N is

the number of total samples with L strata, and Nh is the number of sample units in strata h.
The value of the q-statistic is within the range of 0–1. When the q value is 1, the factor X
can completely explain the distribution of soil moisture, and vice versa [21].

The interactive detector can detect the interactions of multiple factors with soil mois-
ture, namely, assess whether the mutual action of factors X1 and X2 could enhance or
weaken the explanatory power to soil moisture, which depends on the relationship be-
tween q(X1 ∩ X2) and q(X1) or q(X2) (Table 1). The ecological detector is applied to
compare whether the influences of two factors X1 and X2 have significant differences on
the spatial distribution of soil moisture with F-statistics.
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Table 1. Types of interaction between two factors [21,32,36].

Interaction Description

Weaken, nonlinear q(X1 ∩ X2) < Min (q(X1) , q(X2))
Weaken, univariate Min (q(X1) , q(X2)) < q(X1 ∩ X2)< Max (q(X1) , q(X2))

Enhance, bivariate q(X1 ∩ X2) > Max (q(X1) , q(X2))
Independent q(X1 ∩ X2) = q(X1)+q(X2)

Enhance, nonlinear q(X1 ∩ X2) > q(X1)+q(X2)

3. Results
3.1. Statistical Characteristics of Soil Moisture in the Alpine Valley Desert

The statistical characteristics of soil gravimetric water content in alpine valley dunes
are shown in Table 2. In accordance with the extreme and average values of soil moisture
content, the soil gravimetric water content of the sampling points first increases and then
decreases with the increase in soil depth. On the contrary, the coefficient of variation of soil
gravimetric water content in the sampling points first decreases and then increases with
the increase in soil depth. The variation coefficients of soil gravimetric water content in
different soil layers are between 130% and 169%, showing strong variability.

Table 2. Descriptive statistics of soil moisture at different layers.

Depth
/cm

Minimum
/%

Maximum
/%

Mean
/%

Standard
Deviation

Variation
/% Kurtosis Skewness

K-S Test

Z Value * p Value * Z Value # p Value #

0–10 0.07 20.93 3.68 6.23 169 2.53 2.02 0.34 0 0.82 0.54
10–20 0.27 38.33 7.06 10.71 152 2.93 2.11 0.35 0 0.83 0.40
20–30 0.51 33.03 7.84 10.28 131 0.77 1.55 0.35 0 0.80 0.24
30–40 0.59 28.85 6.63 8.60 130 0.53 1.49 0.36 0 0.80 0.31
40–50 0.26 21.61 4.36 6.35 146 2.26 1.99 0.37 0 0.79 0.42

Note: Z value represents the Z-statistic of the K-S test, p value is the corresponding probability, and p > 0.05 means a normal distribution.
* and # respectively refer to the statistical results of the original and logarithmic soil gravimetric water contents.

The normality test is a prerequisite for spatial analysis of soil gravimetric water content
by using geostatistical methods. From Table 2, the kurtosis and skewness coefficients of
soil gravimetric water content at different depths show an “increase–decrease–increase”
trend with the increase in soil depths. According to the Kolmogorov–Smirnov test [37], the
soil gravimetric water content at different depths does not obey a normal distribution but
obeys a lognormal distribution.

3.2. Spatial Heterogeneity of Soil Moisture in the Alpine Valley Desert

The structural parameters of three semi-variance function models are shown in Table 3.
The optimal semi-variance function model for soil gravimetric water content in the 0–10 cm
soil layer is determined as the Spherical model, and that for soil gravimetric water content
in the 10–20 and 40–50 cm soil layers is selected as the Exponential model. The optimal
theoretical model for soil gravimetric water content in the 20–30 and 30–40 cm soil layers is
confirmed as the Gaussian model.

The nugget values of the different soil layers are between 0.1 and 0.34, the nugget
value of the 10–20 cm soil layer is the smallest, and that of the 20–30 cm soil layer is the
largest. This finding indicates that the spatial heterogeneity is smallest and largest in the
10–20 and 20–30 cm soil layers, respectively. The sill value of the dune soil first increases
and then decreases with the increase in soil depths. The 0–30 cm layer is greatly affected
by the elevation of the soil, while the 30–50 cm layer is weakened by the elevation. The
different elevations affect the growth and distribution of vegetation in different soil layers
of dunes, thus impacting the spatial distribution of soil moisture.
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Table 3. Theoretical semi-variogram models of soil moisture and its related parameters.

Depth
/cm Theoretical Model Nugget Sill

Nugget
Coefficient

/%

Range
/m

Coefficient of
Determination

Residual
Sum of

Squares (%2)

0–10
Spherical model 6.30 45.99 13.7 37.42 0.991 3.98

Exponential model 2.40 45.8 5.20 44.61 0.98 9.49
Gaussian model 10.73 41.98 25.60 27.31 0.97 9.99

10–20
Spherical model 14.90 111.9 23.30 23.51 0.96 110

Exponential model 0.10 124.1 0.10 31.23 0.98 43.60
Gaussian model 25 108.60 23 17.58 0.96 110

20–30
Spherical model 20.60 169 12.20 61.09 0.96 97.70

Exponential model 17.90 236.70 7.60 142.28 0.95 150
Gaussian model 34 148.90 22.80 41.70 0.99 21.20

30–40
Spherical model 20 101 19.80 45.99 0.92 142

Exponential model 17.60 96.20 18.30 71.01 0.87 180
Gaussian model 28.50 108 26.40 46.19 0.97 50.60

40–50
Spherical model 9.37 40.78 32 23.76 0.983 44.20

Exponential model 7.20 53.64 13.40 63.38 0.99 0.37
Gaussian model 13.45 40.05 33.60 23.48 0.99 5.15

From Table 3, the nugget coefficients are 13.7% in the 0–10 cm, 0.1% in the 10–20 cm,
22.8% in the 20–30 cm, 26.4% in the 30–40 cm, and 13.4% in the 40–50 cm layer. This result
indicates that the soil gravimetric water content in the 30–40 cm soil layer of the dune has a
moderate spatial correlation, whereas the soil gravimetric water content in other soil layers
has a strong spatial correlation. The spatial correlation of the 10–20 cm soil layer is stronger
than those of the other soil layers. The range of soil gravimetric water content varies from
31.23 to 63.38 m, and is greater than the minimum sampling interval of this study (15 m).
This finding suggests that the sample design is sufficient to reflect the entire sample soil
moisture content of the spatial structure characteristics.

To describe the spatial distribution of soil gravimetric water content intuitively, the
optimal semi-variance function model and its characteristic parameters in Table 3 were
selected to draw spatial distribution maps of soil gravimetric water content at different
levels through the Kriging interpolation, as shown in Figure 3. The spatial distribution of
soil gravimetric water content in different soil layers is mostly patched and banded. The
spatial distribution of soil gravimetric water content in the sampling points is higher in the
southwest than in other areas. The dune elevation gradually increases from the southwest
to the northeast parts. Conversely, the soil gravimetric water content declines from the
bottom of the windward slope to the top of the dune. In the 0–10, 10–20, and 20–30 cm soil
layers, the soil gravimetric water content presents a banded and patchy distribution, which
can reflect the soil gravimetric water content heterogeneity of different parts (Figure 3).

Table 4 shows the correlation matrix of soil gravimetric water content at different
layers based on Pearson correlation analysis. There is a high similarity observed among
the layers of soil moisture. The soil gravimetric water content presents an extremely
significant correlation among different depths (p < 0.01). In most cases, the correlation of
soil gravimetric water content gradually decreases with the increase in soil depths.
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Figure 3. Spatial distribution of soil moisture in different soil layers. (a) soil gravimetric water content at 0–10 cm layer,
(b) soil gravimetric water content at 10–20 cm layer, (c) soil gravimetric water content at 20–30 cm layer, (d) soil gravimetric
water content at 30–40 cm layer, (e) soil gravimetric water content at 40–50 cm layer.

Table 4. Correlation matrix of soil moisture at different layers.

Soil Depth/cm 0–10 10–20 20–30 30–40 40–50

0–10 1
10–20 0.953 ** 1
20–30 0.890 ** 0.858 ** 1
30–40 0.820 ** 0.796 ** 0.970 ** 1
40–50 0.898 ** 0.926 ** 0.862 ** 0.816 ** 1

Note: ** refers to a significant correlation at the 0.01 level (bilateral).
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3.3. Driving Factors of Soil Moisture in Alpine Valley Dunes
3.3.1. Factor Detector

The geographical detector can explain the influence of each factor on the change in soil
moisture content in the dune. Table 5 shows the q values of evaluation factors. The ranking
of the influence of the evaluation factors on the alpine valley dune is elevation > slope > lo-
cation > vegetation > aspect.

Table 5. q values of evaluation factors.

Soil Depth/cm Natural
Factors Location Elevation Aspect Slope Vegetation

0–10
q 0.620 0.881 0.001 0.620 0.478

p value 0.000 0.430 0.859 0.000 0.000

10–20
q 0.824 0.909 0.035 0.824 0.628

p value 0.000 0.243 0.342 0.000 0.000

20–30
q 0.737 0.928 0.028 0.737 0.682

p value 0.000 0.137 0.222 0.000 0.000

30–40
q 0.785 0.953 0.008 0.785 0.703

p value 0.000 0.021 0.543 0.000 0.000

40–50
q 0.738 0.928 0.000 0.738 0.592

p value 0.000 0.109 0.926 0.000 0.000

0–50
q 0.885 0.981 0.001 0.885 0.776

p value 0.000 0.000 0.879 0.000 0.000

The q values of elevation, slope, and vegetation coverage increase with depth. This
result implies that these factors are the main influencing factors of soil gravimetric water
content variation at different depths of the dune. The q values of the slope aspect do not
exceed 0.05, indicating that the aspect has a minimal influence on the variability in soil
gravimetric water content at different depths of the dune.

3.3.2. Interactive Detector

Table 6 indicates the evaluation factor interaction detection. The evaluation factors
influence the soil gravimetric water content of the dune. An interaction was determined
among the evaluation factors, but no independent factors were found. In the 0–10 cm soil
layer, 60% of the evaluation factor interaction combinations show a two-factor enhancement
relationship, and 40% present a nonlinear enhancement relationship (Appendix A). The
most influential interactions were the dune location and elevation combination (0.8901),
elevation and aspect combination (0.8901), elevation and slope combination (0.8901), and
elevation and vegetation coverage combination (0.8834). The combination of slope aspect
and vegetation coverage was less influential (0.5154).

In the 10–20 cm soil layer, 90% of the evaluation factor interaction combinations show
a two-factor enhancement relationship, and 10% demonstrate a nonlinear enhancement
relationship. The interaction influence is relatively considerable. The greatest combinations
were position and elevation (0.9124), elevation and aspect (0.9124), and elevation and slope
(0.9124). The slope aspect and vegetation combination was minimum (0.6880).

In the 20–30 cm soil layer, the interaction combination of evaluation factors shows a
two-factor enhancement relationship. The influence of interaction is relatively remarkable.
The strongest combinations were position and elevation (0.9288), elevation and aspect
(0.9288), and elevation and slope (0.9288), and the weakest combination was slope aspect
and vegetation (0.6880). In the 30–40 cm soil layer, the interaction combination of slope
aspect and vegetation combination (0.7208) shows a nonlinear enhancement relationship,
whereas the interaction combinations of other evaluation factors indicate a two-factor
enhancement relationship. The influences of interaction were between 0.7891 and 0.9560.
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Table 6. Evaluation factor interaction detection.

Soil Depth
/cm

Index
Location Elevation Aspect Slope Vegetation

X1 X2 X3 X4 X5

0–10

X1 0.6203
X2 0.8901 (Y) 0.8814
X3 0.6267 (Y) 0.8901 (Y) 0.0006
X4 0.6267 (N) 0.8901 (Y) 0.6267 (Y) 0.6203
X5 0.6267 (N) 0.8834 (Y) 0.5154 (Y) 0.6267 (N) 0.4778

10–20

X1 0.8235
X2 0.9124 (Y) 0.9085
X3 0.8265 (Y) 0.9124 (Y) 0.0348
X4 0.8265 (N) 0.9124 (Y) 0.8265 (Y) 0.8235
X5 0.8267 (Y) 0.9100 (Y) 0.7698 (Y) 0.8267 (Y) 0.6275

20–30

X1 0.7371
X2 0.9288 (Y) 0.9275
X3 0.7415 (Y) 0.9288 (Y) 0.0277
X4 0.7415 (N) 0.9288 (Y) 0.7415 (Y) 0.7371
X5 0.7417 (N) 0.9287 (Y) 0.6880 (Y) 0.7417 (N) 0.6821

30–40

X1 0.7855
X2 0.9560 (Y) 0.9535
X3 0.7891 (Y) 0.9560 (Y) 0.0075
X4 0.7891 (N) 0.9560 (Y) 0.7891 (Y) 0.7855
X5 0.7891 (N) 0.9542 (Y) 0.7208 (Y) 0.7891 (N) 0.7026

40–50

X1 0.7380
X2 0.9300 (Y) 0.9281
X3 0.7423 (Y) 0.9300 (Y) 0.0002
X4 0.7423 (N) 0.9300 (Y) 0.7423 (Y) 0.7380
X5 0.7426 (Y) 0.9293 (Y) 0.6210 (Y) 0.7426 (Y) 0.5919

0–50

X1 0.8853
X2 0.9811 (Y) 0.9807
X3 0.8873 (Y) 0.9811 (Y) 0.0006
X4 0.8873 (N) 0.9811 (Y) 0.8873 (Y) 0.8853
X5 0.8873 (Y) 0.9810 (Y) 0.8127 (Y) 0.8873 (Y) 0.7756

Note: Y and N refer to significant differences of detection indicators at the 95% confidence level.

In the 40–50 cm soil layer, 60% of the evaluation factor interaction combinations
show a two-factor enhancement relationship, and the interaction influence was between
0.7423 and 0.9300. Among the evaluation factor interaction combinations, 40% show a
nonlinear enhancement relationship, and the interaction influences were 0.6210–0.9300.
In the 0–50 cm soil layer, 70% of the evaluation factor interaction combinations show a
two-factor enhancement relationship, and 30% show a nonlinear enhancement relationship.
The interaction among evaluation factors has a strong effect of dual factors and a nonlinear
enhancement effect on soil gravimetric water content (Appendix A).

3.3.3. Ecological Detector

Ecological detection can be used to compare whether a significant difference exists
between two factors on the independent variable of soil water change. In Table 6, “Y”
means that a significant difference exists between the row factor and the column factor,
and “N” means that no significant difference exists between them. The factor combinations
in different soil layers have distinct significant effects on soil moisture changes. Among
the factor combinations in the 0–10, 20–30, and 30–40 cm soil layers, 70% have significant
differences in soil moisture changes, but no significant difference exists between position
and slope, position and vegetation, and slope and vegetation combinations. In the 10–20,
40–50, and 0–50 cm soil layers, 90% of factor combinations have significant differences in
soil gravimetric water content changes, but no significant difference exists in the positions
and slope of these three soil layers.
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4. Discussion

The influencing factors of soil gravimetric water content are mainly natural and
human factors, but most of the Qinghai–Tibet Plateau is dominated by natural factors [38].
Among the natural factors, the primary driver of the vegetation coverage factor is soil
gravimetric water content [35]. In a previous study on soil gravimetric water content, the
influence of climate factors on soil moisture is mainly reflected in the difference between
water infiltration and evapotranspiration caused by rainfall and solar radiation [39]. Under
certain conditions, the local climate has an important influence on the spatial-temporal
pattern of soil gravimetric water content, due to the differences in rainfall and temperature
at different elevations, which may be an important factor affecting the soil water pattern [40].
On a small scale, soil types, topographic factors, and vegetation factors are the main
factors affecting the soil water pattern; on a large scale, climatic factors, such as rainfall
and evapotranspiration, are the main factors controlling the soil water pattern [24]. The
impacts of soil types, vegetation factors, and topographic factors on soil water are generally
consistent with depth, such that the variation in deep soil water mainly depends on soil
types, vegetation, and topographic factors [2,35,41–43]. Therefore, the factors adopted in
this study are mainly different dune locations, vegetation, elevation, aspect, and slope.

Many studies have also verified the special effect of vegetation cover on soil properties
in the Tibetan Plateau [42,43]. Some scholars have conducted research to assess the spatial
variability of soil gravimetric water content and the temporal and spatial variations in a
typical alpine meadow in the Qinghai–Tibet Plateau by using a geostatistical approach.
Studies on soil moisture in the Qinghai–Tibet Plateau have mainly focused on the follow-
ing four aspects: (1) inversion of surface soil moisture by using remote sensing images,
(2) spatial-temporal changes of soil temperature and humidity, (3) model simulation of
hydrothermal characteristics, and (4) the impacts of soil moisture and physical properties.
In this study, the ranking of the influence of each evaluation factor on the alpine dune was
elevation > slope > location > vegetation > aspect. This result is different from that in the
Loess Plateau (location on the hill slope, vegetation cover, slope, relative elevation, and sine
of the aspect) [14]. This difference may be caused by harsh climate conditions and diverse
natural landscapes under an average elevation of 4505 m. The results of this study can
be compared with those in other arid regions. The differences in soil moisture in various
regions can be clearly compared, providing research guidance for subsequent studies.

Compared with the previous studies, such as those of [35] and [44], the spatial het-
erogeneity of soil gravimetric water content in an alpine desert is higher than that in
alpine meadows and shrubs. This condition depends mainly on the capability of soil
water conservation and the sensitivity of vegetation cover to precipitation and perched
aquifer. If the sample area is extremely small, it cannot contain all information to reflect the
spatial heterogeneity of the entire community. If the sample plot is exceedingly large, the
difference in variables among sample plots will disappear [38]. Certain scale and zoning
effects occur in the selection of sample plots. This issue was also found in this study. Thus,
selecting the size of sample plots and determining the direction of the plots are important
in the spatial heterogeneity research of soil water.

According to the classification by coefficient of variation, the coefficient of variation
less than 10% is weak variability, and that of 10–100% is moderate variability, while the
coefficient of variation larger than 100% is strong variability [45]. In this study, the variation
coefficients of soil gravimetric water content in different soil layers were between 130% and
169%, showing the strong variability. This may be affected by vegetation and topographic
factors, as well as extreme rainfall, sand movement, strong evaporation, and groundwater
table fluctuation, which is consistent with the conclusion of Li et al. [33]. Moreover, the
uncertainty resulting from the random measured samples may increase such strong soil
moisture variability [13,33,46]. In the geographical detector analysis, the interaction among
evaluation factors had a strong effect of dual factors and a nonlinear enhancement effect
on soil gravimetric water content in the 0–50 cm layer. This implies that there are no
independent factors existing in the impacts of soil gravimetric water content [21].
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In general, this study is of great significance to assess the soil water status in alpine
desert regions. It provides basic research for artificial vegetation restoration and regen-
eration and soil structure analysis of different desert types in alpine cold regions. The
current study applied a geographical detector to examine the influence of different factors
on soil moisture and the interaction factors in a relatively small area. Owing to the harsh
field conditions in the Qinghai–Tibet Plateau area, analysis of soil moisture through point
distribution, drilling, and other methods requires time and effort. In the future study,
remote sensing data are urgently needed to retrieve measurements of soil water, such that
the spatial distribution of soil water in a large area can be verified.

5. Conclusions

Based on soil sample collection, combined with geostatistical analysis and a geograph-
ical detector method, this study detected the spatial heterogeneity and driving factors of
soil gravimetric water content in typical alpine valley dunes of the Qinghai–Tibet Plateau.
The results showed that the average value of soil gravimetric water content at different
depths ranged from 3.68% to 7.84%. The coefficient of variation indicated that the soil
moisture content in different soil layers of the sample plot shows strong variability.

The optimal theoretical models of soil gravimetric water content in 0–50 cm layers of
dunes were different. The nugget coefficient shows that the soil gravimetric water content
in the dune has a strong spatial correlation, and the range of the optimal theoretical model
of semi-variance function was 31.23–63.38 m, which is much larger than the 15 m sampling
distance. The ranking of the influence of each evaluation factor on the alpine dune was
elevation > slope > location > vegetation > aspect.

The correlation analysis of soil gravimetric water content in different soil layers
showed a significant correlation (p < 0.01). The interaction detection of factors indicated
an interaction among evaluation factors, and no factors were independent of one another.
In each soil layer of 0–50 cm, the interaction among evaluation factors had a strong dual
effect and a nonlinear enhancement effect on soil gravimetric water content. The signifi-
cance analysis of ecological detection indicated significant differences among the factor
combinations of different soil layers on soil water change. In general, the analyses of spatial
distribution, heterogeneity, and driving factors of soil gravimetric water content have im-
plications for understanding the spatial heterogeneity and driving factors of soil moisture,
and guiding artificial vegetation restoration and soil structure analysis of different desert
types in alpine cold desert regions. The remote sensing data is urgently recommended to
retrieve measurements of soil gravimetric water content in a large area for the vegetation
restoration of alpine cold regions in further work.

Author Contributions: Conceptualization, Z.Z., H.Y. and J.X.; methodology, H.Y., J.H. and B.Y.;
formal analysis, H.Y., J.H. and B.Y.; writing—original draft preparation, Z.Z.; writing—review
and editing, Y.Z., S.W. and J.X. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was financially supported by the Investigation on resource environment and
biodiversity of typical mountainous areas in different climatic zones (2019FY101601-2), the original
innovation project of the basic frontier scientific research program, Chinese Academy of Sciences
(ZDBS-LY-DQC031), the National Natural Science Foundation of China (42071259), the Natural
Science Foundation of Tibet Autonomous Region (XZ2019ZR G-61), Natural Science Foundation of
Xinjiang Uygur Autonomous Region (2021D01E01), the Young Talent Growth Fund Project of North-
west Institute of Ecological Environment and Resources, Chinese Academy of Sciences (FEYS2019016),
and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (2019430).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data is available from the corresponding author upon reason-
able request.



Water 2021, 13, 2652 13 of 15

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Evaluation Factor Interaction Results.

Soil Depth
/cm Interaction (C) Sum of q

Values Result Influence

0–10

X1 ∩ X2 = 0.8901 1.5017 C > Max(q (X1), q (X2)) Two-factor enhancement
X1 ∩ X3 = 0.6267 0.6209 C > Max(q (X1), q (X2)) Nonlinear enhancement
X1 ∩ X4 = 0.6267 1.2406 C > q (X1) + q (X4) Two-factor enhancement
X1 ∩ X5 = 0.6267 1.0981 C > Max(q (X1), q (X4)) Two-factor enhancement
X2 ∩ X3 = 0.8901 0.8820 C > Max(q (X1), q (X5)) Nonlinear enhancement
X2 ∩ X4 = 0.8901 1.5017 C > q (X2) + q (X4) Two-factor enhancement
X2 ∩ X5 = 0.8834 1.3592 C > Max(q (X2), q (X4)) Two-factor enhancement
X3 ∩ X4 = 0.6267 0.6209 C > Max(q (X2), q (X5)) Nonlinear enhancement
X3 ∩ X5 = 0.5154 0.4784 C > q (X3) + q (X5) Nonlinear enhancement
X4 ∩ X5 = 0.6267 1.0981 C > q (X4) + q (X5) Two-factor enhancement

10–20

X1 ∩ X2 = 0.9124 1.7320 C > Max(q (X4), q (X5)) Two-factor enhancement
X1 ∩ X3 = 0.8265 0.8583 C > Max(q (X1), q (X2)) Two-factor enhancement
X1 ∩ X4 = 0.8265 1.6470 C > Max(q (X1), q (X3)) Two-factor enhancement
X1 ∩ X5 = 0.8267 1.4510 C > Max(q (X1), q (X4)) Two-factor enhancement
X2 ∩ X3 = 0.9124 0.9433 C > Max(q (X1), q (X5)) Two-factor enhancement
X2 ∩ X4 = 0.9124 1.7320 C > Max(q (X2), q (X3)) Two-factor enhancement
X2 ∩ X5 = 0.9100 1.5360 C > Max(q (X2), q (X4)) Two-factor enhancement
X3 ∩ X4 = 0.8265 0.8583 C > Max(q (X2), q (X5)) Two-factor enhancement
X3 ∩ X5 = 0.7698 0.6623 C > Max(q (X3), q (X4)) Nonlinear enhancement
X4 ∩ X5 = 0.8267 1.4510 C > q (X4) + q (X5) Two-factor enhancement

20–30

X1 ∩ X2 = 0.9288 1.6646 C > Max(q (X4), q (X5)) Two-factor enhancement
X1 ∩ X3 = 0.7415 0.7648 C > Max(q (X1), q (X2)) Two-factor enhancement
X1 ∩ X4 = 0.7415 1.4742 C > Max(q (X1), q (X3)) Two-factor enhancement
X1 ∩ X5 = 0.7417 1.4192 C > Max(q (X1), q (X4)) Two-factor enhancement
X2 ∩ X3 = 0.9288 0.9552 C > Max(q (X1), q (X5)) Two-factor enhancement
X2 ∩ X4 = 0.9288 1.6646 C > Max(q (X2), q (X3)) Two-factor enhancement
X2 ∩ X5 = 0.9287 1.6096 C > Max(q (X2), q (X4)) Two-factor enhancement
X3 ∩ X4 = 0.7415 0.7648 C > Max(q (X2), q (X5)) Two-factor enhancement
X3 ∩ X5 = 0.6880 0.7098 C > Max(q (X3), q (X4)) Two-factor enhancement
X4 ∩ X5 = 0.7417 1.4192 C > Max(q (X3), q (X5)) Two-factor enhancement

30–40

X1 ∩ X2 = 0.9560 1.7390 C > Max(q (X4), q (X5)) Two-factor enhancement
X1 ∩ X3 = 0.7891 0.7930 C > Max(q (X1), q (X2)) Two-factor enhancement
X1 ∩ X4 = 0.7891 1.5710 C > Max(q (X1), q (X3)) Two-factor enhancement
X1 ∩ X5 = 0.7891 1.4881 C > Max(q (X1), q (X4)) Two-factor enhancement
X2 ∩ X3 = 0.9560 0.9610 C > Max(q (X1), q (X5)) Two-factor enhancement
X2 ∩ X4 = 0.9560 1.7390 C > Max(q (X2), q (X3)) Two-factor enhancement
X2 ∩ X5 = 0.9542 1.6561 C > Max(q (X2), q (X4)) Two-factor enhancement
X3 ∩ X4 = 0.7891 0.7930 C > Max(q (X2), q (X5)) Two-factor enhancement
X3 ∩ X5 = 0.7208 0.7101 C > Max(q (X3), q (X4)) Nonlinear enhancement
X4 ∩ X5 = 0.7891 1.4881 C > q (X4) + q (X5) Two-factor enhancement

40–50

X1 ∩ X2 = 0.9300 1.6661 C > Max(q (X4), q (X5)) Two-factor enhancement
X1 ∩ X3 = 0.7423 0.7382 C > Max(q (X1), q (X2)) Nonlinear enhancement
X1 ∩ X4 = 0.7423 1.4760 C > q (X1) + q (X4) Two-factor enhancement
X1 ∩ X5 = 0.7426 1.3299 C > Max(q (X1), q (X4)) Two-factor enhancement
X2 ∩ X3 = 0.9300 0.9283 C > Max(q (X1), q (X5)) Nonlinear enhancement
X2 ∩ X4 = 0.9300 1.6661 C > q (X2) + q (X4) Two-factor enhancement
X2 ∩ X5 = 0.9293 1.5200 C > Max(q (X2), q (X4)) Two-factor enhancement
X3 ∩ X4 = 0.7423 0.7382 C > Max(q (X2), q (X5)) Nonlinear enhancement
X3 ∩ X5 = 0.6210 0.5921 C > q (X3) + q (X5) Nonlinear enhancement
X4 ∩ X5 = 0.7426 1.3299 C > q (X4) + q (X5) Two-factor enhancement
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Table A1. Cont.

Soil Depth
/cm Interaction (C) Sum of q

Values Result Influence

0–50

X1 ∩ X2 = 0.9811 1.8660 C > Max(q (X4), q (X5)) Two-factor enhancement
X1 ∩ X3 = 0.8873 0.8859 C > Max(q (X1), q (X2)) Nonlinear enhancement
X1 ∩ X4 = 0.8873 1.7706 C > q (X1) + q (X4) Two-factor enhancement
X1 ∩ X5 = 0.8873 1.6609 C > Max(q (X1), q (X4)) Two-factor enhancement
X2 ∩ X3 = 0.9811 0.9813 C > Max(q (X1), q (X5)) Two-factor enhancement
X2 ∩ X4 = 0.9811 1.8660 C > Max(q (X2), q (X3)) Two-factor enhancement
X2 ∩ X5 = 0.9810 1.7563 C > Max(q (X2), q (X4)) Two-factor enhancement
X3 ∩ X4 = 0.8873 0.8859 C > Max(q (X2), q (X5)) Nonlinear enhancement
X3 ∩ X5 = 0.8127 0.7762 C > q (X3) + q (X5) Nonlinear enhancement
X4 ∩ X5 = 0.8873 1.6609 C > q (X4) + q (X5) Two-factor enhancement
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