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Abstract: The hydrologic data series are nonstationary due to climate change and local anthropogenic
activities. The existing nonstationary design flood estimation methods usually focus on the statistical
nonstationarity of the flow data series in the catchment, which neglect the hydraulic approach,
such as reservoir flood regulation. In this paper, a novel approach to comprehensively consider the
driving factors of non-stationarities in design flood estimation is proposed, which involves three main
steps: (1) implementation of the candidate predictors with trend tests and change point detection for
preliminary analysis; (2) application of the nonstationary flood frequency analysis with the principle
of Equivalent Reliability (ER) for design flood volumes; (3) development of a nonstationary most
likely regional composition (NS-MLRC) method, and the estimation of a design flood hydrograph
at downstream cascade reservoirs. The proposed framework is applied to the cascade reservoirs
in the Han River, China. The results imply that: (1) the NS-MLRC method provides a much better
explanation for the nonstationary spatial correlation of the flood events in Han River basin, and
the multiple nonstationary driving forces can be precisely quantified by the proposed design flood
estimation framework; (2) the impacts of climate change and population growth are long-lasting
processes with significant risk of flood events compared with stationary distribution conditions; and
(3) the swift effects of cascade reservoirs are reflected in design flood hydrographs with lower peaks
and lesser volumes. This study can provide a more integrated template for downstream flood risk
management under the impact of climate change and human activities.

Keywords: cascade reservoirs; design flood; nonstationary conditions; equivalent reliability; most
likely regional composition; dependence structure

1. Introduction

Traditional design flood for hydraulic structures such as reservoirs is based on a
stationary hypothesis, meaning that the driving factors (e.g., climate change, urbanization
and reservoir flood regulation) act to generate the hydrological variables in the same way
as in the past, present and likely the future [1–5]. However, the statistical characteristics
of flood series might alter due to a changing environment [6,7]. If hydrological engineers
do not fully consider the nonstationarity of the hydrological series, the results of the
conventional stationary flood frequency analysis would be inaccurate in practice [8]. López
and Francés [9] used climate and reservoir indices as external covariates in nonstationary
flood frequency analysis. Yan et al. [10] considered climate change and population growth
to explain the nonstationary properties of hydrological time series. Global warming, the
primary factor that drives climate change, has altered the meteorological regimes in some
regions [11,12].

Population growth will not only lead urbanization but also lead to increased water
consumption. Rapid urbanization over recent decades has significantly changed the
regional hydrological characteristics of catchments [13–15]. The river network systems have
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been obviously influenced by the process of urbanization, aggravating the hazards of floods
and water degradation [16,17]. Water consumption is broadly reflected in daily life and
productions, which can also affect the hydrological regime in the catchment. Reservoirs, one
of the effective facilities for flood control, hydropower generation and other social functions,
have gradually formed cascade reservoir systems [18,19]. The great impact brought by
reservoir flood regulation has tremendously altered the hydrological characteristics in
rivers [20]. To sum up, it is difficult to find a river basin that is not impacted by global
warming and anthropogenic activities, particularly in rapidly developing China.

Milly et al. have elucidated the challenges about how to deal with design floods
and water resources management under nonstationary conditions [1]. The commonly
used technique to gain the changing knowledge of flood regimes is nonstationary flood
frequency analysis [9,21]. Strupczewski et al. [22–24] presented a nonstationary approach to
at-site flood frequency analysis, in which the distribution parameters are represented as the
functions of explanatory variables to explain the nonstationary hydrological series [25,26].
Stasinopoulos and Rigby proposed “Generalized Additive Models for Location, Scale and
Shape” (GAMLSS), which is a powerful implement for nonstationary frequency analysis of
time series [27]. The meteorological factors (such as precipitation), population growth and
reservoir index (RI) are widely used as explanatory variables incorporated in GAMLSS
as covariates [9,28,29]. Taking RI for an example, López and Francés [9] considered the
effects of RI from two aspects: the data used for flood frequency analysis are observed
daily flow series’ that have been affected by upstream reservoirs; some of the reservoir
characteristic parameters, such as the catchment area and the reservoir total storage capacity,
are integrated to form RI. However, the RI series are piecewise constants in spite of
reservoir operation rules [30]. Although RI has been improved (by a hand of studies) for
greater performance in nonstationary model fitting, the strategies of reservoir operation
are hard to be quantified with the GAMLSS-based nonstationary flood frequency analysis
framework [8,31]. Therefore, the covariates grounded in (or modified by) RI are unable to
accurately consider the impact of cascade reservoir regulation.

The flood regional composition (FRC) combined with reservoir operation rules [32–34]
can overcome this drawback. The aim of the FRC is to study the flood generation mech-
anism at the investigated downstream site. The inflow of the target reservoir consists of
the first upstream reservoir inflow and all interval inflows between adjacent reservoirs.
Then, the outflow of the downstream reservoir can be obtained through the reservoir
operation rules. Among all possible compositions based on the water balance equation,
an appropriate FRC needs to be selected. Guo et al. [33] proposed the most likely regional
composition (MLRC) method and derived theoretical formula for triple cascade reservoirs.
The MLRC method presumes that FRCs are diverse with their occurrence probabilities,
which can be quantified by the multivariate probability density function (PDF) of flood
events occurring at all sub-basins, and the FRC with the largest occurrence probability
should be chosen for representing the actual spatial correlation of flood events. With a
rigorous statistical basis, the MLRC method has been successfully applied in the cascade
reservoirs in the upper Yangtze River [35]. In contrast to the nonstationary flood frequency
analysis applied with RI, the natural flow data restored by the observed data is employed
in the FRC framework. Although the MLRC-based approach takes into full consideration
both FRC and reservoir operation rules, it is based upon a stationary assumption condition
so that the other variables such as climate change and population growth are ignored.

Under nonstationary conditions, the copulas with time-varying dependence structures
have been primarily applied for modeling coincidence probabilities such as the joint
return periods [8,36–38]. In fact, the changing environments might also alter the statistical
correlation of FRC, and the dependence structure of the MLRC-based method is unable
to catch the nonstationary spatial correlation. Therefore, we propose a nonstationary
MLRC (NS-MLRC) method and then compare it with the MLRC method under stationary
distribution conditions. Equivalent Reliability (ER) [39] is employed in this study to
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concatenate the stationary and nonstationary design criteria grounded in a given return
period [40].

In a word, this study focuses on three objectives: (1) to propose a nonstationary
design flood estimation framework; (2) to develop and verify the NS-MLRC method; and
(3) to estimate design flood hydrographs at downstream sites. The rest of the paper is
organized as follows: Section 2 describes the methodology used in this study. Section 3
briefly introduces the study area and data acquisition. Section 4 analyzes the nonstationary
design flood estimation results. Section 5 discusses the nonstationary characteristics and
the worst regional flood composition. Finally, Section 6 ends with conclusions.

2. Methodology

The flowchart of nonstationary design flood estimation for cascade reservoirs is shown
in Figure 1, of which there are three main modules. The first module preliminarily analyzes
the nonstationarity of the flood volume series. The second module calculates the design
flood volumes based on nonstationary flood frequency analysis and ER criteria. The last
module solves the flood regional compositions using the NS-MLRC method and derives
the design flood hydrograph regulated by cascade reservoirs.

2.1. Preliminary Analysis Module

This module aims to manipulate the dataset, determine the candidate univariate and
multivariate distributions and covariates, and analyze the nonstationarity preliminarily.

2.1.1. Candidate Distribution Functions, Copulas and Covariates

For nonstationary univariate frequency analysis, the type of the probability distribu-
tion fY(·) determines which form of frequency curves will be generated. Table 1 lists five
probability distributions, namely Gamma, Weibull, Log-normal, Gumbel, and Pearson type
III, which are the alternative distributions for flood frequency analysis with the different
link functions [41–43]. On the other hand, the Archimedean copulas are widely used in
hydrological researches [8,33]. Three mono-parameter Archimedean copulas, i.e., Gumbel-
Hougaard, Frank and Clayton copulas (Table 2) are selected as the candidate copulas for
the time-varying dependence structure modelling.

The multiple covariates (i.e., explanatory variables, predictors or addictive terms)
indicating both population growth and climate change are incorporated to explain the
variation in nonstationary time series. The impact of urbanization and water consumption
on the hydrologic flood series is considered by the population (Pop) [37,43], while the
annual total precipitation (Prcp), one of the important hydro-climate factors, is applied to
quantify the effects of climate change [10,44].

2.1.2. Trend Test and Change Point Detection

The Mann–Kendall trend test [45–47] and Pettitt’s test [48] are widely used for trend
test and change point detection, which can be applied to analyze the nonstationarity of
time series [43,44]. A nonparametric multiple change point analysis approach designed by
Matteson and James [49] is used for change point analysis of multivariate time series in
this study.

2.2. Hydrologic Design Module

This module is responsible for nonstationary flood frequency analysis and design
flood volume estimation.
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Figure 1. Flowchart of nonstationary design flood estimation in response to climate
change, population growth and cascade reservoir regulation.
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Table 1. The univariate distributions used to model the flood series in this study.

Distribution PDF Distribution Moments Link Functions

Gamma fZ(z|µ, σ) = 1
(µσ2)1/σ2

z(1/σ2−1)e−z/µσ2)

Γ(1/σ2)

z > 0, µ > 0, σ > 0

E(Z) = µ
Var(Z) = µ2σ2

g1(µ) = ln(µ)
g2(σ) = ln(σ)

Weibull fZ(z|µ, σ) = σzσ−1

µσ exp
[
−
(

z
µ

)σ]
z > 0, µ > 0, σ > 0

E(Z) = µΓ(1/σ + 1)
Var(Z) = µ2

{
Γ(2/σ + 1)− [Γ(1/σ + 1)]2

} g1(µ) = ln(µ)
g2(σ) = ln(σ)

Log-normal fZ(z|µ, σ) = 1√
2πσ

1
z exp

[
− (log(z)−µ)2

2σ2

]
z > 0, µ > 0, σ > 0

E(Z) = ω1/2eµ

Var(Z) = ω(ω− 1)e2µ

ω = exp
(
σ2)

g1(µ) = µ
g2(σ) = ln(σ)

Gumbel fZ(z|µ, σ) = 1
σ exp

{
−
(

z−µ
σ

)
− exp

[
−
(

z−µ
σ

)]}
−∞ < z < ∞,−∞ < µ < ∞, σ > 0

E(Z) = µ + γσ
Var(Z) = π√

6
σ

g1(µ) = µ
g2(σ) = ln(σ)

Pearson type III fZ(z|µ, σ, ν) = 1
|σ|Γ(ν)

(
z−µ

σ

)ν−1
exp

[
−
(

z−µ
σ

)]
z > 0, σ 6= 0, ν > 0

E(Z) = µ + νσ, Var(Z) = νσ2

Cv = 2σ
|σ|ν1/2 , Cs = σν1/2

|σ|(ν+µσ)

g1(µ) = ln(µ)
g2(σ) = ln(σ)
g3(κ) = ν

Table 2. Three Archimedean copulas used for the time-varying dependence structure modelling in this study.

Copula Cumulative Distribution Function Parameter Link Function

Gumbel-Hougaard C(u, v|θc) = exp
(
−
(
(− ln u)θc + (− ln v)θc

)1/θc
)

θc > 1 gc(θc) = ln(θc − 1)

Frank C(u, v|θc) = − 1
θc

ln
(

1 + (e−uθc−1)×(e−vθc−1)
e−θc−1

)
θc 6= 0 gc(θc) = θc

Clayton C(u, v|θc) =
(
(u)−θc + (v)−θc − 1

)−1/θc θc > 0 gc(θc) = ln(θc)
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2.2.1. Time-Varying Moments

Generally, the nonstationary flood frequency analysis can be established by the time-
varying moments [50,51] based on the GAMLSS model [27]. Furthermore, the time-varying
moments can be improved by replacing time with other physical covariates which have
physical meanings [8,10]. The generalized linear model (GLM) [52] is implemented to
establish the function between distribution parameters and their predictors. To facilitate
understanding, a three-parameter time-varying distribution is taken as an example in the
remainder of this literature.

For the time-varying probability distribution function fY(yt|µt, σt, νt), let yt be the
response variable at time t (t = 1, 2, . . . , n) and the vector [µt, σt, νt] be the three time-
varying parameters. Then each parameter can be expressed as a function of the covariates
xt

i (i = 1, 2, . . . , m) via a link function as follows:

g1
(
µt) = α10 +

m
∑

i=1
α1ixt

i

g2
(
σt) = α20 +

m
∑

i=1
α2ixt

i

g3
(
νt) = α30 +

m
∑

i=1
α3ixt

i

(1)

where gi(·) are the link functions of distribution parameters for restricting the sam-
ple space [8]; αki(k = 1, 2, 3; i = 0, 1, 2, . . . , m) are the GLM parameters. The time-
varying moments are fitted by maximum penalized likelihood estimation [27,53]. The
centile curve [54] and worm plot [55] are used for the goodness-of-fit test of univariate
nonstationary distributions.

2.2.2. Selection of Time-Varying Distributions

The selection of the covariates and the type of probability distribution are the two
steps for seeking the best time-varying moment model. For one specific time-varying
distribution, the selection of covariates contains two aspects:

(1) The selection of the best GLM for a single parameter, which is conducted by the
forward procedure [27]. In the forward procedure, all variables not currently in the model
are considered for addition at each step, while all variables currently in the model are
individually considered for deletion.

(2) For a given distribution, there exist diverse strategies to select the GLMs used to
model all the parameters, i.e., µ, σ, and ν. The strategy proposed by Stasinopoulos and
Rigby [27] is executed for GLMs selection of all the distribution parameters.

Since the shape parameter ν is too sensitive to the data series, it is often assumed as
constant as other studies have done [10,56]. In practice, only the first two moments (i.e., µ
and σ) are taken to consider nonstationary data series. The optimal probability distribution
is selected from these five distributions mentioned in Table 1 based upon the Bayesian
information criterion (BIC) [57]:

BIC = −2ML + ln(n)× df (2)

where ML denotes the log-likelihood within a likelihood-based inferential procedure; df
represents the total effective degrees of freedom and; n is the length of the data series.
Comparing with the widely used Akaike information criterion (AIC) [58], the BIC has a
larger penalty on the over-fitting phenomenon.

After the above selection procedures is performed for each probability distribution,
then the distribution corresponding to the smallest BIC value is selected as the optimal
univariate distribution.
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2.2.3. Equivalent Reliability (ER)

The hydrologic design criteria according to the definition of return period under
stationary conditions might be modified to adapt nonstationarity [43,59]. To ensure that
the nonstationary flood frequency analysis is closely relevant to the practical condition, the
flood events can be linked with the design lifespan of hydraulic projects [39]. The project
reliability in the no flood event exceeds the specific design value zp during the life period
T1 − T2 of the project, which is defined as follows [59]:

RES
T1∼T2

=
T2
∏

t=T1

(1− pt) =
T2
∏

t=T1

FZ(zp|µ0, σ0, ν0)

RENS
T1∼T2

=
T2
∏

t=T1

FZ(zp|µt, σt, νt)

(3)

where pt is the exceedance probability at year t for design value zp; the superscript S and
NS represent stationary and nonstationary conditions, respectively.

If a project is designed to withstand a flood event that occurs once in m years under
stationary conditions, then the reliability within the design life period T1− T2 of the project
is given by

RES
T1∼T2

=
T2

∏
t=T1

(1− pt) = (1− 1
m
)

T2−T1+1
(4)

The ER supposes that the hydrological design values derived using stationary and
nonstationary flood control design standard should have the same reliability during the
life time of hydraulic structures [39]. Assuming that RES

T1∼T2
= RENS

T1∼T2
, the nonstationary

design value for a specific return period m is denoted by zT1∼T2
(m), which is measured by

the following equation:

T2

∏
t=T1

FZ(zT1∼T2
(m)|µt, σt, νt) = (1− 1

m
)

T2−T1+1
(5)

For given design life period T1 − T2 and return period m, the stationary ER criteria
is calculated by Equation (4) firstly, and then the nonstationary design value zT1∼T2

(m)
corresponding to m can be obtained eventually by solving Equation (5).

2.3. Design Flood Estimation Module

This module is used to establish the time-varying copula and derive the nonstationary
design flood hydrographs based on the NS-MLRC method.

2.3.1. Time-Varying Dependence Parameter of Copulas

Traditional joint hydrological frequency analysis assumes that the parameters of
both marginal distributions and copula functions are constant. Nevertheless, either the
individual series or the dependence structure between the multiple series might be also
nonstationary under changing environments [8,38]. To consider such possibility, a general
form of the joint distribution of multiple random variables (Yt

1, Yt
2, . . . , Yt

n) at any time
t, is built. According to Sklar’s theorem [60], the joint PDF can be expressed in terms of
its marginal distributions and the associated dependence function, i.e., the time-varying
copula can be expressed as follows:

HNS(yt
1 , yt

2, . . . , yt
n)= C[F1(yt

1|µ1
t, σ1

t, ν1
t), . . . , Fn(yt

n|µn
t, σn

t, νn
t)]

= C(ut
1 , ut

2, . . . , ut
n|θt

c)
(6)

where HNS(·) denotes the cumulative distribution function (CDF) that defines the depen-
dence structure of multiple variables; C(·) represents the CDF of copula function; F(·)
represents the CDF of the hydrological random variables; [µi

t, σi
t, νi

t] (i = 1, 2, . . . ., n) are
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the time-varying marginal distribution parameters; θt
c denotes the time-varying copula

parameter; and ut
1 , ut

2, . . . , ut
n are the marginal CDFs of the time-varying copula, which

should range on [0,1].
Like the univariate distribution parameters expressed in Equation (1), the time-

varying copula parameter θc
t can also be expressed as a GLM function of the covariates xt

i
(i = 1, 2, . . . , m) via a proper link function gc(·) as follows:

gc
(
θt

c
)
= β0 +

m

∑
i=1

βixt
i (7)

where gc(·) relies on the limits of θt
c (Table 2); βi(i = 0, 1, 2, . . . , m) are the GLM parameters.

The copula-based GAMLSS with non-random sample selection is applied in this study
so that the non-stationarities of marginal distributions can be considered [61,62]. The
time-varying dependence parameter of copula is estimated by a penalized likelihood
framework with integrated automatic multiple smoothing parameter selections [63]. It is
hard to calculate the distance between the fitted and the empirical frequency so that the
Probability Integral Transformation (PIT) is used for the goodness-of-fit test of time-varying
copula [64,65]. The forward procedure is applied for the selection of θc

t based on GLM,
while the BIC criteria is used to select the optimal copula function.

2.3.2. Nonstationary Most Likely Regional Composition (NS-MLRC) Method

The sketch of flood regional composition with cascade reservoirs is shown in Figure 2,
in which the random variables X1, X2, . . . , Xn,Y1, Y2, . . . , Yn and Z represent the natural
inflow of reservoirs A1, A2, . . . , An, intermediate basins B1, B2, . . . , Bn, and downstream
site C with the corresponding values x1, x2, . . . , xn, y1, y2, . . . , yn and z, respectively.

For the A1-A2 sub-partition, the inflow of downstream reservoir A2(x2) consists of
the inflow of reservoir A1(x1) and the inflow of intermediate basin B1(y1). The inflow of
downstream reservoir A2 is affected by the operation of upstream reservoir A1. Then
(x1, y1) is determined as the FRC of x2, in which inflow x1 can be turned into discharge
based on the operation strategy of reservoir A1. Thus, the discharge of reservoir A2 is
relevant to the FRC of A2, i.e.,(x1, y1). For the cascade reservoir system, all the FRC
(x1, y1, y2, . . . , yn, z) should satisfy the principle of the water balance equation [33]:

x1 + y1 = x2
x1 + y1 + y2 = x3

. . .
x1 + y1 + y2 + . . . + yn = z

(8)
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For the inherently stochastic mechanism of the flood generation, there exists multiple
compositions of (x1, y1, y2, . . . , yn, z) in compliance with the water balance equation.
The output of the MLRC method is the FRC with the largest occurrence probability. Never-
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theless, under changing environments, the FRC derived by the MLRC method may vary
over time. According to Sklar’s theorem, the time-varying copula is expressed as follows

f (xt
1, xt

2, . . . , xt
n−1, xt

n, zt) = c(ut
1, ut

2, . . . , ut
n−1, ut

n, vt|θt
c)·

n
∏
i=1

fXi (xi
t|µi

t, σi
t, νi

t)· fZ(zt|µZ
t, σZ

t, νZ
t)

(9)

where c(·) denotes the PDF of copula; ut
1, ut

2, . . . , ut
n−1, ut

n, vt are the corresponding
CDFs of xt

1, xt
2, . . . , xt

n−1, xt
n, zt, respectively; fXi (xi

t|µi
t, σi

t, νi
t) (i = 1, 2, . . . , n) and

fZ(zt|µZ
t, σZ

t, νZ
t) are the optimal time-varying marginal distributions of flood values

occurring at reservoirs A1, A2, . . . , An and downstream site C, respectively.
The composition (xt

1, xt
2, . . . , xt

n−1, xt
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The joint PDF f (xt
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n, zt) is maximized when its first-order derivative
equals zero so that the following equation should be satisfied:
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. . .
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2 + . . . + yt
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After deriving the composition (xt
1, xt

2, . . . , xt
n−1, xt

n, zt) from Equation (11), the
NS-FRC (xt

1, yt
1, yt

2, . . . , yt
n) can be obtained subsequently using NS-MLRC method. The

Newton iteration algorithm is adopted to solve Equation (11) [33].
According to the flood prevention standard of cascade reservoirs, the design flood hydro-

graphs of each sub-system are calculated by the peak and volume amplitude method [67,68]
based on the results of the NS-MLRC method. River channel flood routing and reser-
voir flood control regulations are adopted to derive the design flood hydrograph at the
downstream site C [34,69].

3. Study Area and Data

The Han River basin in China is located between 106–115◦ E and 30–35◦ N (see
Figure 3), and has a total length of 1530 km. As one of the most important tributaries of
the Yangtze River, The Han River rises in the southern of Qinling mountains, and flows
from the northwest to the southeast. This mountainous region lies in the humid zone with
a subtropical monsoonal climate. The annual average temperature is between 14 and 16 ◦C.
The annual precipitation varies from 700 to 1100 mm, and about 70 to 80% of the annual
precipitation occurs during the flood season (May to October), in which heavy rains in
early summer and continuous rainfall in autumn often cause major floods.
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3.1. Cascade Reservoirs

The Ankang (AK) and Danjiangkou (DJK) cascade reservoirs are located at the upper
and middle reach of the Han River basin, respectively. The AK reservoir was built in 1992
and provides hydropower generation and flood control, while the DJK reservoir was built
in 1973 and its primary functions are flood control, water supply, hydropower generation,
and irrigation. These two reservoirs are selected for the case study because their inflow
data is lengthy enough (over 60 years) and they have large storage capacities.

The basic information of AK and DJK cascade reservoirs is listed in Table 3. The
characteristic parameter values and current flood control operation rules of the AK and DJK
reservoirs are provided by the Changjiang (Yangtze River) Water Resources Commission
(CWRC), Ministry of Water Resource [70]. More information about AK and DJK reservoirs
can be found in the references [71,72].
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Table 3. Characteristic parameter values of the cascade reservoirs in the Han River basin.

Characteristic Parameters Ankang (AK) Reservoir Danjiangkou (DJK) Reservoir

Normal pool water level (m) 330 170
Flood limited water level in summer (m) 325 160
Flood limited water level in autumn (m) 325 163.5

Design flood water level (m) 333.1 172.2
Total storage capacity (billion m3) 3.34 33.91

Flood control capacity in summer (billion m3) 0.36 14.1
Flood control capacity in autumn (billion m3) 0.36 11.1

Installed hydropower capability (MW) 800 900
Flood control design standard (year) 1000 1000

3.2. Dataset

Four categories of data series were collected, including restored streamflow data,
observed hydro-climate data, population growth data and GCMs outputs from CMIP5.
The observed data series provide information up to 2020, while a projected dataset of the
future period from 2021 to 2095 is also used in this study.

(1) Restored mean daily streamflow data from both the inflow of AK reservoir and the
inflow of DJK reservoir were provided by the Hydrology Bureau of the Changjiang (Yangtze
River) Water Resources Commission during 1954–2020. The restoration of streamflow data
can be taken as a natural flow series that eliminates the regulation impact of reservoirs.

(2) Observed daily precipitation series from 27 stations during 1951–2020 were ob-
tained from the National Climate Center of the China Meteorological Administration
(source: http://data.cma.cn/ (accessed on 16 April 2021)).

(3) Given the unavailability of population data at the basin scale, the total registered
population of all the prefecture-level cities amidst in the Han River basin was collected.
These cities include Wuhan, Shiyan, Jingmen, Xiangyang in Hubei province, Hanzhong,
Ankang and Shangluo in Shanxi province, and Nanyang in Henan province. The annual
registered population data in Han River basin were obtained from the China Compendium
of Statistics 1949–2008 [73], the website of the National Bureau of Statistics of China (source:
http://www.stats.gov.cn/tjsj/ndsj/ (accessed on 1 July 2021)) and the websites of statistical
bureaus of the provinces and cities mentioned above. For future projection, the logistic
growth model that adapts the growth restriction resulting from limited natural resources is
applied to predict the growth of population [74]. Based on the logistic growth model, the
evolution of the population for the period 1950–2100 is illustrated in Figure 4.

(4) Future daily precipitation is simulated by GCM using climate change scenar-
ios [75]. Our lab research team, Tian et al. (2021) used 10 different GCMs (see Table 4)
and two representative concentration pathways (RCPs) of 4.5 and 8.5 from the IPCC Fifth
Assessment to project climate change for the Han River basin, which are employed in this
study [76–78]. The RCP 4.5 scenario represents a future of medium emission where climate
policies limit [79]. Without climate change policies, RCP 8.5 scenario presumes that high
emissions of greenhouse gases continue in the future.

http://data.cma.cn/
http://www.stats.gov.cn/tjsj/ndsj/


Water 2021, 13, 2687 12 of 24Water 2021, 13, x FOR PEER REVIEW 12 of 24 
 

 

 

Figure 4. Evolution of the population in Han River basin during 1950–2100. 

Table 4. Description of the 10 GCMs used in this study. 

Model Name Department Country 
Spatial Resolution (Number of Meridional Cells × Number of  

Latitudinal Lattices) 

BCC-CSM1.1(m) BCC China 128 × 64 

BNU-ESM GCESS China 128 × 64 

CanESM2 CCCMA Canada 128 × 64 

CCSM4 NCAR USA 288 × 192 

CNRM-CM5 CNRM-CERFACS Canada 256 × 128 

CSIRO-Mk3.6.0 CSIRO-QCCCE Australia 192 × 96 

GFDL-ESM2G NOAA-GFDL USA 144 × 90 

MRI-CGCM3 MRI Japan 320 × 160 

MPI-ESM-LR MPI-M Germany 192 × 96 

NorESM1-M NCC Norway 144 × 96 

The outputs of the GCMs not only involve the historical period before 2006 as a ref-

erence, but also cover 2021–2095 for future projection. A daily bias correction method is 

applied in this study for statistical downscaling [80]. Six statistics containing mean, stand-

ard deviation, 85th, 90th, 95th and 99th percentiles of future precipitation series are used 

to test the performance of the daily bias correction method [80]. Taking the BCC-CSM1-1 

model as an example, the bias of raw and the corrected model for daily precipitation series 

during 1991–2005 are illustrated in Figure 5, where the horizontal and vertical coordinates 

follow the 27 meteorological stations and the bias about the six statistics, respectively. 

These findings indicate the great performance of the statistical downscaling method so 

that it can be employed for future projection. Figure 6 shows the projected future precip-

itation under RCP 4.5 and RCP 8.5 scenarios. The arithmetic mean values of the 10 GCMs 

are employed in this study for nonstationary flood frequency analysis. 
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Table 4. Description of the 10 GCMs used in this study.

Model Name Department Country Spatial Resolution (Number of Meridional
Cells × Number of Latitudinal Lattices)

BCC-CSM1.1(m) BCC China 128 × 64
BNU-ESM GCESS China 128 × 64
CanESM2 CCCMA Canada 128 × 64
CCSM4 NCAR USA 288 × 192

CNRM-CM5 CNRM-CERFACS Canada 256 × 128
CSIRO-Mk3.6.0 CSIRO-QCCCE Australia 192 × 96
GFDL-ESM2G NOAA-GFDL USA 144 × 90
MRI-CGCM3 MRI Japan 320 × 160
MPI-ESM-LR MPI-M Germany 192 × 96
NorESM1-M NCC Norway 144 × 96

The outputs of the GCMs not only involve the historical period before 2006 as a
reference, but also cover 2021–2095 for future projection. A daily bias correction method
is applied in this study for statistical downscaling [80]. Six statistics containing mean,
standard deviation, 85th, 90th, 95th and 99th percentiles of future precipitation series
are used to test the performance of the daily bias correction method [80]. Taking the
BCC-CSM1-1 model as an example, the bias of raw and the corrected model for daily
precipitation series during 1991–2005 are illustrated in Figure 5, where the horizontal and
vertical coordinates follow the 27 meteorological stations and the bias about the six statistics,
respectively. These findings indicate the great performance of the statistical downscaling
method so that it can be employed for future projection. Figure 6 shows the projected
future precipitation under RCP 4.5 and RCP 8.5 scenarios. The arithmetic mean values of
the 10 GCMs are employed in this study for nonstationary flood frequency analysis.
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4. Result Analysis
4.1. Preliminary Analysis

According to the regulation characteristics of cascade reservoirs in the Han River
basin, the annual maximum 15-day (denoted as W15) flood volume series of the AK and
DJK reservoir are selected for flood frequency analysis. Indicated by the fitted trend lines,
the overall decreasing trends of W15 series in both AK and DJK reservoirs are shown in
Figure 7. The significance of trends in the flood volume series and explanatory variables
(i.e., Pop and Prcp) during 1954–2020 is analyzed by the Mann–Kendall test, and the
Pettitt’s test is employed to detect the change points in the W15 series, which is summarized
in Table 5. Findings show decreasing trends of the W15 series in both the AK and DJK
reservoirs and the detected change-points are located at 1985–1986 (p-value < 0.05) for
two reservoirs. The nonparametric multiple change point analysis method detects the
change point of the W15 series between AK and DJK reservoirs, which takes place in 1985
(p-value < 0.05). This preliminary analysis demonstrates that both the univariate series and
the dependence structure between the W15 series are all nonstationary.

Table 5. Results of trend test, change-point detection and multiple change point analysis for the W15 series for the years
1954–2020 (* means the maximum of the absolute value of the vector U).

Reservoir
Mann-Kendall Test Pettitt’s Test Nonparametric Multiple Change

Point Analysis

S p-Value Change Point/Year U * p-Value Change Point/Year p-Value

AK −555 0.0027 32/1985 564 0.0038
32/1985 <0.05DJK −613 0.0009 32/1985 596 0.0018
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4.2. Nonstationary Design Flood Volumes
4.2.1. Univariate Nonstationary Flood Frequency Analysis

Based on the selection procedure mentioned in Section 2.2.2, we assume that the lower
bounds of forward stepwise procedure for both µ and σ are constant (i.e., µ ~1, σ ~1), while
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the upper bounds are (Pop + Prcp). Table 6 lists the distribution parameters and BIC values
for W15 at the AK and DJK reservoirs, in which the time-varying BICNS and constant BICS
are also calculated. According to the minimum BICNS values, the Log-normal distribution
is the best one for the W15 series in both the AK and DJK reservoirs. To demonstrate
the fitting process, the detailed forward procedure applied in Log-normal distribution
parameter µ is displayed in Table 7. The worm plot and centile curves for the Log-normal
distribution are plotted in Figure 8. In the worm plot, all scatter points are within the 95%
confidence intervals, illustrating a good fit between the optimal distribution and empirical
frequency series. In terms of centile curves, the percentages of observation points within
the 5th, 25th, 50th, 75th and 95th intervals are 5.97%, 26.86%, 59.70%, 70.14% and 94.02%
(5.97%, 28.35%, 53.73%, 71.64% and 94.02%) for AK (DJK), respectively. The above results
indicate that the selected optimal Log-normal distribution is more adequate to model the
nonstationarity of the W15 series, and to express the similar type of GLMs for both AK and
DJK reservoirs. As presented in Table 6, the location parameter of Log-normal distribution
for modelling the W15 series is linked to Prcp and Pop while the scale parameter of W15
is constant. Furthermore, the BICNS value is always smaller than the BICS value for the
same distribution. Compared to the stationary distributions, the optimal nonstationary
Log-normal distribution can satisfactorily capture the nonstationarity in flood frequency
analysis for both the AK and DJK reservoirs.

Table 6. Distribution parameters and BIC values for W15 at the AK and DJK reservoirs.

Reservoir Probability
Distribution

Distribution Parameters
BICNS BICSln(µ) ln(σ) ν

AK Gamma 2.3979 + 0.2352 × Prcp − −0.1615 × Pop −0.9393 548.57 574.00
Weibull 2.6101 + 0.2199 × Prcp − −0.1562 × Pop 0.9802 554.79 574.55

Log-normal exp(2.2262 + 0.2456 × Prcp − −0.1544 × Pop) −0.9300 546.41 575.94
Gumbel exp(−0.2612 + 9.029 × Prcp − −6.2479 × Pop) 2.6700 575.45 596.75

Pearson type III 2.0914 + 0.2527 × Prcp − −0.1451 × Pop −0.9480 −0.7595 550.09 578.12
DJK Gamma 2.5707 + 0.2874 × Prcp − −0.1442 × Pop −1.0020 619.73 657.38

Weibull 2.6964 + 0.2749 × Prcp − −0.1185 × Pop 1.0350 626.52 656.78
Log-normal exp(2.4567 + 0.2967 × Prcp − −0.1508 × Pop) −0.9900 618.39 661.21

Gumbel exp(−54.34 + 19.15 × Pop) 3.2450 646.41 678.77
Pearson type III 2.4442 + 0.2977 × Prcp − −0.1510 × Pop −0.9903 −0.1016 622.57 660.86

Table 7. The detailed forward procedure of Log-normal distribution for W15 at the DJK reservoir.

Steps µ σ BIC

Step 1 Start µ ~1 σ ~1 661.21
+Prcp µ ~Prcp σ ~1 623.95
+Pop µ ~Pop σ ~1 656.82

Step 2 Start µ ~Prcp σ ~1 623.95
+Pop µ ~Prcp + Pop σ ~1 618.39

Step 3 Start µ ~Prcp + Pop σ ~1 618.39
+Prcp µ ~Prcp + Pop σ ~Prcp 615.69
+Pop µ ~Prcp + Pop σ ~Pop 622.47

Step 4 Start µ ~Prcp + Pop σ ~1 618.39
−Pop µ ~Prcp σ ~1 623.95
−Prcp µ ~Pop σ ~1 656.82

Optimal µ ~ Prcp + Pop σ ~1 618.39
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4.2.2. Design Flood Volumes in DJK Reservoir

The nonstationary design value is essential for handling changing environments in
considering future flood risk management. Since the total storage capacity of the DJK
reservoir is approximately 31 times larger than that of the AK reservoir (Table 3), the
DJK reservoir is considered as the key flood prevention project in the Han River basin.
If we assume that the design lifespan for the DJK reservoir is 100 years (from 1973 to
2072), then the years of 2021–2072 are chosen as future projections. The design flood
volume under nonstationary conditions is calculated by the ER criteria. Three scenarios,
i.e., stationary distribution condition (S1), nonstationary conditions based on RCP 4.5 (S2),
or RCP 8.5 (S3), are compared. It is worth noting that the S1 scenario only takes cascade
reservoir regulation into account while the nonstationary attributes of climate change and
population growth are omitted. To produce an intuitive comparison among these scenarios,
Figure 9 plots the stationary and nonstationary design flood volumes W15 for return period
m ∈ [2, 1000]. It should be noted that the design flood volumes in the stationary reference
scenario are estimated by the Pearson type III distribution and curve-fitting estimation
method recommended by the Ministry of Water Resources in China [32]. It is found that
the design flood volumes of S2 (S3) are lower than S1 when the return periods are less than
300 (200) years, respectively. The design flood volumes of S3 are always larger than S2.
Compared with the nonstationary distribution scenarios (i.e., S2 and S3), the method used
under the S1 scenario overestimates the flood volumes at a lower return period while the
extreme event is underestimated at a higher return period. For the 1000-year return period,
the design W15 in the DJK reservoir under S1, S2 and S3 scenarios are 20.041, 21.680 and
22.352 billion m3, respectively. These results indicate that climate change and population
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growth have greater impact on the features of future W15 under the S2 and S3 scenarios so
that the large uncertainty and flood hazard should be considered for future hydrological
design and water resources management.
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4.3. Design Flood Estimation at Downstream Site
4.3.1. Nonstationary Flood Regional Composition

After the estimation of the design flood volumes at the DJK reservoir, the flood regional
composition method can be applied for analyzing the flood generation mechanism of the
cascade reservoirs in the Han River basin. For nonstationary analysis of the dependence
structure, the forward selection procedure is implemented to model the dependence
parameter of three copulas, i.e., the Gumbel-Hougaard, Frank, and Clayton copula. The
lower and upper bounds of forward stepwise procedure for θc are constant (i.e., θc ~1)
and (Pop + Prcp), respectively. Table 8 summarizes the fitted dependence parameters and
the goodness-of-fit results for the optimal copulas under three scenarios for nonstationary
modeling of the W15 series in AK and DJK reservoirs. The p-KS(Z1) and p-KS(Z2) are p-
values of the KS test for the two Rosenblatt’s probabilities integral transformations Z1 and
Z2, which should be uniformly and independently distributed on [0,1]. The p-Kendall is the
p-value of the Kendall rank correlation test for Z1 and Z2. Table 8 shows that the p-KS(Z1),
p-KS(Z2) and the p-Kendall values are larger than 0.05, which statistically supports the
validity of the hypothetical models. The time-varying Gumbel-Hougaard copula is the
optimal copula to model the dependence structure of the W15 series by comparing the BIC
values. Obviously, the nonstationary spatial correlation of flood events can be sufficiently
explained by the NS-MLRC method.
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Table 8. Dependence parameters and goodness-of-fit results for candidate copulas in nonstationary modeling.

Copula θc p-KS(Z1) p-KS (Z2) p-Kendall BICNS BICS

Gumbel-
Hougaard

exp(−0.3019 + 0.2642
× Pop) + 1 0.674 0.464 0.783 1092.48 1128.20

Frank 5.515 + 1.144 × Pop 0.674 0.644 0.935 1095.81 1137.03
Clayton 0.9647 0.674 0.852 0.249 1096.95 1132.60

Figure 3b illustrates that the flood volumes of the DJK reservoir are decomposed to
the outflow of the AK reservoir and the inflow of the AK-DJK inter-basin. It is noted that
the return period of the design flood is 1000 years in both the AK and DJK reservoirs,
as shown in Table 3. The Log-normal distributions with explanatory variables shown in
Table 6 are applied as the marginal distributions of the time-varying copulas. Following
the procedures described in Section 2.3.2, the NS-MLRC results of the cascade reservoirs
can be estimated.

Based on the NS-MLRC method, the nonstationary FRC of the AK and DJK reservoirs
with the maximum occurrence probabilities are derived. It should be noted that there are
one hundred (from 1973 to 2072) FRCs derived by the NS-MLRC method, compared with
the individual result calculated by the MLRC method. Table 9 compares the FRC results
under three scenarios during design lifespan with the same flood prevention standard
according to ER. It is shown that the designed W15 in the AK reservoir (X1) of S2 and S3 is
greater than that of nonstationary cases, while the design W15 at the (Y1) are overestimated
when compared with S1.

Table 9. The FRC results derived by the MLRC (S1 scenario) and NS-MLRC (S2 and S3 scenarios) methods during design
lifespan with the same flood prevention standards based on ER. X1, Y1 and X2 represent the designed flood volume W15 at
the AK reservoir, inter-basin, and the DJK reservoir, respectively.

Method Scenario Volumes (Billion
m3) X1 Y1 X2

The MLRC S1 10.605 9.435 20.041
The NS-MLRC S2 Minimum 10.760 6.779 21.680

Median 12.990 8.693
Mean 12.960 8.724

Maximum 14.900 10.921
S3 Minimum 11.120 6.944 22.352

Median 13.210 9.144
Mean 13.120 9.232

Maximum 15.410 11.321

4.3.2. Design Flood Hydrographs at Downstream Site

The estimation of design floods at downstream sites can be obtained using design
inflow hydrographs and cascade reservoir regulations based on the derived FRC results.
Different FRCs may differ in terms of their occurrence probabilities [35], and the FRCs
with maximum occurrence probabilities among the lifespan of projects are analyzed. To
generate the design flood at the downstream site C (Figure 3), the current flood control
regulation and the commonly used Muskingum model provided by the CWRC are used.
After flood control operation, 1000-year design flood hydrographs for the downstream
sites under three scenarios with or without reservoir regulation are plotted in Figure
10. Table 10 lists the results of the 1000-year design floods under three scenarios with or
without reservoir regulation.
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Table 10. Comparison of 1000-year design floods under three scenarios with or without reservoir regulation.

Scenario Variable Reservoir Regulation Ankang Reservoir Danjiangkou Reservoir

S1 Qmax (m3/s) no 31,393 59,323
yes 28,093 −10.51% 30,000 −49.43%

W1 (billion m3) no 2.663 5.031
yes 2.515 −5.53% 2.398 −52.35%

W3 (billion m3) no 6.497 12.277
yes 6.141 −5.48% 5.594 −54.43%

S2 Qmax (m3/s) no 31,846 64,175
yes 30,236 −5.06% 30,000 −53.25%

W1 (billion m3) no 2.701 5.443
yes 2.550 −5.60% 2.592 −52.38%

W3 (billion m3) no 6.591 13.282
yes 6.200 −5.92% 5.875 −55.76%

S3 Qmax (m3/s) no 32,919 66,164
yes 31,171 −5.31% 30,000 −54.66%

W1 (billion m3) no 2.792 5.612
yes 2.632 −5.71% 2.592 −53.81%

W3 (billion m3) no 6.813 13.69
yes 6.526 −4.21% 6.350 −53.62%

Figure 10 shows that the 1000-year design flood hydrographs vary considerably
with less peaks and gentler flood processes at downstream sites after cascade reservoir
regulation. As shown in Table 10, the design floods of the cascade reservoirs decrease
significantly on account of the regulation of the AK and DJK reservoirs. Taking Qmax as
an example, under the S1, S2, and S3 scenarios, the 1000-year design Qmax of AK (DJK)
at downstream sites decreased by 10.97% (49.43%), 5.06% (53.25%) and 5.31% (54.66%),
respectively due to cascade reservoir regulation. Furthermore, the W1 and W3 flood
volumes are less than half of these without cascade reservoir regulation.

5. Discussion
5.1. Nonstationary Characteristics

Flood events differ according to climate, reservoir regulation, water consumption, and
land use, which are the potential driving forces that link to flood design. When traditional
hydrologic design criteria are extended for accommodating nonstationary conditions, the
future covariates should be obtained on account of the hydraulic lifespan. However, it is
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difficult to predict the changes of some variables, such as deforestation, so that other land
use indices are not considered in this study. Based on the case study in the Han River, the
influence of climate change, population growth and cascade reservoir regulation on the
design flood at the downstream site are discussed as follows.

Many studies have identified how the changing pattern brings diverse control on
a flow process [28,33], which can be classified as either a direct and/or indirect impact.
Climate change and population growth will alter the regional hydrological characteristics
of the basin, and affect the flood data series as well as the flood design (Figure 8) [43].
Compared to these prolonged effects, the cascade reservoir regulation clips the flood
peak and decreases the flood volumes in a transitory and swift way (Figure 10). Among
the multiple driving patterns, the cascade reservoir regulation plays a dominant role in
affecting the design floods at downstream sites. Furthermore, the cascade reservoir flood
control strategies can be re-regulated for adapting the slow-to-change non-stationarity
(such as climate change and population growth) in future work.

5.2. The Worst FRC during Reservoir Lifespan

In practical operations, the worst FRC during reservoir lifespan is more noteworthy
in comparison with the most likely FRC. The reservoir water level is at the flood limited
water level during flood season to provide sufficient storage for possible floods [81]. When
a flood event occurs, the highest water level during the period of reservoir flood regulation
can quantificationally indicate the flood hazard, such as dam-break risk, downstream
inundation risk and so on. In this study, the highest water level of the DJK reservoir during
the whole flood regulation process is applied as an indicator to specifically represent the
hazard of flood events.

Although the MLRC method has a strong statistical basis and generates a single
regional composition, it is unable to evaluate the composition of the worst regional flood.
The NS-MLRC method can include varying factors such as precipitation and population
growth. In this study, variant FRCs derived by the NS-MLRC method are used to amplify
the typical flood hydrograph, forming one hundred (from 1973 to 2072) FRC types. After
cascade reservoir regulation, the comparison of the highest water levels derived from
both the most likely FRCs and the worst FRCs at the DJK reservoir during its lifespan is
demonstrated in Table 11. It indicates that the highest water level estimated by the most
likely FRC is lower than that of the worst FRC, which means the worst FRC under the S2
and S3 scenarios is more adverse than the most likely FRC. In practice, the worst FRC in S3
is worthy of noting for future flood risk management.

Table 11. Comparison of the highest water level derived from both the most likely FRC and the worst
FRC during reservoir lifespan at the DJK reservoir for different scenarios.

Flood Regional Composition (FRC) S1 S2 S3

The most likely FRC 168.27 m 168.97 m 168.96 m
The worst FRC - 169.02 m 169.37 m

6. Conclusions

There is an increasing need to develop an effective design flood estimation framework
to deal with nonstationary data series caused by climate change and anthropogenic ac-
tivities. In this study, the univariate flood frequency analysis, nonstationary hydrologic
design criteria and the NS-MLRC method were adopted to derive the nonstationary design
flood volumes in the Han River. The design flood hydrographs at the downstream site
were estimated after cascade reservoir regulation. The main conclusions are summarized
as follows:

(1) The proposed NS-MLRC method can be effectively implemented as an extension of
the MLRC method for explaining the nonstationary spatial correlation of the flood events.
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The multiple nonstationary driving forces, i.e., climate change and population growth, can
be captured and precisely quantified by the proposed design flood estimation framework.

(2) The slow-to-change impacts of climate change and population growth are presented
in design flood volumes according to the nonstationary flood frequency analysis method
and ER criteria. The long-lasting driving factors imply the larger risks of the flood hazard.
The 1000-year design W15 of the DJK reservoir under the stationary distribution scenario
(S1), RCP 4.5-based (S2), and the RCP 8.5-based (S3) nonstationary scenario are 20.041,
21.680 and 22.352 billion m3, respectively.

(3) The swift effects of cascade reservoirs are reflected in design flood hydrographs
with lower peaks and less volumes based on the NS-MLRC method and flood control
operation rules. For instance, the 1000-year design Qmax of the AK (DJK) downstream site
under the stationary distribution scenario (S1), RCP 4.5-based (S2), and RCP 8.5-based (S3)
nonstationary scenario decrease by 10.97% (49.43%), 5.06% (53.25%) and 5.31% (54.66%),
respectively due to cascade reservoir regulation.

As the dominant element affecting flood design, the current cascade reservoir oper-
ation strategies can be improved to accommodate the slow-to-change nonstationarity in
further research.
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