
water

Article

Soil Moisture and Salinity Inversion Based on New Remote
Sensing Index and Neural Network at a Salina-Alkaline Wetland

Jie Wang 1 , Weikun Wang 1, Yuehong Hu 1, Songni Tian 1 and Dongwei Liu 1,2,*

����������
�������

Citation: Wang, J.; Wang, W.; Hu, Y.;

Tian, S.; Liu, D. Soil Moisture and

Salinity Inversion Based on New

Remote Sensing Index and Neural

Network at a Salina-Alkaline

Wetland. Water 2021, 13, 2762.

https://doi.org/ 10.3390/w13192762

Academic Editors: Ying Zhao,

Jianguo Zhang, Jianhua Si, Jie Xue

and Zhongju Meng

Received: 16 August 2021

Accepted: 25 September 2021

Published: 6 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China;
31815035@mail.imu.edu.cn (J.W.); 31915103@mail.imu.edu.cn (W.W.); 31915132@mail.imu.edu.cn (Y.H.);
31915039@mail.imu.edu.cn (S.T.)

2 Inner Mongolia Key Laboratory of River and Lake Ecology, Hohhot 010021, China
* Correspondence: liudw@imu.edu.cn; Tel.: +86-471-499-1436

Abstract: In arid and semi-arid regions, soil moisture and salinity are important elements to control
regional ecology and climate, vegetation growth and land function. Soil moisture and salt content
are more important in arid wetlands. The Ebinur Lake wetland is an important part of the ecological
barrier of Junggar Basin in Xinjiang, China. The Ebinur Lake Basin is a representative area of the
arid climate and ecological degradation in central Asia. It is of great significance to study the spatial
distribution of soil moisture and salinity and its causes for land and wetland ecological restoration
in the Ebinur Lake Basin. Based on the field measurement and Landsat 8 satellite data, a variety
of remote sensing indexes related to soil moisture and salinity were tested and compared, and the
prediction models of soil moisture and salinity were established, and the accuracy of the models
was assessed. Among them, the salinity indexes D1 and D2 were the latest ones that we proposed
according to the research area and data. The distribution maps of soil moisture and salinity in the
Ebinur Lake Basin were retrieved from remote sensing data, and the correlation analysis between soil
moisture and salinity was performed. Among several soil moisture and salinity prediction indexes,
the normalized moisture index NDWI had the highest correlation with soil moisture, and the salinity
index D2 had the highest correlation with soil salinity, reaching 0.600 and 0.637, respectively. The
accuracy of the BP neural network model for estimating soil salinity was higher than the one of
other models; R2 = 0.624, RMSE = 0.083 S/m. The effect of the cubic function prediction model for
estimating soil moisture was also higher than that of the BP neural network, support vector machine
and other models; R2 = 0.538, RMSE = 0.230. The regularity of soil moisture and salinity changes
seemed to be consistent, the correlation degree was 0.817, and the synchronous change degree was
higher. The soil salinity in the Ebinur Lake Basin was generally low in the surrounding area, high in
the middle area, high in the lake area and low in the vegetation coverage area. The soil moisture in
the Ebinur Lake Basin slightly decreased outward with the Ebinur Lake as the center and was higher
in the west and lower in the east. However, the spatial distribution of soil moisture had a higher
mutation rate and stronger heterogeneity than that of soil salinity.

Keywords: soil moisture and salinity; multispectral remote sensing; BP neural network; salina-
alkaline wetland; Ebinur Lake Basin

1. Introduction

Wetlands play an important role in the global ecosystem. Wetlands are easy to degrade,
and their shrinkage is more obvious in arid areas. Wetlands, as an important carrier of water
resources in arid areas, have irreplaceable ecological functions. In an arid area, wetlands
are very sensitive to changes in soil environmental factors. In arid and semi-arid areas,
changes in soil physical and chemical properties may lead to changes in wetland ecology
and climate [1]. Especially in arid and semi-arid areas, the changes in soil physical and
chemical properties may lead to regional ecological and climate change. Comprehensive
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stress of soil moisture and salinity is one of the principal factors that restrict wetland
restoration in arid and semi-arid areas [2]. For example, soil salinization exerts a strong
stress on the wetland and its surrounding vegetation, which leads to blocked vegetation
growth and land degradation to a certain extent, and may lead to abnormal succession of
ecological community, ultimately leading to the decline of wetland ecological function and
productivity [3,4]. Soil moisture is used to measure available water in the soil. Soil moisture
stress can result in serious desertification, degradation of vegetation productivity and
change of regional microclimate in waterless areas [5]. Therefore, it is of great significance
to accurately grasp the spatial distribution and formation of soil water and salt in arid and
semi-arid areas for controlling natural disasters, such as land desertification and drought,
as well as for protecting and restoring wetlands in arid and semi-arid areas.

In order to obtain detailed information of soil moisture and salinity distribution,
traditional measurements of soil properties require large numbers of experimental samples,
long-term observation of soil characteristics and surrounding vegetation information as
support, which requires a huge amount of manpower, financial resources and time [6] and
is not suitable for long-term monitoring due to the influence of weather. For example, in the
case of bad weather conditions (rainstorm, strong wind, etc.), the field survey work of field
surveyors is greatly hindered. Therefore, remote sensing has become an ideal technology
for identifying, monitoring and successfully retrieving soil moisture and salinity content
with its unique advantages of macroscopic, comprehensive, fast information acquisition,
short cycle and dynamic reflection of the changes on the ground [7]. Soil moisture is
usually retrieved by optical remote sensing or microwave remote sensing. In optical
remote sensing, the common method includes using Landsat, IKONOS or MODIS multi-
spectral data to establish the corresponding water index, drought index or vegetation index
(such as the most commonly used vegetation index—the normalized vegetation index,
NDVI [8,9]) to extract soil moisture [10–12]. It also contains the use of surface temperature
or thermal inertia to realize soil moisture inversion [13]. Sinha et al. studied the emission
characteristics of visible and near infrared spectra of alluvial soil, red loam and black cotton
soil, and found that the three soils under different conditions were negatively correlated
with soil moisture [14]. At the same time, some researchers have carried out studies on
soil moisture and soil multispectral characteristics, indicating that visible, mid-infrared
and near-infrared lights are significantly correlated with soil moisture [15]. Comparatively,
spectral data in the mid-infrared band have the highest correlation with soil moisture,
indicating the best effect. Ghulam et al. proposed the modified vertical drought index
(MPDI) to monitor soil water content by analyzing the spectral characteristic space of soil
water and found that although MPDI had a good monitoring effect, its application scope
was limited [16]. Subsequently, Zhang et al. proposed a new index, RDMI, to monitor
soil moisture based on visible red light and near-infrared spectral information. After
verification, they found that RDMI had a strong negative correlation with soil moisture
and the monitoring effect was better than that of the MPDI index [17]. Microwave remote
sensing inversion of soil moisture has a certain theoretical basis, which is that there is a
definite linear relationship between the backscattering coefficient and soil moisture [18].
Commonly used models are, among others, the Oh model, Dubois model and water cloud
model [19]. For remote sensing inversion of soil moisture, optical sensors have a spatial
resolution superior to microwave sensors and can also provide vegetation information. The
algorithm is mature, but it is restricted to regional studies due to atmospheric influence.
Microwave remote sensing can penetrate clouds and fog and observe all weather events.
It has a complete theory, but it is severely affected by vegetation and has poor spatial
resolution, which is suitable for large-scale research. Wang et al. studied the influence
of different surface roughness on soil water inversion [17]. Bindlish et al. retrieved soil
moisture by constructing microwave soil water scattering model (AIEM model) and found
that the correlation between AIEM model and actual soil moisture was as high as 0.95,
indicating that the microwave remote sensing model could well retrieve soil moisture under
certain conditions [20]. In addition, some new algorithms, such as neural network [21],
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support vector machine [22], have been integrated into soil moisture inversions. There
is a spatial correlation between soil salinity and soil moisture, and the inversion method
is similar to that of soil moisture. Currently, the commonly used method is to extract
salinity indices from multi-spectral data and establish a multivariate model with soil
salinity. In addition, innovative modeling techniques (such as genetic algorithm, etc.) are
also applied [21]. Microwave remote sensing cannot directly measure soil salinity, but its
surface reflectance has a significant correlation with soil conductivity [23]. In addition,
microwave remote sensing needs to remove the influence of vegetation in a vegetation-
covered area. Therefore, it is most suitable for areas with a bare ground surface.

The Ebinur Lake Basin is suffering from consequences of many severe salt dust storms
and the lake is drying up gradually, which is why we chose the Ebinur Lake Basin as the
study area. The purpose of this study was to: (1) find a fast index and method to calculate
the soil moisture and salinity of the Ebinur Lake Basin; (2) obtain the spatial distribution
law of soil moisture and salinity in the Ebinur Lake Basin; (3) explain the reason of the
difference of soil moisture and salinity distribution in the Ebinur Lake Basin. In this paper,
based on the field measured data, the indexes with high correlation with soil salinity and
soil moisture were selected from the common vegetation index, salinity index (including
our newly constructed indexes D1, D2) and water index. Prediction models that included
regression function model, neural network model and support vector machine regress
model were established, from which the models with high fitting accuracy and verification
accuracy were selected for spatial inversion of soil characteristics using Landsat 8. The
distribution rules and causes of soil water and salt in the study region were analyzed to
provide a scientific basis for wetland restoration in arid areas.

2. Materials and Methods
2.1. Study Area

The Ebinur Lake is the largest saltwater lake in Xinjiang, China, situated on the
southwest of the Junggar Basin in central Asia [24]. The Ebinur Lake Basin boundary used
in this study was obtained from DEM hydrological analysis. The Ebinur Lake Basin is
located between 44◦24′ N and 45◦12′ N, and between 81◦56′ E and 83◦51′ E (Figure 1a).
The Ebinur Lake is at the lowest elevation in the basin, about 189 m. The basin belongs to
the temperate continental arid climate, with annual average temperature of 7–8 ◦C, annual
average precipitation of 90.9 mm and evaporation of 1662 mm. The evaporation is much
higher than the precipitation. The Boltala River, Jinghe River, Kuitun River and Akeqisu
River flow into the lake from different directions, becoming the main water source for the
lake area [25], but the incomes are not sufficient, and the lake is shrinking day by day. From
2004 to 2015, the area of the Ebinur Lake in a dry and wet season decreased by 461.98 km2

and 322.04 km2, respectively [26], which greatly accelerated the desertification process in
the surrounding areas of the basin. The speed of desertification has reached 38 square
kilometers per year. The northwest part of the study area is the Alashan Pass, with 164 days
of annual heavy windy days, up to 185 days at most and 55.0 m/s of maximum wind
speed [27]. The Ebinur Lake has a high mineralization degree and a prosperous salt ion
content. The shrinkage of the lake surface results in the exposure of a large range of dry
lake bottom, a large amount of salt dust in the saltwater lake was dried up and exposed to
the ground, which causes serious soil salinization. The unique topography of the Ebinur
Lake Basin includes a variety of landscapes, such as rocky desert, gravel desert, desert,
salt desert, swamp and salty lake. The corresponding typical zonal soil is grey desert soil,
grey brown desert soil and aeolian sandy soil, and the intrazonal soil is salt (salinity) soil,
meadow soil and marsh soil [28] (Figure 1c). Built on keen wind and abundant salt sources,
sandstorms are very common in this area, and salt dust storms frequently erupt [21]. The
Ebinur Lake Basin has been the second largest source of salt and dust storms as well as
sandstorms in the world. The drought is intensifying, and the ecological environment
is deteriorating.
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Figure 1. General map of the study area: (a) location of the study area; (b) land use in the Ebinur Lake Basin; (c) soil type in
the Ebinur Lake Basin; (d) distribution map of soil sampling points.

2.2. Field Soil Sampling Experiment

Field soil experiment was made on 15 April 2017. In order to better map the soil
moisture and salinity situation in the Ebinur Lake Basin, 60 sampling points were randomly
distributed. The distribution of sampling points is shown in Figure 1d. At each sampling
point, Stevens Portable Hydra Data Reader (Hydra-Reader) was used to obtain soil basic
property data directly with Hydra probe, GPS was used to record longitude and latitude.
The probe was cleaned with a polishing cloth before use to avoid increasing the error.
In addition, soil specific calibration was required to ensure accuracy before measuring
soil moisture [29]. At each sample point, the metal probe of the instrument was inserted
vertically clockwise into the soil at a depth of about 5 cm to ensure the full contact of
the soil with the metal probe. The response time was 10–20 s. The data posted by the
instrument were the actual measured values, including soil type, soil temperature, soil
volumetric moisture (m3 m−3), soil electrical conductivity (S/m) and temperature-corrected
conductivity (S/m). Hydra-Reader has a data download service for later analysis. The
electrical conductivity can be regarded as another form of expression of soil salinity. In
this study, soil electrical conductivity was invoked as a measure of soil salinity, and soil
volumetric moisture was used as a measure of soil moisture.

In order to ensure the accuracy of the data at the sampling points, we measured each
sampling point for 6 times and took the average value as the final value. In addition, a
ground object spectrometer was used to measure the reflection spectrum of the sampling
point. In order to facilitate the correspondence with Landsat data, we selected the band
corresponding to the central wavelength of Landsat band range in the reflection spectrum
as the calculation index, so as to reduce the scale problems caused by a direct use of Landsat
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images. For the measured data of 60 sampling points, we randomly select 35 points as
regression fitting data and 25 points as verification analysis data.

2.3. Satellite Image and Data Processing

The Landsat 8 OLI has become the data source of this study because of its convenient
acquisition, moderate spatial resolution and rich band information. Its spatial resolution
is 30 m, and it is free to access, including 9 bands of information, which are coastal, blue,
green, red, near infrared, two short-wave infrared, two thermal infrared, panchromatic
(15 m resolution) and cirrus band [30]. The date of image acquisition was 19 April 2017,
which was close to the field experiment time, reducing the time error and providing more
accurate soil water and salt information. The datum was obtained from the official website
of the U.S. Geological Survey (USGS, https://earthexplorer.usgs.gov/ accessed on 30 July 2019).

Landsat 8 OLI data were pre-processed by the ENVI 5.3 software, including radiation
calibration, atmospheric correction and mask. The ENVI 5.3 FLAASH module was used
for atmospheric correction.

2.3.1. Calculation of Spectral Index

For this study, we selected some spectral indices with a certain universality and
applicability related to water and salt, used by previous research institutes, as shown
in Table 1. The criterion for index selection is to select those indexes that have been
successfully applied in the soil water-salt inversion based on Landsat 8 data, or indexes
whose application regions are in arid and semi-arid areas. SI, SI1, SI2, SI3 (four different
salinity indices), S1, S2, S3, S4, S5, S6 (six different salinity calculation indicators) and
NDSI (normalized salinity index) are salinity indices calculated from remote sensing data,
from which surface salinity information can be obtained [31,32]. OLI_SI (Landsat 8 OLI
salinity index) is a soil salinity index in an irrigation region based on Landsat 8 data.
It has a strong correlation with conductivity EC [33]. SIvir (visible light remote sensing
salinity index) is a newly developed spectral salinity index, which has the potential to
reveal soil salinity in arid climatic conditions. Int1 and Int2 are intensity indices in the
visible light range, BI is a brightness index [34], which can highlight and detect different
soil salinity levels [35]. NDWI (normalized water index) and LSWI (land surface water
index) are water body indices, which can be used to identify land surface water body and
to distinguish moisture in soil. VCI is a vegetation status index, which uses crop growth
changes to reflect the degree of water information threatening crops in the region, so that it
can express the regional soil moisture difference [36]. VSDI (visible and shortwave infrared
drought index) is a surface drought index, which is suitable for different land cover types
and less affected by vegetation. It can reflect the difference of surface soil moisture from
another perspective [37]. ATI is an apparent thermal inertia, which can reflect the thermal
characteristics of soil by the difference of surface temperature. It is closely related to soil
moisture and has a useful application in bare soil or low vegetation coverage area [38]. EVI
(enhanced vegetation index), NDVI (normalized vegetation index), SAVI (soil-adjusted
vegetation index) and OSAVI (optimized soil-adjusted vegetation index) are widely used
vegetation indices, which can reflect the growth status of vegetation and soil characteristics.

D1 and D2 are the spectral indices newly created for the soil salinity inversion in arid
regions based on the Landsat 8 spectral characteristics of the arid region. We analyze the
correlation between various bands of Landsat 8 data and the measured data, select several
bands with high correlation, and combine them together. The difference between D1 and
D2 is that the weight coefficients of each band is different. The weight coefficients are two
sets of data obtained by analyzing the regional environment of the Ebinur Lake Basin.

The above spectral indices were calculated in the Band Math module of ENVI5.3 software.

https://earthexplorer.usgs.gov/
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Table 1. Spectral indices and their calculation formulas.

Index Formula Reference Index Formula Reference

BI
√

R2
Red + R2

NIR [31] S6 RNIR × RRed
RGreen

[31]

EVI 2.5× RNIR−RRed
RNIR+6×RRed−7.5×RBlue+1 [34] SI

√
RBlue + RRed [32]

SAVI 1.5× RNIR−RRed
RNIR+RRed+0.5 [39] SI1

√
RGreen × RRed [40]

Int1 (RGreen + RRed)/2 [34] SI2
√

R2
Green + R2

Red + R2
NIR [40]

Int2 (RGreen + RRed + RNIR)/2 [34] SI3
√

R2
Green + R2

Red [40]

OLI_SI 50× R2
Coastal − RBlue − RGreen − RRed [33] NDWI RGreen−RNIR

RGreen+RNIR
[11]

OSAVI RNIR−RRed
RNIR+RRed+0.6 [41] LSWI RNIR−RSWIR

RNIR+RSWIR
[42]

S1 RBlue/RRed [31] VCI NDVIi−NDVImin
NDVImax−NDVImin

[43]

S2 RBlue−RRed
RBlue+RRed

[31] VSDI 1− RSWIR−RBlue
RRed−RBlue

[37]

S3 RGreen × RRed
RBlue

[31] ATI 1−α
Td−Tn

[38]

S4
√

RBlue × RRed [31] SIvir 2× RGreen − RRed − RNIR [35]

S5 RBlue × RRed
RGreen

[31]

D1 −8.5× RCoastal + 15× RBlue − 6× RGreen
D2 −7× RCoastal + 12× RBlue − 2.5× RGreen − 1.5× RRed

Note: RCoastal, RGreen, RBlue, RRed, RNIR, RSWIR are the corresponding bands of Landsat 8, NDVImin is NDVI minimum, NDVImax is
NDVI maximum, the pixel-by-pixel value is NDVIi, α is full-band reflectance; Td, Tn are daytime and night temperatures on the same
day, respectively.

2.3.2. Inversion of Surface Temperature

The remote sensing inversion method of land surface temperature adopted in this
study was the radiation transfer equation method. Its basic principle is to divide the
radiation received by the sensor into three parts: surface, up-going and down-going
radiation. If the intensity of atmospheric radiation is estimated, the surface radiation
intensity can be obtained, and using it, the surface temperature can be calculated. The
calculation formula is the Equations (1)–(3) [41].

L = [εB(Ts) + (1− ε)Ldown]τ + Lup (1)

B(Ts) =
[
L− Lup − τ(1− ε)Ldown

]
/τε (2)

Ts = K2/ ln
(

K1

B(Ts)
+ 1
)

(3)

where L is surface specific emissivity; Ts is surface temperature, the unit is K; B(Ts) is black-
body thermal radiation brightness, Lup and Ldown are upward and downward atmospheric
radiations, respectively; T is atmospheric transmittance in the thermal infrared band. For
Landsat 8 TIRS, K1 = 774.89 w/(m2 × µm × sr), K2 = 1321.08 × K1; τ, ε are available on
the NASA website (http://atmcorr.gsfc.nasa.gov/ accessed on 30 July 2019).

2.3.3. Construction of Temperature Vegetation Drought Index (TVDI)

TVDI is based on the simplified NDVI-Ts feature space, which is a parameter to
represent soil surface characteristics. They consider that there is a certain soil moisture
isoline in the characterized space [44]. In NDVI-Ts space, the pixel drought index is 1
on the dry edge, representing complete water shortage; 0 on the wet edge, representing
complete water stress; and 0–1 on the data points between the dry and wet edges. The
greater the TVDI value, the more serious the relative drought. The TVDI calculation is
presented in Equation (4).

TVDI =
TS − TSmin

TSmax − TSmin
(4)

http://atmcorr.gsfc.nasa.gov/
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where Ts is the surface temperature of a pixel; Tsmin is the lowest temperature (wet edge
temperature) at the NDVI value of the pixel; and Tsmax is the highest temperature (dry
edge temperature) at the NDVI value of the pixel.

By calculating the maximum and minimum surface temperature corresponding to
each NDVI range at a certain interval, the equation of dry edge and wet edge can be fitted
(Equations (5) and (6)).

Tsmax = a1 ×NDVI + b1 (5)

Tsmin = a2 ×NDVI + b2 (6)

2.3.4. Spike Cap Transformation

Spike cap transform is an orthogonal transformation of a remote sensing image,
projecting image information into multi-dimensional space to obtain six components
that are important to vegetation, soil and water body, such as greenness, humidity and
brightness, and their shapes are similar in multidimensional space. Its shape in multi-
dimensional space is the same as that of a hat, so it is called spike cap transformation. Spike
cap transformation has been applied to observe the relationship between soil moisture,
vegetation cover and canopy conditions [45]. Humidity band can be used to extract soil
moisture information. For Landsat 8 OLI images, the conversion coefficient of humidity
component is shown in Equation (7).

Wetness = 0.1511B2 + 0.1973B3 + 0.3283B4 + 0.3407B5 − 0.7117B6 − 0.4559B7 (7)

where B2, B3, B4, B5, B6 and B7 are Landsat 8 blue band (Blue), green band (Green), red band
(Red), near infrared band (NIR), short wave infrared 1 (SWIR1) and shortwave infrared 2
(SWIR2), respectively.

2.4. BP Neural Network Model

BP neural network is a multilayer feedforward neural network. Its main characteristics
are forward signal transmission and back error propagation. In forward transmission,
the input signal is processed layer by layer from the input layer to the output layer. The
state of neurons in each layer only affects the state of neurons in the next layer [46]. If
the output layer cannot get the expected output, it will turn to back propagation, adjust
the weights and thresholds of the network according to the prediction error, so that the
predictive output of BP neural network keeps approaching the expected output [47]. Before
BP neural network prediction, the network must be trained to have associative memory and
prediction ability. The main steps are as follows: (1) network initialization; (2) hidden layer
output calculation; (3) output layer output calculation; (4) error calculation; (5) threshold
updating. The commonly used algorithm of BP neural network model is gradient descent,
which adjusts the changes of threshold and weight of neurons along the direction of
negative gradient [48].

It can be seen from the above process that the BP neural network model has strong
nonlinear mapping ability and can establish a multivariate nonlinear relationship between
independent variables and dependent variables, so it is widely used in remote sensing
monitoring. Soil water content is a complex nonlinear coupling system, which is influenced
by topography, artificial irrigation and natural environment. Only by fully considering
the influence of various factors can the inversion accuracy of soil water content and salt
content be improved.

Depending on the characteristics of fitting non-linear function, the BP neural network
constructed in this study determined an input parameter, namely various spectral indices,
an output parameter, namely soil volume moisture or temperature-corrected conductivity.
The BP neural network structure was 1–3–1; that is, there were one node in the input layer,
three nodes in the hidden layer and one node in the output layer. All operations were
conducted in MATLAB R2015.
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2.5. SVR Support Vector Machine Regress Model

Support vector machine (SVM), such as multilayer perceptron network and radial basis
function network, can be employed to pattern classification and nonlinear regression [49].
The core idea of an SVM is to establish a classification hyperplane as a decision surface to
maximize the isolation edge between positive and negative examples. The theoretical basis
of SVR is statistical learning theory, and more precisely, SVR is an approximate realization
of structural risk minimization. SVR follows the principle of structural risk minimization
and shows advantage in solving small sample, non-linear and high-dimensional pattern
recognition problems. Unlike traditional machine learning methods, such as artificial
neural networks, which follow the principle of empirical risk minimization, SVR avoids
over-fitting, poor local optimization ability, difficulty in parameter adjustment and slow
convergence. In support vector machine regression, penalty parameter C and nuclear
parameter γ determine the complexity, accuracy and type of the regression model.

The introduction of kernel function can greatly improve the ability of support vector
machines to deal with nonlinear problems, and at the same time maintain the intrinsic
linearity of support vector machines in high dimensional space. The commonly used kernel
functions mainly include linear kernel function, polynomial kernel function, radial basis
kernel function and sigmoid kernel function. Since different kernel function types and
parameters in SVR have a great influence on the generalization ability of the model, it is
necessary to study and determine the kernel function types and parameters. Gaussian
radial basis kernel function (RBF kernel function) has a good generalization ability and can
support nonlinear regression [50]. In this study, we selected the RBF kernel function.

The grid method is to try the combination of various penalty parameters and RBF
kernel function parameters in a certain range, and then conduct data training for each
parameter combination and select the parameter combination with the best effect as the
optimal parameter [51]. During data training, the k-fold cross-validation method was
adopted. N-1 data were set as training data, and the rest were set as test data. The general-
ization error was determined by the mean value of MSE (root mean square error) after K
times of calculation. The grid method parameter optimization is a violent enumeration
method; if the amount of data is very large, it is a time-consuming approach, but it is also a
very safe approach.

The specific operation was implemented by running the LIBSVM toolkit in the envi-
ronment of MATLAB R2015b.

2.6. Correlation Analysis Model

Correlation analysis is a statistical analysis method that studies the correlation between
two or more random variables with equal statuses. It is a process of describing the closeness
of the relationship between objective things and using appropriate statistical indicators.
The degree of correlation between the two variables is represented by the correlation
coefficient r. The value of the correlation coefficient r is between −1 and 1; it can be any
value within this range. In the case of positive correlation, the r value is between 0 and
1, and the scatter plot is obliquely upward. In this case, one variable increases, and the
other variable increases. When the correlation is negative, the r value is between −1 and 0,
and the scatter plot is diagonally downward, at which point one variable increases and
the other variable decreases. The closer the absolute value of r is to 1, the stronger the
correlation between the two variables, and the closer the absolute value of r is to 0, the
weaker the degree of association between the two variables.

2.7. Statistical Analysis Method

The field observation data were randomly divided into analysis data and verification
data, their ratio being 2:1. The basic statistical analysis of the analysis data included
correlation analysis, regression analysis, linear and non-linear model fitting accuracy
analysis. Among them, Pearson correlation coefficient was used as the correlation index,
and its significance test was conducted. Regression analysis refers to a statistical analysis
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method that determines the quantitative relationship between two or more variables.
Regression analysis was performed using analytical data to establish a regression model.
The model with superior fitting accuracy was validated and analyzed with validation data,
and the index used was root-mean-square error.

3. Results
3.1. Quantitative Analysis Results of Soil Electrical Conductivity and Remote Sensing Index
3.1.1. Correlation between Soil Electrical Conductivity and Remote Sensing Index

The correlation between remote sensing index and soil conductivity is given in Table 2.
From Table 2, it can be deduced that: (1) The correlation between B1, B2, B3, B4 in Landsat
8 satellite data and soil salinity was greater than 0.4, so we chose these three bands to
build the new salinity indices D1 and D2. (2) The salinity index D2 established for this
study had the highest correlation with soil conductivity, followed by OLI_SI. The indexes
with correlation coefficients greater than 0.6 were also D1 and Landsat 8 band 1, and their
significance was less than 0.001. (3) In Landsat 8 OLI bands, bands 1 and 2 had the highest
correlation with soil conductivity, followed by bands 3, 6 and 7, which had almost no
correlation. (4) The correlation between vegetation index and soil conductivity was less
than 0.4, and the correlation was poor. (5) The correlation between intensity indexes Int1,
Int2 and soil conductivity was 0.467 and 0.414, respectively, with good significance, but
the correlation of brightness index was poor. (6) The correlation between salinity index
and soil conductivity was uneven. The correlation between OLI_SI, S4, S5, D1, D2 and soil
conductivity was higher than 0.5, with good significance, while the correlation between S6
was very low and not significant.

Table 2. Correlation coefficients between soil electrical conductivity and remote sensing indexes.

Index R Index R Index R

B1 0.612 ** OSAVI −0.358 ** S5 0.521 **
B2 0.589 ** Int1 0.467 ** S6 0.127
B3 0.507 ** Int2 0.414 ** SI 0.495 **
B4 0.425 ** BI 0.349 ** SI1 0.469 **
B5 0.257 * NDSI 0.361 ** SI2 0.404 **
B6 0.046 OLI_SI 0.637 ** SI3 0.465 **
B7 −0.066 S1 0.303 * SIvir 0.341 **

EVI −0.274 * S2 0.312 * D1 0.630 **
SAVI −0.359 ** S3 0.330 ** D2 0.650 **
NDVI −0.361 ** S4 0.515 ** ASI 0.391 **

Note: B1, B2, B3, B4, B5, B6 and B7 are Landsat 8 coastal band, blue band, green band, red band, near infrared
band, short wave infrared 1 and shortwave infrared 2, respectively; * p < 0.05; ** p < 0.01.

3.1.2. Regression Model of Soil Electrical Conductivity

The salinity index D2 was selected as the remote sensing index with the highest
correlation and significant correlation with soil electrical conductivity. The regression
model with soil conductivity was established. The specific parameters of regression analysis
are shown in Table 3, including model formula, fitting accuracy and verification error.

In Table 3, it can be observed that: (1) The regression model of salinity index D2 and
soil conductivity had good fitting accuracy. Except for the exponential model, the fitting R2

of other models was greater than 0.5, and the validation error RMSE was less than 0.1 S/m.
(2) The BP neural network model had the best fitting accuracy—R2 was 0.624, RMSE was
0.0830 S/m (Figure 2a, verification figure)—followed by cubic function model, where R2

was 0.620, and RMSE was 0.0834 S/m. (3) The fitting accuracy of linear function, quadratic
function and SVR model was also greater than 0.6, and RMSE was less than 0.09. (4) In
addition, it can be found that although the fitting accuracy of the cubic function model and
the quadratic function model was high, the regression coefficients showed the over-fitting
phenomenon, and the significance was not high. Therefore, in the final model selection,
these two models were excluded. We selected the BP neural network model.
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Table 3. Regression model and accuracy of remote sensing index and soil conductivity.

Variable Formula Sig R2 RMSE

D2

y = 0.008e13.388x Sig1 = 0.003, Sig2 = 0.818 0.497 0.1213
y = 1.195x− 0.078 Sig1 = 0.000, Sig2 = 0.035 0.607 0.0855

y = 0.179 ln(x) + 0.456 Sig1 = 0.000, Sig2 = 0.000 0.573 0.0936

y = −0.796x2 + 1.481− 0.100
Sig1 = 0.261, Sig2 = 0.048

Sig3 = 0.260 0.609 0.0862

y = −25.186x3 + 13.449x2 − 0.928x + 0.021
Sig1 = 0.074, Sig2 = 0.074
Sig3 = 0.074, Sig4 = 0.062 0.620 0.0834

y = 3.431x2.077 Sig1 = 0.001, Sig2 = 0.092 0.503 0.0928
BP Sig = 0.000 0.624 0.0830

SVR Sig = 0.001 0.497 0.1213

Note: Sig is the significance of the regression coefficient. If its value is 0.01 < Sig < 0.05, the difference is significant, and if Sig < 0.01, the
difference is extremely significant. Sig1, Sig2, Sig3, Sig4 are the significances of the first, second, third and fourth coefficient, respectively.

Figure 2. (a) Comparison of measured and predicted soil conductivity; (b) comparison of measured and predicted
soil moisture.

3.2. Quantitative Analysis Results of Soil Volumetric Moisture and Remote Sensing Index
3.2.1. Correlation between Soil Volumetric Moisture and Remote Sensing Index

The correlation between remote sensing index and soil volumetric moisture is pre-
sented in Table 4. From Table 4, it can be inferred that: (1) NDWI had the highest and
significant correlation with soil volumetric moisture, with R of 0.600, followed by the
humidity component of the Spike cap transformation, with R of 0.572. (2) The correla-
tion between Landsat 8 band and soil volumetric moisture was on a general level, B1
and B2 had better correlation, bands 10–11 had almost no correlation, B1–4 had positive
correlation, and B5–B7 had negative correlation. (3) Vegetation indices NDVI, EVI, SAVI
and VCI negatively correlated with soil volumetric moisture, with good correlations of
−0.476, −0.442, −0.498 and −0.476, respectively. (4) LSWI had a low correlation with soil
volumetric moisture, while TVDI, VSDI and ATI had poor and insignificant correlation.
LST had almost no correlation with surface temperature.
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Table 4. Coefficient of correlation between soil volumetric moisture and remote sensing indexes.

Index R Index R

B1 0.468 ** EVI −0.442 **
B2 0.435 ** SAVI −0.498 **
B3 0.330 ** NDWI 0.600 **
B4 0.209 LSWI 0.358 **
B5 −0.063 TVDI −0.118
B6 −0.288 * VCI −0.476 **
B7 −0.350 ** VSDI 0.231
B10 −0.011 ATI 0.171
B11 0.027 Wetness 0.572 **

NDVI −0.476 ** LST −0.006

Note: * p < 0.05, ** p < 0.01.

3.2.2. Regression Model of Soil Volumetric Moisture

Among the remote sensing indexes selected by this research institute, NDWI had the
highest correlation with soil volumetric moisture. Therefore, the regression model of soil
volumetric moisture was established using NDWI. The exact parameters and accuracy
of the regression model are shown in Table 5. In Table 5, we can see that: (1) The fitting
accuracy of the cubic function model was the best—R2 was 0.538 and RMSE was 0.230—
followed by the SVR model and the quadratic function model. (2) The SVR model was not
suitable as an inversion model because the fitting R2 was high, but the verification error
RMSE was the largest. (3) The fitting accuracy of exponential function was the lowest, and
the fitting effect of the primary function was not good. (4) The fitting R2 of the quadratic
function was close to that of the cubic function, but the RMSE of the cubic function was
smaller (Figure 2b for verification). The significance of the regression parameters was not
very different. Therefore, the cubic function was chosen as the remote sensing inversion
model of soil volumetric moisture.

Table 5. Regression model and accuracy of remote sensing index and soil volumetric moisture.

Variable Formula Sig R2 RMSE

NDWI

y = 1.105e9.185x Sig1 = 0.028, Sig2 = 0.000 0.323 0.277
y = 4.852x + 1.163 Sig1 = 0.001, Sig2 = 0.000 0.418 0.331

y = 33.002x2 + 14.345x + 1.727
Sig1 = 0.000, Sig2 = 0.000

Sig3 = 0.000 0.531 0.275

y = −105.09x3 − 15.496x2 + 7.906x + 1.501
Sig1 = 0.000, Sig2 = 0.003
Sig3 = 0.021, Sig4 = 0.000 0.538 0.230

BP Sig = 0.001 0.502 0.277
SVR Sig = 0.003 0.534 0.389

3.3. Correlation Analysis of Soil Moisture and Salinity

The correlation analysis between soil electrical conductivity and volumetric moisture
is shown in Figure 3. From Figure 3, it can be learned that the rules of variation of
soil electrical conductivity and soil volumetric moisture tended to be the same, and the
correlation degree was 0.817, which meat the synchronous change degree was higher. In
other words, the correlation degree between them was higher. In addition, the change
rate of soil volumetric moisture at most observation points was higher than that of soil
electrical conductivity. The spatial variation rate of soil volumetric moisture was high, and
its heterogeneity was strong.
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Figure 3. Simultaneous change of soil electrical conductivity and volume of soil water.

4. Discussion
4.1. Different Rules between Remote Sensing Index and Soil Moisture and Salinity

The correlation between soil electrical conductivity and Landsat 8 bands gradually
decreased from B1 to B7, and there was almost no correlation between soil electrical
conductivity and B6 and B7. The spectral reflectance of soil electrical conductivity increased
with the increase in soil salinity. The 325–600 nm reflectance curve rose sharply with a
large amount of information; the 600–1015 nm reflectance curve was flat with no obvious
absorption and less information content [52]. Therefore, the correlation of Landsat 8 B1–B4
was significant, and the correlation of the B1 was the greatest. Vegetation index was
negatively correlated with soil conductivity; that is, vegetation index was negatively
correlated with soil salinity. Vegetation growth is susceptible to soil salinity stress, resulting
in impaired photosynthesis and respiration [53]. There are only few salt-tolerant plants
in the Ebinur Lake Basin, so the vegetation coverage in the areas with high soil salinity is
very low. The purpose of salinity index is to highlight the information of surface salinity, so
there is a high correlation between vegetation index with soil conductivity. The correlation
between OLI_SI, D1, D2 and soil conductivity was greater than that of other salinity indices.
These three indices were proposed for Landsat 8. The expression contained band 1 of
Landsat 8, and the correlation between band 1 and soil conductivity was also higher than
that of the other bands. Therefore, band 1 should be included in the subsequent study of
soil salinity index for Landsat 8.

Soil volumetric moisture was positively correlated with B1–B4 of Landsat 8, and
negatively correlated with B5–B7. The reason is that the reflectance spectrum of soil
moisture rises rapidly at 300–750 nm with a large amount of information and tends to
increase gently at 800–1350 nm with a small amount of information. There are also two
steep upward slopes at 1500–1800 nm and 2100–2400 nm [38]. Water index can highlight
surface moisture, with a reliable indicator effect on soil moisture. It has a significant positive
correlation with soil volume moisture, especially the NDWI and humidity components of
the Spike-cap transformation. In theory, the drought index and surface temperature are
negatively correlated with soil moisture [12,13], but this study found that drought index
and surface temperature were not correlated with soil moisture, so it is not feasible to use
drought index to reflect soil moisture laterally. Drought index and surface temperature may
affect soil moisture in time resolution. Generally, vegetation index is positively correlated
with soil moisture [10], but in this study, vegetation index was negatively correlated with
soil volumetric moisture. The reason is that the Ebinur Lake Basin is a high salinity area,
where the soil contains too much salt, so that it is difficult for the vegetation to absorb
water, and the growth is limited. In addition, the correction analysis of soil water and
salt also validated the analysis. The change of soil water and salt was consistent, and soil
salinity seriously affected the change of soil water.
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4.2. Spatial Distribution of Soil Salt in Ebinur Lake Basin

The spatial distribution map of soil salinity in the Ebinur Lake Basin was obtained by
model inversion, as shown in Figure 4a. From the figure, it can be seen that the soil salinity
in the Ebinur Lake Basin was low around, high in the center, high in the lake area and low in
the vegetation coverage area. The soil salinity in the lake area decreased gradually outward.
In addition, the salt content along the coast of the Ebinur Lake, Boltala River, Jinghe River,
Kuitun River and Akeqisu River is higher than that of other areas. Among them, it was
the most obvious in the case of the Ebinur Lake and the Akezisu River. According to the
correction analysis of soil water and salt in the Ebinur Lake Basin, the change trend of soil
salinity and soil moisture tends to be the same, so in the vicinity of the water area, the
soil moisture content is higher than in other areas. There are two distinct white areas in
the southeastern part of the Ebinur Lake; namely, the soil electrical conductivity there is
greater than 0.4 S/m. These two areas are the Jinghe Salt Field and the Jinghe Old Salt
Field respectively, which further confirms the accuracy of the model inversion. The Ebinur
Lake is a saltwater lake. The area of the lake is decreasing year by year. The water around
the lake is gradually evaporating, and the soil salinity is gradually increasing.

Figure 4. (a) Spatial distribution of soil electrical conductivity (S/m); (b) spatial distribution of soil volumetric moisture (m3 m−3).

From the above analysis, we can see that the soil salt content is negatively correlated
with vegetation coverage. It can be learned that the soil salt content in vegetation coverage
area is lower than that in bare land or wetland. In addition, soil salinity of the northern
mountain forest is lower than that of the southwestern farmland. In addition to the cause
of farmland fertilizer application, the high soil salinity will inhibit the growth of vegetation,
so it is also suitable for planting trees and grasslands under the extremely low salinity soil.
The area with soil electrical conductivity lower than 0.05 S/m in the eastern part of the
country is the Arxi Sea grassland, which further validates the above discussion.

Salinization is part of the main causes of soil degradation in arid and semi-arid regions
of the world. It inhibits plant growth and agricultural production and aggravates soil
erosion. Nearly 20% of land in China is influenced by salinization, which is increasing with
human activities, especially in arid and semi-arid areas [54]. As a typical arid and semi-arid
region and an important geographic unit in central Asia, monitoring and mapping of the
Ebinur Lake Basin soil salinity over a long period of time and wide space are of great
significance for curbing soil degradation and sustainable agricultural production.

4.3. Spatial Distribution of Soil Moisture in Ebinur Lake Basin

The spatial distribution of soil moisture in the Ebinur Lake Basin was retrieved from
the cubic regression model, as shown in Figure 4b. As can be seen on the map, soil moisture
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in the Ebinur Lake Basin gradually decreased outward with the Ebinur Lake as the center
and was higher in the west and lower in the east. There were many white spots (i.e., soil
volumetric moisture > 2 m3 m−3). In the southwest of the basin, the bright spot was the
Panqiao fishpond and in the northwest, paddy fields and reservoirs. This area was the
same as the lake, so the soil moisture in this area was very high. Soil volumetric moisture
along the coast of the Ebinur Lake, recharged by lake water, was 1–2 m3 m−3. The soil
moisture in this kind of area is also higher than that in other areas. Because of poor water
storage capacity of inland saline soil, the soil moisture of inland saline soil is lower than
that of other regions. The soil moisture along the four rivers is 1–2 m3 m−3, which conforms
to the basic natural law.

Soil moisture content of the farmland in the west is low, and the type of soil is inland
saline soil, which is not conducive to the growth of crops, but affected by topography, it
developed into farmland. Under the influence of water stress, the yield of crops is low. Soil
water loss is a major restrictive factor for land degradation in arid and semi-arid areas [55].
Vegetation is very vulnerable to water stress, which has a huge impact on agricultural
production [56]. Therefore, timely and accurate dynamic grasp of soil moisture changes in
arid and semi-arid areas is of great significance for ecological development.

4.4. Relevant Rules of Soil Water and Salt

According to the correlation analysis of soil water and salt in the Ebinur Lake Basin, the
change trend of the two tended to be consistent. Depending on the physical characteristics
of soil, soil water is the carrier of soil salt transport. As can be seen in Figure 4, the soil
salinity was extremely high and the soil moisture was also large around the Ebinur Lake,
and the two changes were related. In the eastern, southern and northwestern parts of the
basin, the conductivity of soil volumetric was less than 0.05 S/m, the salinity was very low,
but the soil moisture content was high. Soil moisture content was high, which has a definite
dilution effect on soil salinity. Soil water and salt are related and interrelated. Especially in
arid and semi-arid areas, the change of soil water and salt is one of the controlling factors
in the formation of saline land [56]. It is of great significance to study the correlation and
linkage effects of soil water and salt for soil restoration and inhibition of land desertification
and degradation in arid areas.

4.5. Data Accuracy Discussion

The field experiment for this study was carried out in the Ebinur Lake in May, and the
measurement were performed for only one year. Although multiple measurements were
taken for each measurement point and their average value was taken into consideration,
the inversion model of this study is not universal due to the lack of long-term continuous
observation data. In arid areas, soil moisture and salt content change with the year and
season. As a result, the spectral characteristics of the ground surface will change, the
inversion index will also change, and the final inversion model and results will also
be different. Therefore, the important direction for the future research is to study the
influence of different measurement periods on the selection of soil water content and
salinity inversion index, and to explore whether there is an inversion model that is more
universal for all time periods.

5. Conclusions

In this study, based on a series of field experiment data of soil salinity, soil moisture
and remote sensing data (from Landsat 8 OLI), the remote sensing index for estimating soil
water and salt content in the Ebinur Lake Basin were tested and compared, and two new
salinity indices for Landsat 8 were developed. Good models for inversion of soil moisture
and salinity in the Ebinur Lake Basin were tested and obtained. The spatial distribution
of soil water and salt in the Ebinur Lake Basin was predicted using the remote sensing
data. The research results of this paper have certain guiding significance for the future
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geophysical process modeling of water and salt transport in arid saline lake basins. The
basic conclusions of this study are as follows:

(1) Among the various indexes for estimating soil salinity in the Ebinur Lake Basin, the
salinity index had a greater advantage than the vegetation index, and the correlation
between the newly established salinity index D2 and soil conductivity was as high
as 0.650. The accuracy of the BP neural network salt prediction model based on this
index was also higher than other models (R2 = 0.624, RMSE = 0.083).

(2) For the soil moisture content in the Ebinur Lake Basin, the correlation of the normal-
ized water index (NDWI) was greater than that of other indices (R = 0.600). The cubic
function prediction model had the best effect, the fitting accuracy was 0.538, and the
verification error was 0.230.

(3) The correlation degree of soil water and salinity was very high, reaching 0.817. The
two trends tended to be the same, but the spatial mutation rate of soil moisture was
high and heterogeneity was strong.

(4) The soil salinity in the Ebinur Lake Basin was low around, high in the center, high
in the lake area and low in the vegetation coverage area, and the soil salinity in the
lake area decreased gradually outward. The soil moisture in the Ebinur Lake Basin
gradually decreased outward with the Ebinur Lake as the center and was higher in
the west and lower in the east, with more small ponds.
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