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Abstract: Due to its high oil content, the discharge of bilge water from ships is one of the most
important pollutants in marine ecosystem. In this research, we investigated the treatment of bilge
water for Haydarpasa Waste Collection Plant by Fenton oxidation followed by granular activated
carbon (GAC) adsorption. We applied the following optimum operational conditions for Fenton
oxidation: [Fe2+]: 6 mM; [H2O2]: 30 mM; and the ratio of [Fe2+]/[H2O2]: 1/5. Adsorption was
performed in the effluent sample of Fenton oxidation. The effects of different adsorption periods,
adsorbent concentrations, temperature, and pH were examined. Additionally, Freundlich and
Langmuir isotherm models were applied. We obtained the following optimum operational conditions:
24 h, 2 g of GAC L−1, 20 ◦C, and pH = 6. We observed an 89.5 ± 1.9% of Chemical Oxygen
Demand (COD) removal efficiency under these conditions. Data generated from the experiments fit
both isotherm models well, though we preferred the Langmuir isotherm model to the Freundlich
isotherm model because the former’s regression coefficient (0.90) was larger than that reported for
the Freundlich isotherm model (0.78). The potential to treat bilge water by Fenton oxidation followed
by granular activated carbon is promising for the Haydarpasa Waste Collection Plant.

Keywords: marine pollution; bilge water; COD removal; advanced oxidation; adsorption

1. Introduction

The importance of transportation between countries and continents has increased
as a result of globalization. Specifically, the rate of marine transportation has increased
due to its larger loading capacity compared to other transportation methods, which has
induced marine pollution [1,2]. In the context of marine pollution, sea vessels (i.e., ships)
are considered to be among the main marine pollutants. Around 20% of marine pollution is
caused by sea vessels, with levels depending on ship types and conditions, as well as their
routes [3]. Bilge water is considered to be sea vessels’ major pollutant because it contains
high amounts of petroleum and oil [4].

Bilge water is stored in the lowest internal part of a ship’s hull below the engine room
and boiler, and it is a corrosive mixture of wastewater and sea water [5]. Although the
pollution characteristic of bilge water depends on the type of vehicle and its operation
mode, pollutants typically found in bilge water include fuels, oils, grease, detergents,
surfactants, solvents, and salts [6,7]. The adverse effects of discharging bilge water on
marine habitat are: (i) reductions of dissolved oxygen and sunlight penetration caused
by a layer formed on the surface due to its lower oil density than water and (ii) the
massive death of fish and birds caused by the bilge water sticking on their gills and
feathers, respectively [8]. Therefore, the discharge standard set by International Maritime
Organization (IMO) (<15 ppm oil/grease) should be met before discharging bilge water [9].

Turkey’s geographical location has international strategical importance regarding
marine transportation between two continents, Europe and Asia. Therefore, Istanbul
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Bosporus (41◦ N, 29◦ E) has been severely contaminated by bilge water [10]. Bilge water is
first collected by waste collection ships; then stored in different tanks depending on the
types of waste in Haydarpasa Waste Collection Plant, Istanbul, Turkey; and finally pumped
out at the wastewater treatment plant. The coagulation–flocculation process is performed
to treat bilge water. Haydarpasa Waste Reception Plant’s flow diagram is demonstrated in
Figure S1. Although COD removal efficiency varies from 60 and 85%, with organic material
concentration from 450 to 550 mg COD L−1 [10], the discharge standard set in Su Kirliliği
Kontrol Yönetmeliği (SKKY) (Water Pollution Control Regulations) [11] regarding COD
concentration in the effluent cannot be met. Many different methods for the treatment of
bilge water, including membrane processes [7,12,13], electrochemical processes [2,4,14], and
biodegradation [15–17], have been studied. However, their applicability can be scrutinized
from an economical perspective due to their high energy requirements. Physicochemical
processes (i.e., Fenton oxidation and granular activated carbon adsorption) could be also
used for the removal of organic materials [18,19]. Fenton oxidation an advanced oxidation
process that is simple to apply, has low capital costs, and is based the formation of hydroxyl
radicals by using ferrous salts with H2O2 at acidic pH [20]. Adsorption removes organic and
inorganic pollutants by binding adsorbates on the outer surfaces of adsorbent. Granular
activated carbon is a commonly used adsorbent [19].

The treatment of bilge water with a moving bed biofilm reactor has been studied, and
the greatest obtained COD removal efficiency was as 86% [21]. Mazioti A.A. et al. [22]
investigated the treatment of bilge water by anaerobic digestion via granular sludge, and
they reported that methane production and COD removal efficiency significantly increased
after adding zero valent iron and activated charcoal, respectively. In addition, the removal
efficiency of organic materials differed in the range of 36.2–71% when electrochemical
processes such as electrocoagulation and electro-Fenton were applied for bilge water
treatment [4]. In our previous study, Fenton oxidation was proposed as a pre-treatment
process for bilge water collected at Haydarpasa Waste Reception Plant due to the fact that
the effluent could not meet the discharge standards. We identified the optimum operational
conditions as [Fe2+]: 6 mM; [H2O2]: 30 mM; and the ratio of [Fe2+]/[H2O2]: 1/5 [23].
Furthermore, Ramirez-Sosa D.R. et al. [24] reported that COD removal was increased by
Fenton oxidation followed by activated carbon adsorption.

Therefore, this study was aimed to investigate the treatability of bilge water by granu-
lar activated carbon adsorption after using Fenton oxidation as a pre-treatment method, as
recommended by Oz and Cetin [23]. The effects of different adsorption periods, adsorbents
dosages, temperatures, and pH conditions were tested to identify the optimum operational
conditions in terms of the removal efficiency of organic materials. In addition, Freundlich
and Langmuir isotherms were applied in order to determine which isotherm presents a
better fit for adsorption isotherm studies.

2. Materials and Methods
2.1. Bilge Water

The bilge water used in this project was collected from the influent of chemical
treatment unit in Haydarpaşa Waste Collection Plant in Haydarpaşa Port, Istanbul [25].
The sampling point is presented in Figure S1. The characterization of the bilge water is
presented in Table 1.

Table 1. Bilge water characterization.

Parameter Concentration (mg L−1)

Chemical Oxygen Demand (COD) 1100
Soluble Chemical Oxygen Demand (sCOD) 900

Oil/Grease 900
Chloride (Cl−) 5700

Suspended Solids (SS) 100
Volatile Suspended Solids (VSS) 90
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2.2. Synthetic Bilge Water

Synthetic bilge water containing 5 g of COD L−1 was prepared in order to adjust the
amount of organic compound for the adsorption isotherm studies. The oil and sea water
contents in artificial bilge water were adjusted as recommended by Peng et al. [6] and
Körbahti and Artut [14], respectively. The synthetic bilge water consisted of diesel fuel,
lubricating oil, hydraulic oil, detergents and surface-active reagents, NaCl, Na2SO4, KCl,
and CaCl2. The composition of the synthetic wastewater is summarized in Table 2.

Table 2. The composition of synthetic bilge water.

Contents Concentration (mg L−1)

Diesel fuel 1000
Lubricating oil 800
Hydraulic oil 200

Detergents and surfactants 500
NaCl 11,000

Na2SO4 2000
KCl 400

CaCl2 600

2.3. Experimental Setup and Operational Conditions
2.3.1. Fenton Oxidation

Fenton oxidation was applied as a pre-treatment method in this study. Temperature
and pH were set to 20 ◦C and 3, respectively. Ferrous sulphate and hydrogen peroxide
were added. A jar test setup with 6 stirrers was used, and the agitation rate was adjusted
to 200 rpm for half an hour. The oxidation was completed in 2 h. The upper phase was
transferred in a beaker for the sedimentation. The pH was set to 7.5. The settlement was
maintained for 2 h. The supernatant phase of samples was collected for the adsorption process.

2.3.2. Granular Active Carbon Adsorption

We transferred 200 mL of effluent of Fenton oxidation samples to 250 mL volumet-
ric flasks. Granular active carbon (GAC) with a pore diameter of 1.5 mm was added to
the flasks. GAC was weighed on a balance. pH was adjusted with a pH meter (WTW
Inolab*7110). The flasks were placed in a temperature-controlled shaker at 170 rpm (Gal-
lenkamp) and fixed by clamps. Samples were collected after 1, 3, 5, 7, 24, 48, and 72 h
at 25 ◦C by using 1 g of GAC L−1 in order to determine the equilibrium time. In the
experiments for the optimum GAC concentration and temperature, 1, 1.5, 2, 2.5, and 3 g of
GAC L−1 were added to the volumetric flasks at 15, 20, 25, and 30 ◦C; pH was adjusted to
be 2, 4, 6, 8, and 10 using 0.5 N NaOH and 1 N H2SO4 at 20 ◦C in order to identify the effect
of pH on granular activated carbon adsorption. Table 3 summarizes the experimental plan
to identify optimum adsorption conditions for the treatment of bilge water.

Samples were collected after reaching the equilibrium time at all adsorption experi-
ments. We used 0.45 µm syringe filters for filtration, and sCOD was analyzed following
SM 5220-D [26].

Bilge water and synthetic bilge water were mixed in different ratios for adsorption
isotherm experiments to adjust organic material concentrations, as shown in Table 4.
We added 1.5 g of GAC L−1 to the volumetric flasks. The temperature of shaker was set to
20 ◦C, and the pH was adjusted to 6. Freundlich and Langmuir isotherms were performed
via Equations (1) and (2), respectively.

log qe = log KF + (1/n) log Ce (1)

where Ce: COD concentration measured following adsorption (mg L−1); qe: amount of
adsorbate in the adsorbent at equilibrium (mg g−1); KF: Freundlich constant (mg g−1)
(dm3 g−1)1/n; and n: adsorption intensity.
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(Ce/qe) = (Ce/Q0) + (1/(Q0 * KL)) (2)

where Ce: COD concentration measured following adsorption (mg L−1); qe: amount of
adsorbate in the adsorbent at equilibrium (mg g−1); Q0: maximum monolayer adsorption
capacity (mg g−1); and KL: adsorption energy coefficient (L mg−1).

Table 3. Experimental plan.

Experiment
Number

Equilibrium
Time (h)

Adsorbent Dosage
(g GAC L−1)

Temperature
(◦C) pH

1 1

1 25 7.5

2 3
3 5
4 7
5 24
6 48
7 72

8

24

1

25 7.5
9 1.5
10 2
11 2.5
12 3

13

24

1

15 7.5
14 1.5
15 2
16 2.5
17 3

18

24

1

20 7.5
19 1.5
20 2
21 2.5
22 3

23

24

1

30 7.5
24 1.5
25 2
26 2.5
27 3

28

24 2 20

2
29 4
30 6
31 8
32 10

Table 4. Mixing ratio of bilge water and synthetic bilge water for adsorption isotherm experiments.

Ratio of Bilge Water (%) Ratio of Synthetic Bilge Water (%)

100 0
90 10
80 20
70 30
60 40
50 50

2.4. Analytical Procedures and Chemicals

COD, Total Suspended Solids (TSS), Volatile Suspended Solids (VSS), and Oil–Grease
were analyzed following standard methods (SM 5220 D, SM 2540 D, SM 2540 E, and
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SM 5520 D, respectively) [26]. Chloride was analyzed via the Mohr Method. All of the
chemicals used in this study were purchased from MERCK (Burlington, Massachusetts,
ABD) or similar manufacturers at an equivalent purity; the granular activated carbon with
a pore size of 1.5 mm was also purchased from MERCK.

2.5. Statistical Analysis

All analyses were conducted in duplicate. Data are reported as average ± standard
deviation. Statistical analysis was performed by using one-way analysis of variance
(ANOVA) in IBM SPSS Statistics version 23. p-Values of less than 0.05 indicate significant
differences. Post hoc Tukey tests were conducted to compare the different means.

3. Results and Discussion
3.1. Fenton Oxidation

In our previous research, the optimum operational conditions for Fenton oxida-
tion to remove organic materials from bilge water were identified to be [Fe2+]: 6 mM;
[H2O2]: 30 mM; and the ratio of [Fe2+]/[H2O2]: 1/5 [23]. COD removal efficiency was
reported to be 59.0 ± 0.2%, corresponding to the concentration of organic materials in
the effluent was 450.8 ± 2.5 mg O2 L−1. The discharge standard set in Su Kirliliği Kon-
trol Yönetmeliği (SKKY) [11] could not be met, so Fenton oxidation was proposed as
a pre-treatment method to treat bilge water.

3.2. Adsorption
3.2.1. Equilibrium Time

The adsorption process was applied to the effluent sample of Fenton oxidation. Sam-
ples were collected at 1, 3, 5, 7, 24, 48, and 72 h to determine equilibrium time by dosing
1 g of GAC L−1 at pH = 7.5, 25 ◦C, and a 170 rpm agitation rate (Figure 1). COD removal
efficiencies fluctuated in the range between 3.1 ± 1.3% and 10.7 ± 3.6% for adsorption
between the equilibrium time of 1 and 5 h. There were significant increases in COD removal
efficiencies from 10.7 ± 3.7% and 54.5 ± 1.8% to 26.3 ± 2.2% and 62.5 ± 1.1% for adsorption
and total, respectively, with the increase in the equilibrium time from 5 to 24 h, which
corresponded to the decrease in COD concentration from 500.0 ± 28.3 to 410 ± 18 mg L−1

(p = 0.008 and 0.012 for COD removal efficiencies and COD concentrations for 5 and 24 h,
respectively). COD removal increases until reaching equilibrium time due to the formation
of monolayer cover of organic materials on the outer surface of GAC [27]. Further increases
in the equilibrium time did not show any statistical differences (p > 0.05); therefore, 24 h
was used as the equilibrium time for further experiments. Mohammad-Pajooh et al. [28]
reported over 50% COD removal from raw leachate by GAC after 24 h of contact time as
their preliminary results.

3.2.2. Granular Active Carbon Concentration

Figure 2 presents the effects of different adsorbent dosages on COD removal for 24 h
at 25 ◦C, pH = 7.5, and an agitation rate of 170 rpm. We tested 1.0, 1.5, 2.0, 2.5, and 3.0 g of
GAC L−1 to identify optimum adsorbent dosage. A gradual increase in COD removal was
observed from 50.0 ± 5.1% and 74.5 ± 2.6% to 68.3 ± 1.9% and 83.9 ± 1.0% for adsorption
and total, respectively, with increases granular activated carbon concentration from 1 to
3 g L−1. Regarding COD concentration, there was a slight decrease from 280.0 ± 28.3 to
177.5 ± 10.6 mg O2 L−1. Increases in the removal of organic material with increases in
adsorbent dosage have been reported in many studies [28,29], and it could be explained by
the total specific surface are and active sites on the adsorbents [30].

The change in COD removal for adsorption was statistically different between 1 and
2 g of GAC L−1 (p = 0.033). Further increases in adsorbent concentration did not show
any significant influence on COD removal (p > 0.05). This situation could be attributed
to the fact that the adsorption capacity could not be further increased once equilibrium
was reached [26]. The increase in total COD removal was not significantly different at all
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tested adsorbent concentrations, except between 1 and 3 g of GAC L−1 (p > 0.05). A similar
statistical trend was observed in COD concentrations. The p-values obtained for COD
removal and COD concentration between 1 and 3 g of GAC L−1 were 0.029 and 0.027,
respectively. Therefore, from the statistical perspective, the optimum considered granular
activated carbon concentration was 2 g of GAC L−1.
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Figure 2. Effect of granular activated carbon dosage on COD removal.

3.2.3. Temperature

The effects of temperature on COD removal are depicted in Figure 3. To determine
optimum temperature at all granular activated carbon dosages, the shaker was set to four
different temperatures of 15, 20, 25, and 30 ◦C, as well as pH = 7.5 with a 170 rpm agitation
rate, for 24 h. There was a significant increase in COD removal between 15 and 20 ◦C for
adsorption and total (p = 0.007). This situation could be attributed to the fact that pore size
could become larger with increases in temperature, which could increase the adsorption
capacity by activating the surface of the adsorbent [31]. However, further increases in
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temperature did not present any statistical differences in COD removal, regardless of the
tested adsorbent concentrations (p > 0.05 for all experiments). Larous et al. [32] reported
that desorption could occur beyond a certain temperature limit via the enlargement of
pore size with the increase in temperature and thus decrease the adsorption rate. As such,
the optimum temperature was designated as 20 ◦C because it led to the greatest removal
efficiencies of COD for adsorption and total achieved—70.5 ± 3.6% and 85.0 ± 1.8%,
respectively—at 20 ◦C and 2 g of GAC L−1, which corresponded to a concentration of
165.0 ± 20 mg L−1 COD.
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3.2.4. pH

To identify the optimum pH, it was adjusted to represent both acidic and alkaline
conditions at 20 ◦C, 2 g of GAC L−1, and an agitation speed of 170 rpm for 24 h (Figure 4).
COD removal efficiency significantly increased from 54.0 ± 5.7% and 76.6 ± 2.9% to
79.5 ± 3.8% and 89.5 ± 1.9% between pH = 2 and 6 for adsorption and total, respectively
(p = 0.033), which corresponded to a decrease in COD concentration from 257.5 ± 31.8 to
115.0 ± 21.2 mg O2 L−1. With a further increase in pH, COD removal efficiency did not
present any significant changes (p > 0.05). Therefore, the optimum pH was found to be 6 for
Fenton oxidation followed by adsorption for the treatment of bilge water. The greatest COD
removal rate from bilge water achieved under optimum operational conditions was higher
than the rates reported in previous studies with different treatment processes [4,15–17].

Nayl et al. [29] also reported that the highest COD removal was achieved at pH = 6 by
using activated carbon. This situation could be related to the fact that the surface of acti-
vated carbon becomes positively charged by the presence of larger number of H+ at lower
pH values, so adsorption is triggered with high electronegative charge of oxygen. Further-
more, the abundance of OH−1 at higher pH values reduces the adsorption capacity [33,34].
On the other hand, opposite effects of pH on adsorption has been observed when using
positively and negatively surface-charged adsorbates and adsorbents, respectively [35].

3.2.5. Adsorption Isotherm Studies

Adsorption isotherm studies are essential to establish the relationship between an ad-
sorbate and adsorbent. Freundlich and Langmuir isotherm models were created in this
study by using Equations (1) and (2), respectively. Adsorption isotherms for the Freundlich
and Langmuir models are presented in Figures 5 and 6, respectively.
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The constants KF and n for the Freundlich isotherm model were calculated from the
intercept and slope of the linear plots in Figure 5, respectively. KF and n were found to
be 17.68 mg g−1 and 2.27, respectively. n > 1 indicates favorable multiple adsorption
conditions for organic materials on granular activated carbon. The regression coefficient
for the Freundlich isotherm model was 0.78. Regarding the constants of the Langmuir
isotherm model, Q0 and b were calculated from the slope and intercept of the linear plots
in Figure 6, respectively, to be 523.26 mg g−1 and 0.0026 L mg−1. The regression coefficient
was determined to be 0.90. The parameters for the Freundlich and Langmuir isotherm
models are summarized in Table 5.

Table 5. Freundlich and Langmuir isotherm constants for the adsorption of COD in GAC.

Freundlich Isotherm Constants Langmuir Isotherm Constants

Kf (mg g−1) n R2 Q0 (mg g−1) KL (L mg−1) R2

17.68 2.27 0.78 523.26 0.0026 0.90

The feasibility of the Langmuir isotherm was determined with a dimensionless
constant separation factor or equilibrium parameter, RL, which was calculated using
Equation (3). RL values fluctuated between 0.19 and 0.67, which evidences favorable ad-
sorption of organic materials onto granular activated carbon due to the fact that the system
is suitable at RL values in the range of 0–1.

RL = {1/[1 + (KL * C0)]} (3)

where KL is the Langmuir constant (L mg−1) and C0 is the initial COD concentration.
The Freundlich isotherm model performed well in heterogeneous and multilayer

adsorption systems, whereas the Langmuir isotherm model performed well in monolayer
adsorption with uniform and homogenous adsorbent surfaces. Although the isotherm
studies conducted in this study showed that both the Freundlich and Langmuir isotherm
models fit the adsorption of COD on GAC, the Langmuir isotherm model was more
appropriate than the Freundlich isotherm model due to its greater regression coefficient.
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4. Conclusions

In this study, the treatability of bilge water by Fenton oxidation followed by adsorption
was investigated. The optimum operational conditions for adsorption, which resulted in
a total COD removal efficiency of 89.5 ± 1.9% (corresponding to 115.0 ± 21.2 mg O2 L−1

organic matter concentration), were identified to as follows: an equilibrium time of 24 h,
an adsorbent dosage of 2 GAC L−1, a temperature of 20 ◦C, and pH = 6. Freundlich
and Langmuir isotherm models were compared in order to determine their applicability.
Both isotherm models presented a good fits for the adsorption of organic materials on
granular activated carbon. The Langmuir isotherm model was considered more suitable
than the Freundlich isotherm model due to its greater regression coefficient. Fenton
oxidation followed by granular activated carbon has shown promising potential for the
treatment of bilge water from an economical perspective.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/w13192792/s1: Figure S1: Process flow diagram of Haydarpasa Waste Reception Plant.
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