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Abstract: With an increasing need for secured water supply, a better understanding of the water
consumption behavior is beneficial. This can be achieved through end-use classification, i.e., identi-
fying end-uses such as toilets, showers or dishwashers from water consumption data. Previously,
both supervised and unsupervised machine learning (ML) techniques are employed, demonstrating
accurate classification results on particular datasets. However, a comprehensive comparison of ML
techniques on a common dataset is still missing. Hence, in this study, we are aiming at a quantitative
evaluation of various ML techniques on a common dataset. For this purpose, a stochastic water
consumption simulation tool with high capability to model the real-world water consumption pat-
tern is applied to generate residential data. Subsequently, unsupervised clustering methods, such
as dynamic time warping, k-means, DBSCAN, OPTICS and Hough transform, are compared to
supervised methods based on SVM. The quantitative results demonstrate that supervised approaches
are capable to classify common residential end-uses (toilet, shower, faucet, dishwasher, washing
machine, bathtub and mixed water-uses) with accuracies up to 0.99, whereas unsupervised methods
fail to detect those consumption categories. In conclusion, clustering techniques alone are not suitable
to separate end-use categories fully automatically. Hence, accurate labels are essential for the end-use
classification of water events, where crowdsourcing and citizen science approaches pose feasible
solutions for this purpose.

Keywords: end-use classification; smart water meter; machine learning; residential water

1. Introduction

In recent years, climate change and population growth have exacerbated water scarcity
and accelerated the vulnerability of water supply systems. A comprehensive and detailed
understanding of water demand as well as water end-uses will improve the resilience of
these systems. With the water consumption data generated and transmitted by smart water
meters, advanced analysis of water demand using data-driven approaches is facilitated. In
particular, the categorization of water use events into residential end-uses like washing
machine, faucet or toilet permits a detailed investigation of the impact of different end-uses
as well as the inhabitants on the overall demand. With the recent advances in artificial
intelligence, categorization of residential water end-use can be resolved as classification
problem using Machine Learning (ML) techniques, thus having inherent real-time capa-
bility, scalability and generalizability. On a basic level, ML techniques can be subdivided
into supervised and unsupervised approaches. The former directly perform a categoriza-
tion/classification of data with given categories. Consequently, training data with labels
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annotating the samples’ categories are necessary. The latter search for groups of similar
data points in the dataset in the absence of labels.

Both unsupervised and supervised approaches are widely applied in studies on end-
use classifications of water use events. For example, Pastor-Jabaloyes et al. [1] proposed
an unsupervised approach formulating a Partition Around Medoids clustering method
using Gower distance as a similarity measure in the feature space, which is spanned by the
volume and the average flow rate of the water use events. A clustering algorithm based on
Dynamic Time Warping (DTW) as the similarity measure between events is described by
Nguyen et al. [2]. This algorithm was refined to a hybrid method comprising k-medoids
clustering, DTW and a swarm-intelligence-based global optimization, i.e., Artificial Bee
Colony algorithm. Later, this approach was extended with a hybrid method consisting of
Self-Organizing Maps and a k-means algorithm in the subsequent publications [3,4]. Most
supervised approaches are based on Hidden Markov Models and a subsequent optimiza-
tion [5–16], but Artificial Neural Networks [9–13], Decision Trees [14] and Multi-category
Robust Linear Programming [17] are used as well. Support Vector Machines (SVMs) were
employed by Vitter et al. [18] to categorize water events using water consumption data and
coincident electricity data. Furthermore, Carranza et al. [19] identified residential water
end-uses in data measured by precision water meters equipped with pulse emitters using
SVMs.

Both supervised and unsupervised approaches proposed in the literature demonstrate
high performance in terms of accuracy with the particular dataset utilized in corresponding
experiments. However, these datasets are often acquired in different countries or regions.
Consequently, the underlying consumer behavior represented by the consumption data
varies. Moreover, each dataset has a specific time resolution. Thus, the characteristic
of the datasets utilized in the state-of-the-art literature differs largely. As the methods
proposed in the aforementioned studies are mainly customized to the particular dataset,
the generalizability of each method is not proven. Moreover, the particular datasets applied
in the state-of-the-arts are commonly not publicly available. Hence, the corresponding
implementation (e.g., setting of model hyperparameters) of the proposed ML models is
not traceable. This results in a decreased reproducibility of the methods. Finally, to the
best of our knowledge a comprehensive comparison of both supervised and unsupervised
approaches on a common database has not been performed yet.

In this paper, we focus on a comparative evaluation of supervised and unsupervised
ML techniques on a common dataset for the application of residential water end-use
classification and aim at deriving a decision support for the selection of the appropriate
approach, revealing possible pitfalls of water end-use classification. For this purpose, we
implemented a large variety of ML-based approaches proposed in the state-of-the-art litera-
ture, i.e., the clustering algorithm based on DTW established by Nguyen et al. [2], k-means,
Density-Based Spatial Clustering of Applications with Noise (DBSCAN), Ordering Points
To Identify the Clustering Structure (OPTICS), Clustering in Arbitrary Subspaces based
on the Hough transform (CASH), as well as two classifiers based on Support Vector Ma-
chines (SVM). Subsequently, the methods are evaluated on a common database generated
using a stochastic water consumption simulation framework. The validation of different
algorithms with a common dataset guarantees the comparability of the evaluation results.
Finally, evaluation results are analyzed and discussed in detail, with the intention to draw
implications and recommendations of experiment set-ups for data-driven water end-use
classification in general.

2. Methods

In this section, the simulated common water consumption database as well as the
ML techniques employed and evaluated in this work are described in detail. An overview
of supervised and unsupervised ML methods is presented in Figure 1. For the super-
vised methods as well as the clustering algorithms k-means, DBSCAN and OPTICS, the
open-source library scikit-learn [20] is used. The clustering algorithm based on DTW is im-
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plemented after Nguyen et al. [2], and the open-source data mining framework ELKI [21]
provides the clustering algorithm CASH. Both labels and water consumption data are
generated with a stochastic simulation proposed in [16].
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the classifier trains on given labels. In the classification phase, the classifier is tested on a part of the dataset, which is not
used in the training phase; (b) unsupervised techniques search for grouping structures in the complete dataset.

2.1. Simulation of Common Database and Data Preprocessing

The datasets employed in this paper are generated using the STochastic Residential
water End-use Model (STREaM) developed by Cominola et al. [16]. It is a stochastic
water consumption simulation tool with a high capability to model the real-world water
consumption patterns of the end-uses, such as toilet, shower, faucet, dishwasher, washing
machine and bathtub. STREaM is calibrated using observed and disaggregated water
consumption data from 300 single-family houses in nine U.S. cities. With a stochastic model
based on Monte Carlo simulation, time series with different temporal resolutions (up to
10 s) and number of inhabitants can be emulated. To the best of our knowledge, STREaM is
the most advanced framework for realistic water consumption simulation to date.

In this work, the chosen temporal resolution is ten seconds, which corresponds to
the highest possible resolution of the simulation tool. Six datasets are generated with
a varying number of inhabitants from one to six. In addition to the resolution and the
number of inhabitants, the efficiency of the present end-uses and the time horizon of the
datasets are fixed to “standard fixture” (i.e., fixtures which are not specified to improve the
water use efficiency) and one year, respectively. These datasets are publicly available (see
supplementary materials).
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The output of the simulation includes six time series corresponding to the end-use
toilet, shower, faucet, washing machine, dishwasher and bathtub. An additional time series
aggregating the six above mentioned end-uses is also generated. The entire aggregated
time series is segmented into water use events (or sequences) with the assumption that
a contiguous water consumption event does not have any interruption which is longer
than 150 s. Since the timestamps of each event are known, labels for events extracted
from the aggregated time series are computed by searching for water consumption at
these timestamps in the time series representing the single end-uses. The result of the
preprocessing is a set of water use event time series with corresponding end-use labels.
Events with a consumption of less or equal to one liter as well as events with more than
1000 L are removed from this set, as they indicate leaks and might not be connected to an
end-use of interest.

2.2. Feature Description and Feature Extraction

Prior to the application of classification or clustering techniques, relevant features
describing the water events are commonly selected from the simulated water consumption
data, except for a DTW based algorithm described in Section 2.4.1. Features selected in
this work include volume, duration, maximum, minimum and most common flow rate,
as well as the corresponding numbers of occurrences of these flow rates, the number of
different flow rates and two orthogonal harmonic functions representing the time of the
day. Since these features have different scales, we performed z-normalization in order to
prevent the effect that features with a larger scale will dominate the other. Subsequently, we
compute the pair-wise Pearson Correlation Coefficient (PCC) of the features, and exclude
one of the two features when the PCC is higher than 0.9. In order to deal with the curse of
dimensionality, Principal Component Analysis is employed as dimensionality reduction
technique prior to all algorithms except for CASH (refer to Section 2.4.5).

2.3. Supervised Techniques

In the category supervised learning techniques, we implemented two classifiers,
namely a multi-class SVM as well as binary SVMs per end-use. Generally, SVMs [22]
separate classes with a maximal margin hyperplane in the feature space as depicted in
Figure 2. In a linearly separable problem, the data points (i.e., feature vectors) on the
margin boundaries are called support vectors. Considering a real-world binary (or two-
class) classification problem, the two classes are not perfectly linearly separable in practice.
Therefore, the support vectors lie within the margin boundaries. The maximal margin
hyperplane can be described solely based on the support vectors, making SVMs memory
efficient. The location of a new data point with regard to the hyperplane defines the point’s
class membership, as the hyperplane separates the two classes in the feature space.

To combat the challenges of non-linear problems, kernel functions are employed to
map data points into higher dimensional spaces, where the points are linearly separable.
Hence, SVMs show a two-layer structure as described in [23], which employ Support Vector
regression to model rainfall-runoff in urban drainage. The two-layer structure is displayed
in Figure 3. In the first layer, the non-linear kernel is applied to the support vectors and
the input vector. The second layer consists of a weighted sum of the kernel outputs. In
contrast to the regression implemented in [23], only the sign of the weighted sum is of
relevance for a classification task, as the sign determines the side of the hyperplane on
which the input vector lies. Consequently, the sign determines the class membership, as
each subspace separated by the hyperplane corresponds to one of the two classes. In our
study, the chosen kernel is a Radial Basis Function and the regularization parameters for
the SVMs are set to 1.0 for all experiments conducted.



Water 2021, 13, 236 5 of 16Water 2021, 13, x FOR PEER REVIEW 5 of 16 
 

 

 
Figure 2. Maximal margin hyperplane h separates two classes visualized by circles and squares. 

 
Figure 3. Network architecture of Support Vector Machines (SVM). Figure adopted from [23]. 

In this study, a binary SVM is trained to distinguish a single end-use class from all 
other end-uses. Therefore, seven binary SVMs are trained to each identify one end-use: 
toilet, shower, faucet, dishwasher, washing machine, bathtub and overlapping events (i.e., 
events with more than one active end-use). In contrast, a multi-class SVM is able to classify 
all seven end-uses at once. This is achieved by using a so-called one-versus-one approach. 
For every possible pair of classes, one SVM is trained to distinguish the two classes. The 
final multi-class decision is a majority vote of the 21 SVMs. 

2.4. Unsupervised Techniques 
The unsupervised methods evaluated in this paper include the clustering algorithm 

based on DTW established by Nguyen et al. [2], k-means, DBSCAN, OPTICS and CASH. 
Each of them is described in detail in the following sections. 

  

Figure 2. Maximal margin hyperplane h separates two classes visualized by circles and squares.

Water 2021, 13, x FOR PEER REVIEW 5 of 16 
 

 

 
Figure 2. Maximal margin hyperplane h separates two classes visualized by circles and squares. 

 
Figure 3. Network architecture of Support Vector Machines (SVM). Figure adopted from [23]. 

In this study, a binary SVM is trained to distinguish a single end-use class from all 
other end-uses. Therefore, seven binary SVMs are trained to each identify one end-use: 
toilet, shower, faucet, dishwasher, washing machine, bathtub and overlapping events (i.e., 
events with more than one active end-use). In contrast, a multi-class SVM is able to classify 
all seven end-uses at once. This is achieved by using a so-called one-versus-one approach. 
For every possible pair of classes, one SVM is trained to distinguish the two classes. The 
final multi-class decision is a majority vote of the 21 SVMs. 

2.4. Unsupervised Techniques 
The unsupervised methods evaluated in this paper include the clustering algorithm 

based on DTW established by Nguyen et al. [2], k-means, DBSCAN, OPTICS and CASH. 
Each of them is described in detail in the following sections. 

  

Figure 3. Network architecture of Support Vector Machines (SVM). Figure adopted from [23].

2.4. Unsupervised Techniques

The unsupervised methods evaluated in this paper include the clustering algorithm
based on DTW established by Nguyen et al. [2], k-means, DBSCAN, OPTICS and CASH.
Each of them is described in detail in the following sections.

2.4.1. Threshold-Based Clustering Using Dynamic Time Warping

The algorithm presented in [2] is based on the idea that the similarity of two events
(or sequences) of a time series can be approximated by their distances to a reference event.
This reference event is chosen arbitrarily from the dataset as described in [8] and will not
be clustered. First, DTW distances of all water use events in the dataset to the reference
event are calculated. Subsequently, relative distances are computed for each sequence. A
threshold α is introduced to assign the event to a cluster. For algorithmic details, we refer
to the original work published in [2]. In this study, the threshold α is manually fine-tuned
to 0.6.
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2.4.2. K-Means

K-means is one of the most frequently used clustering algorithms, which use Euclidean
distances in the feature space (refer to 2.2) to determine cluster memberships. The optimal
hyperparameter k, i.e., the number of clusters, is computed with an Elbow method using
inertia. The output of this analysis, namely, k = 10, is fixed for all experiments conducted.

2.4.3. DBSCAN

In contrast to k-means, DBSCAN [24] is a density-based clustering algorithm. It
uses the concept of core, border and noise points to form partitions in the feature space.
Two hyperparameters, eps and minPts, are required to distinguish these three types of
points. A neighborhood with a radius of eps around each feature vector is selected, and
the number of feature vectors in its neighborhood is counted. If a vector has more than
minPts neighbors, then this vector is considered to be a core point. If a vector has less
than minPts neighbors but one core point in its neighborhood, then this vector is a border
point. All remaining vectors are noise points. The superposition of core and border points
forms clusters. Unlike k-means, DBSCAN determines the number of clusters intrinsically
based on the distribution of data points in the feature space. minPts and eps are set to 14
and 2, respectively, where the former is calculated with the rule of thumb minPts = 2 ·
number of dimensions after dimensionality reduction [25], and the latter is estimated with
a 14-Nearest Neighbor Distance Graph.

2.4.4. OPTICS

OPTICS [26] is an extended version of DBSCAN, and hence, it also applies the notion
of core, border and noise points. However, instead of looking at a fixed neighborhood
area, an infinite number of distance parameters epsi is applied, which are smaller than a
“generating distance” epsmax (0 ≤ epsi ≤ epsmax). This allows OPTICS to find clusters of
different densities in the feature space. epsmax can simply be set to infinity, as this will
identify clusters across all scales [20]. In the original paper [26], experiments indicated that
values between 10 and 20 for minPts will always lead to promising results. Hence, minPts
is chosen to be 15 in this work.

2.4.5. CASH

CASH [27] is a clustering algorithm specifically designed for high-dimensional data.
It uses a Hough transform to bypass the curse of dimensionality. The feature vectors are
transformed from the feature space to a parameter space, which corresponds to the space
of all possible subspaces of the feature space. Vectors in the feature space are equivalent
to sinusoidal curves in the parameter space. Instead of looking at a spatial proximity
in the feature space to form clusters, intersections of curves in the parameter space are
determined. An intersection in the parameter space means that the two vectors in the
feature space lie on a common hyperplane, therefore are correlated. Since CASH does
not rely on any distance-based measures in the feature space, it is not affected by curse
of dimensionality. Consequently, dimensionality reduction techniques are dispensable.
The three hyperparameters, namely, minimum number of points in a cluster, the maximal
allowed deviation and the maximum number of successive splits, are set to 20, 0.1 and 3,
respectively.

3. Results and Discussion

The datasets described in Section 2.1 are addressed as 1P, 2P, 3P, 4P, 5P and 6P, re-
ferring to the number of inhabitants in the simulated household. The following sections
provide the evaluation of the supervised and unsupervised techniques using these six
datasets. The employed code is executed with python 3.7, making use of the ELKI version
0.7.5 and the scikit-learn version 0.23.1. ELKI is run with OpenJDK 13.0.33. Upon calling
CASH with OpenJDK, 12 GB are allocated for its execution. All experiments were con-
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ducted with the same hardware, equipped with an Intel(R) Core(TM) i9-8950HK CPU @
2.90GHz (6 cores), 16 GB RAM and a 64 bit Windows 10 operating system.

3.1. Evaluation of the Supervised Techniques

For a fair comparison, we calculated accuracy and precision both for multi-class and
binary SVMs. In detail, precision, recall and f1-score for all classified end-uses are first
estimated for the multi-class SVMs. The accuracy is computed in the subsequent step. For
binary SVMs, confusion matrices are used to compute accuracies and precisions of the
classifiers, as the number of positive and negative samples is highly unbalanced. The split
of training and test data is 0.8 to 0.2 for all experiments conducted.

3.1.1. Evaluation Results

Figure 4 presents the quantitative comparison of the accuracies for multi-class and
binary SVMs. The evaluation results for the multi-class SVMs are detailed in Tables A1–A6.
The precisions, recalls and f1-scores for the dishwasher class have values close to zero. For
the classes washing machine, bathtub, as well as overlapping events, the corresponding values
are slightly higher than 0.5. Lastly, the precisions, recalls and f1-scores for the toilet, shower
and faucet classes have a range between 0.73 and 0.96. The accuracies/micro averages of
the classifiers vary between 0.78 and 0.82 as depicted in Figure 4.
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Confusion matrices depicted in Table 7 demonstrate the performance of the binary
SVMs. For the end-uses shower, washing machine, dishwasher and bathtub, the binary SVMs
have a high accuracy. The accuracy of binary SVMs for end-use events toilet and faucet are
relatively low but still outperform the multi-class SVM. Compared to bathtub and shower,
the precisions for toilet, faucet and washing machine are significantly lower (refer to the
confusion matrix in A7). In case of dishwasher, the precision is not computable, since there
is no true positive event recognized.

3.1.2. Discussion

At first sight, binary SVMs seem to outperform the multi-class SVM (refer to Figure 4). In
case of shower and bathtub, binary SVMs demonstrate high performance in terms of accuracy
and precision. This is the consequence of the characteristics of both events, i.e., both of them
are characterized by a sharp ascent of flow rate, where the high flow rate is continuous for
several minutes, mainly without any interruption.
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However, the conclusion that binary SVMs outperform the multi-class SVM has to be
made with care, as the imbalance in the sample distribution shifts the evaluation metrics
for binary SVMs to higher values. For instance, the binary SVM is not able to recognize
any dishwasher events. Although the corresponding accuracy is 100%, this classifier still
fails to identify the dishwasher events correctly. Similar results can be observed for washing
machine, where the binary SVM has a high accuracy but a relatively low precision. These
results indicate that the classification framework described in this study comprising data
preprocessing, feature extraction and binary SVMs are not ideal for water end-uses, where
a single water consumption pattern is not representative for the end-use event. More
concretely, an end-use event of dishwasher or washing machine usually continues for more
than an hour. However, the water consumptions assembling these end-uses are usually
several separated consumptions patterns with large temporal intervals of interruption.
Since the time series sequences are considered as coherent when the temporal interval
of interruption is less than 150 s (refer to Section 2.1), the end-uses dishwasher or washing
machine are not described by the selected features precisely.

For the end-uses toilet and faucet, binary SVMs tend to have high false positive and
false negative rates. It indicates, that these two events are often confused with other
end-uses. Both of them are abrupt and short events corresponds to a sharp curve of
consumption volume and flow rate. Thus, additional features with more discriminative
power should be utilized to increase the performance of the classification.

Hence, we can conclude that the classifier is not the single critical factor for the
accuracy and the precision, as data preprocessing and feature extraction also affect the
overall result. Moreover, datasets solely including the water consumption data might not
be sufficient for the identification of complex end-uses (e.g., washing machine or dishwasher),
since significant prior knowledge, i.e., program settings of the machine or accurate start
and end time of the program, are not comprised in the datasets.

A limitation to our results is that the experiments were only conducted on datasets
with a high temporal resolution. The accuracy and precision of the classifiers likely depend
on this resolution. Thus, with datasets of lower resolution, the accuracy and precision of
the classifiers might significantly deteriorate.

3.2. Evaluation of the Unsupervised Techniques

In contrast to the evaluation of supervised techniques, accuracy and precision can-
not be computed for the evaluation of unsupervised techniques directly, as the clusters
recognized by clustering methods are not necessarily equivalent to the end-use classes.
For instance, we identified 10 clusters by using the k-means method; however, there are
only seven end-uses in the simulated database. Furthermore, the identified clusters are not
assigned to any end-use classes inherently; hence, the list of clusters will be a permutation
of the list of end-uses. For these reasons, the Adjusted Rand Index (ARI) and the Adjusted
Mutual Information (AMI), which are commonly used to assess whether detected clusters
correspond to ground truth classes, are utilized as evaluation metrics.

Moreover, for CASH, DBSCAN, OPTICS and the clustering algorithm based on DTW,
the number of detected clusters is presented. For k-means, the number of clusters is a
hyperparameter fixed to ten (refer to Section 2.4.2) in this study.

3.2.1. Evaluation Results

The evaluation results for the unsupervised techniques described from Sections 2.4.1–2.4.5
are summarized in Tables 1–5 respectively. Obviously, the number of the estimated clusters
differs from the actual number of end-uses greatly. With regard to the similarity between
the estimated clusters and the real end-use classes (refer to ARI and AMI values), the
performance of the clustering methods can be ordered as k-means, DTW-based method,
DBSCAN, CASH and OPTICS, in descending order. All clustering methods demonstrate
low ARI and AMI values for all experiments conducted.
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Table 1. Evaluation metrics for the clustering algorithm based on Dynamic Time Warping (DTW).

1P 2P 3P 4P 5P 6P

Estimated number of
clusters 21 17 19 23 27 19

ARI 0.06 0.06 0.05 0.05 0.05 0.05
AMI 0.15 0.11 0.10 0.14 0.12 0.12

Table 2. Evaluation metrics for k-means.

1P 2P 3P 4P 5P 6P

ARI 0.17 0.10 0.09 0.12 0.11 0.08
AMI 0.24 0.18 0.18 0.20 0.19 0.15

Table 3. Evaluation metrics for Density-Based Spatial Clustering of Applications with Noise
(DBSCAN).

1P 2P 3P 4P 5P 6P

Estimated number of
clusters 2 2 1 1 1 1

ARI 0.04 0.03 0.02 0.01 0.01 0.01
AMI 0.06 0.04 0.03 0.02 0.02 0.01

Table 4. Evaluation metrics for Ordering Points To Identify the Clustering Structure (OPTICS).

1P 2P 3P 4P 5P 6P

Estimated number of
clusters 11 17 26 21 17 27

ARI −0.03 −0.03 −0.03 −0.01 −0.02 −0.02
AMI 0.02 0.03 0.03 0.03 0.03 0.02

Table 5. Evaluation metrics for Clustering in Arbitrary Subspaces based on the Hough transform
(CASH).

1P 2P 3P 4P 5P 6P

Estimated number of
clusters 30 37 44 47 51 98

ARI −0.04 −0.04 −0.04 −0.04 −0.03 −0.06
AMI 0.04 0.04 0.04 0.05 0.05 0.07

3.2.2. Discussion

The evaluation results for all clustering algorithms show that the identified clusters
do not correspond to the ground truth end-use classes. One reason why the unsupervised
techniques are not able to estimate the end-uses in the given datasets is that clustering
methods generally take the most significant differences in a dataset into account. This
might not be the end-uses but the variation of consumer behaviors in the household or
other effects which are not related to the end-use classification. Moreover, single end-uses
might possess a variety of different consumption patterns. For example, a washing machine
shows different patterns depending on its program settings, the wash load or even the
different sections of a wash cycle. These differences within individual end-uses make the
task of separating end-use categories through clustering more challenging, especially since
the most significant differences in a dataset determine the outcome of clustering.

In summary, unsupervised methods alone are not sufficient to detect the correct end-
uses fully automatically. Similar to the experiments with supervised methods (refer to
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Section 3.1.2), the dataset has a single specific temporal resolution. As a consequence, the
quantitative results cannot be applied to datasets with lower temporal resolution directly.
Furthermore, the synthetic dataset utilized in this study is generated stochastically, based
on the real-world consumption data from cities within the U.S. Hence, it encodes the
country specific water consumption behaviors and other factors (e.g., economy, weather
etc.) For instance, end-uses like washing machine might have a lower variety of different
consumption patterns in countries or region with lower per capita income, as entry-level
washing machines with less program settings are more affordable. A lower variety of
consumption patterns within an end-use would reduce the complexity of identifying
clusters corresponding to the end-use classes. Additionally, the choice of features used
for clustering affects the evaluation results as well. Another set of features might have a
higher descriptive power to represent the underlying data and thus has the discriminative
capacity to distinguish the end-use classes.

4. Conclusions

In this work, we perform a comprehensive quantitative comparison of several su-
pervised and unsupervised ML techniques for residential water end-use classification. A
common database is created with a stochastic simulation tool based on real consumption
data. One of the most important findings of the quantitative results is that the unsupervised
methods alone, i.e., clustering techniques, are not sufficient to detect the correct end-uses
of domestic water consumption fully automatically. This is somewhat consistent with
the implications of the state-of-the-art literatures: In the context of end-use classifications,
clustering techniques are commonly employed in combination with manual processing [1]
or supervised techniques [2–4]. Another conclusion we can draw from this study is that
supervised ML techniques pose an efficient way to perform water end-use classification. A
possible explanation for this is that prior knowledge regarding the end-use classes (e.g.,
class labels) are commonly provided when using supervised ML methods.

To sum up, our first recommendation for the experiment set-up of residential wa-
ter end-use classification is to incorporate prior knowledge as much as possible. More
concretely, this can be realized by understanding the structure of the water network, by
acquiring meta-information about each consumer (e.g., size of the household, location,
devices etc.) or by generating labels manually or automatically. The benefits of these
activities are various. First, the utilization of prior knowledge increases the overall perfor-
mance of the classification methods. Moreover, it leads to a deep understanding of water
consumption behavior and consequently facilitates the feature engineering step as well
as the preprocessing. Finally, known operations encoded in prior knowledge increase the
interpretability of algorithms based on neural networks and reduce the number of trainable
parameters at the same time [28].

Nevertheless, challenges and difficulties of acquiring prior knowledge should be
considered. For instance, manual labeling tends to produce inaccurate labels, since human-
beings are not predestined for repetitive tasks. Thus, quality checks of the manual labels
are necessary. Furthermore, technical remedies could be utilized to generate accurate
end-use labels. Additional sensor data, such as machine internal time logger or external
electricity logger, can be used as labels for washing machines or dishwashers. Finally, a
fully automatic labeling of some other daily end-use events (e.g., toilet and faucet) can be
achieved with an additional smart water meter installed directly on the water faucet.

A further implication derived from our study is that the database for water end-use
classification needs to be representative. As stated in the introduction, one of the major
limitations of the state-of-the-art literature is that the databases are commonly acquired in
a specific country/region. Although our study provides a first comprehensive comparison
between supervised and unsupervised ML methods, the utilized database still suffers from
the same limitation (refer to Sections 3.1.2 and 3.2.2). Hence, the quantitative results in the
state-of-the-art as well as in our study can be hardly applied to other datasets. In order
to increase the generalizability and reproducibility of ML techniques for end-use classi-
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fication, we suggest to establish a large representative dataset comprising raw data and
annotations from various countries or regions for future research. For this purpose, end
consumers in different circumstances (e.g., housing and household situation, age, gender
etc.) need to be encouraged to participate. Considering the above-mentioned aspects,
crowdsourcing approaches which have been applied for medical applications [29] could
be a possible solution. A suitable framework to implement such approaches successfully
is the so-called citizen science project, where the citizens are contributing to a scientific
project actively with their resources and knowledge. Scientific results and other output of
the project are accessible to the participants as an exemplary reward.

Previously, we concluded that one shortcoming of our study with regard to its general-
izability is the temporal resolution of the utilized synthetic database, since it is fixed to 10 s.
However, Cominola et al. [16] found that accurate end-use disaggregation is only possible
with a temporal resolution of less than a minute. As end-use disaggregation and end-use
classification are linked closely (disaggregation, unlike classification, separates overlapping
events into the individual end-uses), we infer that a lower temporal resolution would also
give less accurate results for end-use classification. For example, an end-use event with
a duration shorter than one minute (e.g., faucet or toilet) cannot be described by water
consumption data with a lower frequency, i.e., less temporal resolution. Therefore, the
choice of the temporal resolution in our dataset is based on the requirement of the use-case,
since we are aiming at recognizing all common residential water end-uses. This leads us
to our next implication: The characteristics of the underlying database should meet the
requirement of the water end-use classification task. An orientation for the estimation of
an optimal temporal resolution (i.e., frequency) is given by the Nyquist sampling theorem.
It states that a system with uniform sampling can reconstruct a continuous function (i.e.,
analog signal) adequately, only if the sampling rate is at least two times the maximum
frequency of the original signal.

A final recommendation derived from our study is that we should be aware of
the “class imbalance” problem for water end-use classification. In common residential
households, events like faucet and toilet occur more frequently than bathtub, washing
machine or dishwasher. Furthermore, bathtub, washing machine or dishwasher are not
always available in each household. Consequently, the water end-use classification problem
generally suffers from an imbalanced class distribution, which could result in a lower
classification accuracy of ML models. Effective ways to handle it are upsampling of the
minority class or downsampling of the majority class. The former can be realized with data
augmentation techniques, whilst the latter can be achieved by removing redundant data.

In future work, it would be desirable to test the implemented methods on datasets
from other regions of the world. Another promising future direction to improve the accu-
racy and generalizability of residential water end-use classification would be the systematic
exploration and evaluation of hybrid techniques combining supervised and unsupervised
methods. Encouraging results of hybrid techniques have already been presented in pre-
vious studies [2–4], on which comparative experiments could be conducted. Last but
not least, we would like to point out the potential of deep neural networks to resolve
end-use classification. Recently, deep neural networks have achieved tremendous success
in various disciplines, such as medical image processing, computer vision, space or geo-
science. Although artificial neural networks have been applied for end-use classification
with promising results (refer to [11–14]), the networks employed as classifiers still have
a shallow structure. Sophisticated neural networks in combination with deep learning
techniques may benefit the entire end-use classification process comprising data prepro-
cessing, feature extraction and classification. A potential candidate is the Recurrent Neural
Network (RNN), which is well-suited to time series data, since it has the capability to
maintain the internal state from time-step to time-step. The training of such a network
requires large amounts of annotated water consumption data. The widespread use of smart
water meters with high temporal resolution counteracts this challenge.
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Appendix A

Table A1. Classification report for the 1P dataset.

Precision Recall F1-Score Support

0 1 0.66 0.63 0.65 150
1 1 0.80 0.84 0.82 466
2 1 0.80 0.96 0.87 49
3 1 0.83 0.89 0.86 775
4 1 0.84 0.56 0.67 137
5 1 0.25 0.02 0.04 47
6 1 0.56 0.56 0.56 9

Accuracy 2 0.80 1633
Macro Average 0.68 0.64 0.64 1633

Weighted Average 0.79 0.80 0.79 1633
1 The rows in the classification report correspond to the end-use labels: 0 = Overlapping, 1 = Toilet, 2 = Shower,
3 = Faucet, 4 = Washing Machine, 5 = Dishwasher, 6 = Bathtub. 2 The micro average corresponds to the accuracy.
If only one subset of the classes is present in the predictions for the test data, the two metrics are not equivalent.

https://www.mdpi.com/2073-4441/13/2/236/s1
https://www.mdpi.com/2073-4441/13/2/236/s1
https://scikit-learn.org/stable/index.html
https://elki-project.github.io/
https://elki-project.github.io/
https://github.com/Nora-Go/Water_Consumption_Datasets
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Table A2. Classification report for the 2P dataset.

Precision Recall F1-Score Support

0 1 0.69 0.66 0.68 289
1 1 0.79 0.87 0.83 692
2 1 0.89 0.91 0.90 56
3 1 0.85 0.86 0.86 1098
4 1 0.77 0.58 0.66 110
5 1 0
6 1 1.00 0.50 0.67 2

Micro Average 0.81 0.82 0.82 2247
Macro Average 0.83 0.73 0.77 2247

Weighted Average 0.81 0.82 0.82 2247
1 The rows in the classification report correspond to the end-use labels: 0 = Overlapping, 1 = Toilet, 2 = Shower,
3 = Faucet, 4 = Washing Machine, 5 = Dishwasher, 6 = Bathtub.

Table A3. Classification report for the 3P dataset.

Precision Recall F1-Score Support

0 1 0.69 0.70 0.69 379
1 1 0.77 0.80 0.78 708
2 1 0.87 0.92 0.90 66
3 1 0.81 0.85 0.83 1253
4 1 0.82 0.61 0.70 137
5 1 0
6 1 0.80 0.57 0.67 7

Micro Average 0.78 0.80 0.79 2550
Macro Average 0.79 0.74 0.76 2550

Weighted Average 0.78 0.80 0.79 2550
1 The rows in the classification report correspond to the end-use labels: 0 = Overlapping, 1 = Toilet, 2 = Shower,
3 = Faucet, 4 = Washing Machine, 5 = Dishwasher, 6 = Bathtub.

Table A4. Classification report for the 4P dataset.

Precision Recall F1-Score Support

0 1 0.78 0.75 0.77 471
1 1 0.79 0.83 0.81 844
2 1 0.95 0.89 0.92 89
3 1 0.82 0.86 0.84 1275
4 1 0.76 0.71 0.73 166
5 1 0
6 1 1.00 0.33 0.50 3

Micro Average 0.81 0.82 0.81 2848
Macro Average 0.85 0.73 0.76 2848

Weighted Average 0.81 0.82 0.81 2848
1 The rows in the classification report correspond to the end-use labels: 0 = Overlapping, 1 = Toilet, 2 = Shower,
3 = Faucet, 4 = Washing Machine, 5 = Dishwasher, 6 = Bathtub.
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Table A5. Classification report for the 5P dataset.

Precision Recall F1-Score Support

0 1 0.70 0.77 0.73 505
1 1 0.77 0.82 0.79 873
2 1 0.94 0.93 0.93 113
3 1 0.81 0.83 0.82 1315
4 1 0.81 0.53 0.64 207
5 1 0.60 0.05 0.08 66
6 1 0.80 0.60 0.69 20

Accuracy 2 0.78 3099
Macro Average 0.77 0.65 0.67 3099

Weighted Average 0.78 0.78 0.77 3099
1 The rows in the classification report correspond to the end-use labels: 0 = Overlapping, 1 = Toilet, 2 = Shower,
3 = Faucet, 4 = Washing Machine, 5 = Dishwasher, 6 = Bathtub. 2 The micro average corresponds to the accuracy.
Solely when only a subset of the classes is present in the predictions for the test data, the two metrics differ.

Table A6. Classification report for the 6P dataset.

Precision Recall F1-Score Support

0 1 0.73 0.78 0.76 747
1 1 0.73 0.82 0.77 956
2 1 0.87 0.82 0.84 112
3 1 0.85 0.83 0.84 1604
4 1 0.78 0.29 0.42 132
5 1 0.67 0.04 0.08 50
6 1 1.00 0.50 0.67 4

Accuracy 2 0.79 3605
Macro Average 0.80 0.58 0.62 3605

Weighted Average 0.79 0.79 0.78 3605
1 The rows in the classification report correspond to the end-use labels: 0 = Overlapping, 1 = Toilet, 2 = Shower,
3 = Faucet, 4 = Washing Machine, 5 = Dishwasher, 6 = Bathtub. 2 The micro average corresponds to the accuracy.
Solely when only a subset of the classes is present in the predictions for the test data, the two metrics differ.

Table 7. Confusion matrices for the binary SVMs.

1P 2P 3P 4P 5P 6P

0 1
[

1456 27
73 77

] [
1941 53
127 162

] [
2164 71
154 225

] [
2377 62
149 322

] [
2492 102
159 346

] [
2719 139
239 508

]
1 1

[
1077 90

79 387

] [
1470 121
121 571

] [
1759 147
168 540

] [
1898 168
174 670

] [
2032 194
188 685

] [
2424 225
256 700

]
2 1

[
1579 5

4 45

] [
2224 3

7 49

] [
2542 6

6 60

] [
2817 4

14 75

] [
2983 3

9 104

] [
3486 7

25 87

]
3 1

[
741 117
100 675

] [
1062 123
180 918

] [
1167 194
233 1020

] [
1448 187
225 1050

] [
1588 196
290 1025

] [
1835 166
312 1292

]
4 1

[
1484 12

73 64

] [
2159 14

57 53

] [
1077 90

79 387

] [
2718 26

82 84

] [
2871 21
124 83

] [
3471 2
119 13

]
5 1

[
1586 0

47 0

] [
2247 0

36 0

] [
2550 0

64 0

] [
2848 0

62 0

] [
3033 0

66 0

] [
3555 0

50 0

]
6 1

[
1620 4

5 4

] [
2281 0

1 1

] [
2606 1

3 4

] [
2907 0

2 1

] [
3076 3

8 12

] [
3601 0

3 1

]
1 The rows correspond to the end-use labels: 0 = Overlapping, 1 = Toilet, 2 = Shower, 3 = Faucet, 4 = Washing Machine, 5 = Dishwasher,
6 = Bathtub.
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