Impacts Analysis of Alien Macroinvertebrate Species in the Hydrographic System of a Subalpine Lake on the Italian–Swiss Border
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Data Processing
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keller, R.P.; Lodge, D.M.; Lewis, M.A.; Shogren, J.F. Bioeconomics of invasive species. In Integrating Ecology, Economics, Policy and Management; Oxford University Press: New York, NY, USA, 2009. [Google Scholar]
- Pimentel, D.; Zuniga, R.; Morrison, D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 2005, 52, 273–288. [Google Scholar] [CrossRef]
- Bellard, C.; Cassey, P.; Blackburn, T.M. Alien species as a driver of recent extinctions. Biol. Lett. 2016, 12, 20150623. [Google Scholar] [CrossRef]
- Bacher, S.; Blackburn, T.M.; Essl, F.; Genovesi, P.; Heikkilä, J.; Jeschke, J.M. Socio-Economic Impact Classification of Alien Taxa (SEICAT). Methods Ecol. Evol. 2018, 9, 159–168. [Google Scholar] [CrossRef]
- Roy, H.E.; Schönrogge, K.; Dean, H.; Peyton, J.; Branquart, E.; Vanderhoeven, S. Invasive Alien Species—Framework for the Identification of Invasive Alien Species of EU Concern (ENV.B.2/ETU/2013/0026); European Commission: Brussels, Belgium, 2014. [Google Scholar]
- Cabra-Rivas, I.; Saldana, A.; Castro-Diez, P.; Gallien, L. A multi-scale approach to identify invasion drivers and invaders’ future dynamics. Biol. Invasions 2016, 18, 411–426. [Google Scholar] [CrossRef]
- Catford, J.A.; Vesk, P.A.; Richardson, D.; Pyšek, P. Quantifying levels of biological invasion: Towards the objective classification of invaded and invasible ecosystems. Glob. Chang. Biol. 2011, 18, 44–62. [Google Scholar] [CrossRef] [Green Version]
- Boggero, A.; Basset, A.; Austoni, M.; Barbone, E.; Bartolozzi, L.; Bertani, I.; Campanaro, A.; Cattaneo, A.; Cianferoni, F.; Corriero, G.; et al. Weak effects of habitat type on susceptibility to invasive freshwater species: An Italian case study. Aquat. Conserv. Mar. Freshw. Ecosyst. 2014, 24, 841–852. [Google Scholar] [CrossRef]
- Colangelo, P.; Fontaneto, D.; Marchetto, A.; Ludovisi, A.; Basset, A.; Bartolozzi, L. Alien species in Italian freshwater ecosystems: A macroecological assessment of invasion drivers. Aquat. Invasions 2017, 12, 299–309. [Google Scholar] [CrossRef]
- Shine, C.; Kettunen, M.; Genovesi, P.; Gollasch, S.; Pagad, S.; Starfinger, U. Technical Support to EU Strategy on Invasive Species (IAS)—Policy Options to Control the Negative Impacts of IAS on Biodiversity in Europe and the EU; Institute for European Environmental Policy (IEEP): Brussels, Belgium, 2008. [Google Scholar]
- Shine, C.; Kettunen, M.; Genovesi, P.; Essl, F.; Gollasch, S.; Rabitsch, W. Assessment to Support Continued Development of the EU Strategy to Combat Invasive Alien Species; Final Report; Institute for European Environmental Policy (IEEP): Brussels, Belgium, 2010. [Google Scholar]
- Crandall, K.A.; de Grave, S. An updated classification of the freshwater crayfishes (Decapoda: Astacidea) of the world, with a complete species list. J. Crustac. Biol. 2017, 37, 615–653. [Google Scholar] [CrossRef] [Green Version]
- Scalera, R.; Bevilacqua, G.; Carnevali, L.; Genovesi, P. (Eds.) Le Specie Esotiche Invasive: Andamenti, Impatti e Possibili Risposte; ISPRA: Roma, Italy, 2018. [Google Scholar]
- Vilà, M.; García-Berthou, E. Monitoring Biological Invasions in Freshwater Habitats. In Conservation Monitoring in Freshwater Habitats; Hurford, C., Schneider, M., Cowx, I., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 91–100. [Google Scholar]
- Gallardo, B.; Clavero, M.; Sánchez, M.I.; Vilà, M. Global ecological impacts of invasive species in aquatic ecosystems. Glob. Chang. Biol. 2015, 22, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Kemp, C.; Van Riper, C.J.; BouFajreldin, L.; Stewart, W.P.; Scheunemann, J.; Born, R.J.G.V.D. Connecting human–Nature relationships to environmental behaviors that minimize the spread of aquatic invasive species. Biol. Invasions 2017, 19, 2059–2074. [Google Scholar] [CrossRef]
- Strayer, D.L. Alien species in fresh waters: Ecological effects, interactions with other stressors, and prospects for the future. Freshw. Biol. 2010, 55, 152–174. [Google Scholar] [CrossRef]
- Paganelli, D.; Pandolfi, A.; Sconfietti, R.; Marchini, A.; Vilizzi, L. Potential invasiveness by non-indigenous macrozoobenthos in the secondary hydrographic system of a temperate-climate river catchment. Ecol. Indic. 2018, 88, 274–281. [Google Scholar] [CrossRef]
- De Vaate, A.B.; Jazdzewski, K.; Ketelaars, H.A.; Gollasch, S.; Van Der Velde, G. Geographical patterns in range extension of Ponto-Caspian macroinvertebrate species in Europe. Can. J. Fish. Aquat. Sci. 2002, 59, 1159–1174. [Google Scholar] [CrossRef]
- Souty-Grosset, C.; Anastácio, P.M.; Aquiloni, L.; Banha, F.; Choquer, J.; Chucholl, C.; Tricarico, E. The red swamp crayfish Procambarus clarkii in Europe: Impacts on aquatic ecosystems and human well-being. Limnologica 2016, 58, 78–93. [Google Scholar] [CrossRef]
- Dölle, K.; Kurzmann, D.E. The Freshwater Mollusk Dreissena polymorpha (Zebra Mussel)—A Review: Living, Prospects and Jeopardies. Asian J. Environ. Sci. 2020, 13, 1–17. [Google Scholar] [CrossRef]
- Jeschke, J.M.; Bacher, S.; Blackburn, T.M.; Dick, J.T.A.; Essl, F.; Evans, T.; Gaertner, M.; Hulme, P.E.; Kühn, I.; Mrugała, A.; et al. Defining the Impact of Non-Native Species. Conserv. Biol. 2014, 28, 1188–1194. [Google Scholar] [CrossRef]
- Laverty, C.; Wolfgang, N.; Dick, J.T.A.; Lucy, F.E. Alien aquatics in Europe: Assessing the relative environmental and socioeconomic impacts of invasive aquatic macroinvertebrates and other taxa. Manag. Biol. Invasions 2015, 6, 341–350. [Google Scholar] [CrossRef] [Green Version]
- Gherardi, F.; Bertolino, S.; Bodon, M.; Casellato, S.; Cianfanelli, S.; Ferraguti, M. Animal xenodiversity in Italian inland waters: Distribution, modes of arrival, and pathways. Biol. Invasions 2008, 10, 435–454. [Google Scholar] [CrossRef]
- Nunes, A.L.; Tricarico, E.; Panov, V.; Cardoso, A.; Katsanevakis, S. Pathways and gateways of freshwater invasions in Europe. Aquat. Invasions 2015, 10, 359–370. [Google Scholar] [CrossRef] [Green Version]
- Copp, G.; Vilizzi, L.; Tidbury, H.; Stebbing, P.; Tarkan, A.S.; Miossec, L.; Goulletquer, P. Development of a generic decision-support tool for identifying potentially invasive aquatic taxa: AS-ISK. Manag. Biol. Invasions 2016, 7, 343–350. [Google Scholar] [CrossRef] [Green Version]
- Boon, P.J.; Clarke, S.A.; Copp, G.H. Alien species and the EU Water Framework Directive: A comparative assessment of European approaches. Biol. Invasions 2020, 22, 1497–1512. [Google Scholar] [CrossRef] [Green Version]
- Stasolla, G.; Tricarico, E.; Vilizzi, L. Risk screening of the potential invasiveness of non-native marine crustacean decapods and barnacles in the Mediterranean Sea. Hydrobiologia 2021, 848, 1997–2009. [Google Scholar] [CrossRef]
- Semenchenko, V.; Lipinskaya, T.; Vilizzi, L. Risk screening of non-native macroinvertebrates in the major rivers and associated basins of Belarus using the Aquatic Species Invasiveness Screening Kit. Manag. Biol. Invasions 2018, 9, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Soncini-Sessa, R.; Weber, E.; Castelletti, A. Integrated and Participatory Water Resources Management—Theory, 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 2007; Volume 1, p. 582. [Google Scholar]
- Copp, G.H.; Vilizzi, L.; Wei, H.; Li, S.; Piria, M.; Al-Faisal, A.J.; Almeida, D.; Atique, U.; Al-Wazzan, Z.; Bakiu, R.; et al. Speaking their language—Development of a multilingual decision-support tool for communicating invasive species risks to decision makers and stakeholders. Environ. Model. Softw. 2021, 135, 104900. [Google Scholar] [CrossRef]
- Copp, G.H. The Fish Invasiveness Screening Kit (FISK) for Non-Native Freshwater Fishes—A Summary of Current Applications. Risk Anal. 2013, 33, 1394–1396. [Google Scholar] [CrossRef]
- Hill, J.E.; Tuckett, Q.M.; Hardin, S.; Lawson, L.L., Jr.; Lawson, K.M.; Ritch, J.L.; Partridge, L. Risk screen of freshwater tropical ornamental fishes for the conterminous united states. Trans. Am. Fish. Soc. 2017, 146, 927–938. [Google Scholar] [CrossRef]
- Sousa, R.; Antunes, C.; Guilhermino, L. Ecology of the invasive Asian clam Corbicula fluminea (Müller, 1774) in aquatic ecosystems: An overview. Ann. Limnol.-Int. J. Limnol. 2008, 44, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, R.W.; William, P.; Kovalak, D.; Schloesser, W. The zebra mussel, Dreissena polymorpha (Pallas, 1771), in North America: Impact on raw water users. In Proceedings of the Service Water Reliability Improvement Seminar, Palo Alto, CA, USA, 6–8 November 1989; Electronic Power Research Institute: Palo Alto, CA, USA, 1989; pp. 11–26. [Google Scholar]
- Burlakova, L.E.; Karatayev, A.Y.; Padilla, D.K. The Impact of Dreissena polymorpha (Pallas) Invasion on Unionid Bivalves. Int. Rev. Hydrobiol. 2000, 85, 529–541. [Google Scholar] [CrossRef]
- Cappelletti, C.; Cianfanelli, S.; Beltrami, M.E.; Ciutti, F. Sinanodonta woodiana (Lea, 1834) (Bivalvia: Unionidae): A new non-indigenous species in Lake Garda (Italy). Aquat. Invasions 2009, 4, 685–688. [Google Scholar] [CrossRef]
- Dobson, M. Replacement of native freshwater snails by the exotic Physa acuta (Gastropoda: Physidae) in southern Mozambique; a possible control mechanism for schistosomiasis. Ann. Trop. Med. Parasitol. 2004, 98, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Ebbs, E.T.; Loker, E.S.; Brant, S.V. Phylogeography and genetics of the globally invasive snail Physa acuta Draparnaud 1805, and its potential to serve as an intermediate host to larval digenetic trematodes. BMC Evol. Biol. 2018, 18, 103. [Google Scholar] [CrossRef] [PubMed]
- Cowie, R.H.; Dillon, R.T., Jr.; Robinson, D.G.; Smith, J.W. Alien non-marine snails and slugs of priority quarantine importance in the United States: A preliminary risk assessment. Am. Malacol. Bull. 2009, 27, 113–132. [Google Scholar] [CrossRef]
- Pointier, J.-P.; Coustau, C.; Rondelaud, D.; Theron, A. Pseudosuccinea columella (Say 1817) (Gastropoda, Lymnaeidae), snail host of Fasciola hepatica: First record for France in the wild. Parasitol. Res. 2007, 101, 1389–1392. [Google Scholar] [CrossRef]
- Lodge, D.M.; Deines, A.; Gherardi, F.; Yeo, D.C.; Arcella, T.; Baldridge, A.K.; Barnes, M.A.; Chadderton, W.L.; Feder, J.L.; Gantz, C.A.; et al. Global Introductions of Crayfishes: Evaluating the Impact of Species Invasions on Ecosystem Services. Annu. Rev. Ecol. Evol. Syst. 2012, 43, 449–472. [Google Scholar] [CrossRef]
- Kozubíková, E.; Viljamaa-Dirks, S.; Heinikainen, S.; Petrusek, A. Spiny-cheek crayfish Orconectes limosus carry a novel genotype of the crayfish plague pathogen Aphanomyces astaci. J. Invertebr. Pathol. 2011, 108, 214–216. [Google Scholar] [CrossRef]
- Lewis, S.D. Pacifastacus. In Biology of Freshwater Crayfish; Holdich, D.M., Ed.; Blackwell Science: Oxford, UK, 2002; pp. 511–540. [Google Scholar]
- Gherardi, F.; Barbaresi, S. Invasive crayfish: Activity patterns of Procambarus clarkii in the rice fields of the Lower Guadalquivir (Spain). Fundam. Appl. Limnol. 2000, 150, 153–168. [Google Scholar] [CrossRef]
- Gherardi, F.; Acquistapace, P. Invasive crayfish in Europe: The impact of Procambarus clarkii on the littoral community of a Mediterranean lake. Freshw. Biol. 2007, 52, 1249–1259. [Google Scholar] [CrossRef] [Green Version]
- Vilizzi, L.; Copp, G.H.; Hill, J.E.; Adamovich, B.; Aislabie, L.; Akin, D.; Al-Faisal, A.J.; Almeida, D.; Azmai, M.A.; Bakiu, R.; et al. A global-scale screening of non-native aquatic organisms to identify potentially invasive species under current and future climate conditions. Sci. Total Environ. 2021, 788, 147868. [Google Scholar] [CrossRef]
- Rodríguez, C.F.; Bécares, E.; Fernandez-Aláez, M. Shift from clear to turbid phase in Lake Chozas (NW Spain) due to the introduction of American red swamp crayfish (Procambarus clarkii). Hydrobiologia 2003, 506–509, 421–426. [Google Scholar] [CrossRef]
- Correia, A.M.; Ferreira, Ó. Burrowing Behavior of the Introduced Red Swamp Crayfish Procambarus clarkii (Decapoda: Cambaridae) In Portugal. J. Crustac. Biol. 1995, 15, 248–257. [Google Scholar] [CrossRef]
- Nyström, P. Ecological impact of introduced and native crayfish on freshwater communities: European perspectives. In Crayfish in Europe as Alien Species; Gherardi, F., Holdich, D.M., Eds.; Balkema: Rotterdam, The Netherlands, 1999; pp. 63–85. [Google Scholar]
- Rodríguez, C.; Becares, E.; Fernández-Aláez, M. Loss of diversity and degradation of wetlands as a result of introducing exotic crayfish. Biol. Invasions 2005, 7, 75–85. [Google Scholar] [CrossRef]
- Gherardi, F. Crayfish invading Europe: The case study of Procambarus clarkii. Mar. Freshw. Behav. Physiol. 2006, 39, 175–191. [Google Scholar] [CrossRef]
- Diéguez-Uribeondo, J.; Söderhäll, K. Procambarus clarkia Girard as a vector for the crayfish plague fungus, Aphanomyces astaci Schikora. Aquac. Res. 1993, 24, 761–765. [Google Scholar] [CrossRef]
- Svoboda, J.; Mrugala, A.; Kozubíává-Balkarová, E.; Petrusek, A. Hosts and transmission of the crayfish plague pathogen Aphanomyces astaci: A review. J. Fish Dis. 2017, 40, 127–140. [Google Scholar] [CrossRef]
- Aquiloni, L.; Martín, M.P.; Gherardi, F.; Diéguez-Uribeondo, J. The North American crayfish Procambarus clarkii is the carrier of the oomycete Aphanomyces astaci in Italy. Biol. Invasions 2010, 13, 359–367. [Google Scholar] [CrossRef] [Green Version]
- Rebelo, R.; Cruz, M.J. Vulnerability of Southwest Iberian amphibians to an introduced crayfish, Procambarus clarkii. Amphib. 2005, 26, 293–303. [Google Scholar] [CrossRef]
- Águas, M.; Banha, F.; Marques, M.; Anastácio, P. Can recently-hatched crayfish cling to moving ducks and be transported during flight? Limnologica 2014, 48, 65–70. [Google Scholar] [CrossRef]
- Viosca, P. Crawfish Culture. Progress. Fish. Cult. 1937, 32, 27. [Google Scholar] [CrossRef]
- Gherardi, F.; Souty-Grosset, C. Pontastacus leptodactylus (Eschscholtz, 1823) (amended version of 2016 assessment). IUCN Red List. Threat. Species 2017, 3, e.T153745A120103207. [Google Scholar]
- Kappes, H.; Haase, P. Slow, but steady: Dispersal of freshwater molluscs. Aquat. Sci. 2012, 74, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Sousa, R.; Gutiérrez, J.; Aldridge, D. Non-indigenous invasive bivalves as ecosystem engineers. Biol. Invasions 2009, 11, 2367–2385. [Google Scholar] [CrossRef]
- Rahel, F.J. Homogenization of Freshwater Faunas. Annu. Rev. Ecol. Syst. 2002, 33, 291–315. [Google Scholar] [CrossRef] [Green Version]
- Gherardi, F.; Aquiloni, L.; Cianfanelli, S.; Tricarico, E. Le specie aliene dei laghi italiani. In I Macroinvertebrati Dei Laghi—Tassonomia, Ecologia e Metodi di Studio; Lencioni, V., Boggero, A., Marziali, L., Rossaro, B., Eds.; Museo delle Scienze: Trento, Italy, 2013; Volume 6/1, pp. 65–110. [Google Scholar]
- Kamburska, L.; Lauceri, R.; Beltrami, M.; Boggero, A.; Cardeccia, A.; Guarneri, I.; Manca, M.; Riccardi, N.R. Establishment of Corbicula fluminea (O.F. Müller, 1774) in Lake Maggiore: A spatial approach to trace the invasion dynamics. BioInvasions Rec. 2013, 2, 105–117. [Google Scholar] [CrossRef]
- Gomes, C.; Mendes, T.; Borges, R.; Guarneri, I.; Marchi, I.; Guilhermino, L.; Vasconcelos, V.; Riccardi, N.; Antunes, A. The genetic diversity of two invasive sympatric bivalves (Corbicula fluminea and Dreissena polymorpha) from Lakes Garda and Maggiore, Northern Italy. J. Great Lakes Res. 2020, 46, 225–229. [Google Scholar] [CrossRef]
- Reyna, P.; Nori, J.; Ballesteros, M.L.; Hued, A.C.; Tatián, M. Targeting clams: Insights into the invasive potential and current and future distribution of Asian clams. Environ. Conserv. 2018, 45, 387–395. [Google Scholar] [CrossRef] [Green Version]
- Bódis, E.; Tóth, B.; Sousa, R. Freshwater mollusc assemblages and habitat associations in the Danube River drainage, Hungary. Aquat. Conserv. Mar. Freshw. Ecosyst. 2016, 26, 319–332. [Google Scholar] [CrossRef] [Green Version]
- Fabbri, R.; Landi, L. Nuove segnalazioni di molluschi, crostacei e pesci esotici in Emilia-Romagna e prima segnalazione di Corbicula fluminea (O.F. Muller,1774) in Italia. Quad. Studi Nat. Romagna 1999, 12, 9–20. [Google Scholar]
- Bodon, M.; Lopez-Soriano, J.; Quinonero-Salgado, S.; Nardi, G.; Niero, I.; Cianfanelli, S. Unravelling the complexity of Corbicula clams invasion in Italy (Bivalvia: Cyrenidae). Boll. Malacol. 2020, 56, 127–171. [Google Scholar]
- McMahon, R.F. Evolutionary and physiological adaptations of aquatic invasive animals: R selection versus resistance. Can. J. Fish. Aquat. Sci. 2002, 59, 1235–1244. [Google Scholar] [CrossRef] [Green Version]
- Bódis, E.; Sipkay, C.; Tóth, B.; Oertel, N.; Nosek, J.; Hornung, E. Spatial and temporal variation in biomass and size structure of Corbicula fluminea in Danube River catchment, Hungary. Biologia 2012, 67, 739–750. [Google Scholar] [CrossRef]
- Vaughn, C.C.; Hakenkamp, C.C. The functional role of burrowing bivalves in freshwater ecosystems. Freshw. Biol. 2001, 46, 1431–1446. [Google Scholar] [CrossRef] [Green Version]
- Sousa, R.; Rufino, M.; Gaspar, M.; Antunes, C.; Guilhermino, L. Abiotic impacts on spatial and temporal distribution of Corbicula fluminea (Müller, 1774) in the River Minho estuary, Portugal. Aquat. Conserv. Mar. Freshw. Ecosyst. 2008, 18, 98–110. [Google Scholar] [CrossRef]
- Karatayev, A.; Burlakova, L.E.; Padilla, D.K. Impacts of Zebra Mussels on Aquatic Communities and Their Role as Ecosystem Engineers. In Invasive Aquatic Species of Europe: Distribution, Impacts and Management; Leppakoski, E., Gollasch, S., Olenin, S., Eds.; Springer: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Benson, A.J.; Raikow, D. Dreissena polymorpha; Revised 31 October 2008; USGS Nonindigenous Aquatic Species Database: Gainesville, FL, USA, 2018. [Google Scholar]
- Ricciardi, A.; Serrouya, R.; Whoriskey, F.G. Aerial exposure tolerance off zebra and quagga mussels (Bivalvia: Dreissenidae): Implications for overland dispersal. Can. J. Fish. Aquat. Sci. 1995, 52, 470–477. [Google Scholar] [CrossRef]
- Giusti, F.; Oppi, E. Dreissena polymorpha (Pallas) nuovamente in Italia. Mem. Mus. Civ. Stor. Nat. Verona 1972, 20, 45–49. [Google Scholar]
- Birnbaum, C. NOBANIS—Invasive Alien Species Fact Sheet—Dreissena polymorpha. Database of the European Network on Invasive Alien Species—NOBANIS. 2011. Available online: https://www.nobanis.org/ (accessed on 1 January 2021).
- Ricciardi, A.; Rasmussen, J.B. Predicting the identity and impact of future biological invaders: A priority for aquatic resource management. Can. J. Fish. Aquat. Sci. 1998, 55, 1759–1765. [Google Scholar] [CrossRef]
- Ward, J.M.; Ricciardi, A. Impacts of Dreissena invasions on benthic macroinvertebrate communities: A meta-analysis. Divers. Distrib. 2007, 13, 155–165. [Google Scholar] [CrossRef]
- Vecchioni, L.; Marrone, F.; Arculeo, M.; Arizza, V. Are there autochthonous Ferrissia (Mollusca: Planorbidae) in the Palaearctic? Molecular evidence of a widespread North American invasion of the Old World. Eur. Zool. J. 2017, 84, 411–419. [Google Scholar] [CrossRef]
- Cianfanelli, S.; Lori, E.; Bodon, M. Non-indigenous freshwater molluscs and their distribution in Italy. In Biological Invaders in Inland Waters: Profiles, Distribution, and Threats; Gherardi, F., Ed.; Springer: Dordrecht, The Netherlands, 2007; Volume 2. [Google Scholar]
- Cardeccia, A.; Marchini, A.; Occhipinti-Ambrogi, A.; Galil, B.; Gollasch, S.; Minchin, D.; Narščius, A.; Olenin, S.; Ojaveer, H. Assessing biological invasions in European Seas: Biological traits of the most widespread non-indigenous species. Estuar. Coast. Shelf Sci. 2018, 201, 17–28. [Google Scholar] [CrossRef]
- AA.VV. Specie Alloctone di Gambero in Lombardia. Linee Guida per il Contenimento. Progetto LIFE14 IPE/IT/018—Gestire 2020—Nature Integrated Management to 2020. La Strategia Integrata per la Rete Natura 2000 e la Biodiversità in Lombardia. 2019.
Scheme | Common Name | Lombardy Region | Piedmont Region | Switzerland |
---|---|---|---|---|
Bivalves | ||||
Corbicula fluminea (Müller, 1774) | Asiatic clam | X | X | - |
Dreissena polymorpha (Pallas, 1771) | Zebra mussel | X | X | - |
Sinanodonta woodiana (Lea, 1834) | Chinese pond mussel | X | - | - |
Gastropods | ||||
Ferrissia californica (Rowell, 1863) | \ | X | - | X |
Gyraulus parvus (Say, 1817) | Ash gyro | - | - | X |
Physella acuta (Draparnaud, 1805) | Bladder snail | X | - | X |
Planorbis corneus (Linneaus, 1758) | Great ramshorn | - | - | X |
Potamopyrgus antipodarum (Gray, 1843) | New Zealand mud snail | X | - | X |
Pseudosuccinea columella (Say, 1817) | American ribbed fluke snail | X | - | - |
Decapods | ||||
Faxonius limosus (Rafinesque, 1817) | Spiny cheek crayfish | X | - | - |
Pacifastacus leniusculus (Dana, 1852) | Signal crayfish | - | - | X |
Pontastacus leptodactylus (Eschscholtz, 1823) | Turkish crayfish | - | - | X |
Procambarus clarkii (Girard, 1852) | Red swamp crayfish | X | - | - |
Amphipods | ||||
Gammarus roeselii Gervais, 1835 | \ | X | - | - |
Cryptorchestia cavimana (Heller, 1865) | \ | - | - | X |
Synurella ambulans (Müller, 1846) | \ | - | - | X |
Species | 1st Step (Threats to Humans) | 2nd Step (Impacts on Native Biodiversity) | 3rd Step (List of Union Concern) | 4th Step (Listed as Invasive in the IUCN Database) |
---|---|---|---|---|
Bivalves | ||||
Corbicula fluminea | Y [34] | Y [34] | N | Y |
Dreissena polymorpha | Y [35] | Y [36] | N | Y |
Sinanodonta woodiana | N | Y [37] | N | N |
Gastropods | ||||
Ferrissia californica | N | N | N | N |
Gyraulus parvus | N | N | N | N |
Physella acuta | N | Y [38,39] | N | N |
Planorbis corneus | N | N | N | N |
Potamopyrgus antipodarum | N | Y [40] | N | Y |
Pseudosuccinea columella | Y [41] | N | N | N |
Decapods | ||||
Faxonius limosus | Y [42] | Y [43] | Y | N |
Pacifastacus leniusculus | Y [42] | Y [44] | Y | Y |
Pontastacus leptodactylus | N | N | N | N |
Procambarus clarkii | Y [45] | Y [46] | Y | Y |
Amphipods | ||||
Gammarus roeselii | N | N | N | N |
Cryptorchestia cavimana | N | N | N | N |
Synurella ambulans | N | N | N | N |
AS-ISK Sector Affected | Score Partition | Level of Risk Scenario I | Level of Risk Scenario II | Level of Confidence | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Alien Species | Commercial | Environmental | Species Traits | Biogeography/Historical | Biology/Ecology | Climate Change | BRA | BRA + CCA | BRA | BRA + CCA | BRA | BRA + CCA |
Procambarus clarkii | 18 | 16 | 30 | 19.5 | 27 | 12 | +++ | +++ | +++ | ++++ | 0.88 | 0.90 |
Faxonius limosus | 15 | 16 | 30 | 16.5 | 27 | 12 | +++ | +++ | +++ | ++++ | 0.82 | 0.83 |
Pacifastacus leniusculus | 15 | 13 | 29 | 13.5 | 26 | 12 | +++ | +++ | +++ | ++++ | 0.74 | 0.73 |
Dreissena polymorpha | 14 | 11 | 32 | 15.5 | 24 | 12 | +++ | +++ | +++ | ++++ | 0.87 | 0.86 |
Corbicula fluminea | 10 | 10 | 36 | 11.5 | 28 | 12 | +++ | +++ | +++ | ++++ | 0.75 | 0.75 |
Sinanodonta woodiana | 15 | 11 | 30 | 16.5 | 22 | 10 | +++ | +++ | +++ | ++++ | 0.74 | 0.74 |
Pseudosuccinea columella | 10 | 7 | 31 | 13 | 23 | 4 | +++ | +++ | +++ | ++++ | 0.69 | 0.65 |
Pontastacus leptodactylus | 12 | 12 | 21 | 8.5 | 21 | 10 | + | +++ | ++ | ++++ | 0.81 | 0.80 |
Potamopyrgus antipodarum | 3 | 8 | 29 | 2 | 25 | 8 | + | + | ++ | ++ | 0.80 | 0.77 |
Physella acuta | 2 | 5 | 25 | 1 | 19 | 8 | + | + | ++ | ++ | 0.83 | 0.82 |
Ferrissia californica | 2 | 1 | 27 | 2.5 | 19 | 4 | + | + | ++ | + | 0.76 | 0.76 |
Gammarus roeselii | 3 | 2 | 25 | 4 | 17 | 4 | + | + | ++ | + | 0.72 | 0.71 |
Planorbis corneus | 2 | 1 | 25 | 4 | 16 | 4 | + | + | ++ | + | 0.73 | 0.72 |
Gyraulus parvus | 2 | 1 | 25 | 4 | 16 | 4 | + | + | ++ | + | 0.73 | 0.72 |
Synurella ambulans | 3 | 1 | 9 | 2 | 6 | 0 | + | + | + | + | 0.73 | 0.71 |
Cryptorchestia cavimana | 3 | 1 | 6 | 1.5 | 7 | −4 | + | + | + | + | 0.71 | 0.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paganelli, D.; Kamburska, L.; Zaupa, S.; Garzoli, L.; Boggero, A. Impacts Analysis of Alien Macroinvertebrate Species in the Hydrographic System of a Subalpine Lake on the Italian–Swiss Border. Water 2021, 13, 3146. https://doi.org/10.3390/w13213146
Paganelli D, Kamburska L, Zaupa S, Garzoli L, Boggero A. Impacts Analysis of Alien Macroinvertebrate Species in the Hydrographic System of a Subalpine Lake on the Italian–Swiss Border. Water. 2021; 13(21):3146. https://doi.org/10.3390/w13213146
Chicago/Turabian StylePaganelli, Daniele, Lyudmila Kamburska, Silvia Zaupa, Laura Garzoli, and Angela Boggero. 2021. "Impacts Analysis of Alien Macroinvertebrate Species in the Hydrographic System of a Subalpine Lake on the Italian–Swiss Border" Water 13, no. 21: 3146. https://doi.org/10.3390/w13213146
APA StylePaganelli, D., Kamburska, L., Zaupa, S., Garzoli, L., & Boggero, A. (2021). Impacts Analysis of Alien Macroinvertebrate Species in the Hydrographic System of a Subalpine Lake on the Italian–Swiss Border. Water, 13(21), 3146. https://doi.org/10.3390/w13213146