Removal of Tetracycline Oxidation Products in the Nanofiltration Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Research Equipment
2.3. Analytical Methods
3. Results and Discussion
3.1. Ozonation and AOPs—Product Identification
3.2. Nanofiltration
3.3. Identification of New TRC Oxidation Product
3.4. Toxicity Tests
3.5. River Water Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eggen, T.; Vogelsang, C. Occurrence and fate of pharmaceuticals and personal care products in wastewater. Compr. Anal. Chem. 2015, 67, 245–294. [Google Scholar]
- Verlicchi, P.; Zambello, E.; Al Aukidy, M. Removal of pharmaceuticals by conventional wastewater treatment plants. Compr. Anal. Chem. 2013, 62, 231–286. [Google Scholar]
- Liu, P.; Zhang, H.; Feng, Y.; Yang, F.; Zhang, J. Removal of trace antibiotics from wastewater: A systematic study of nanofiltration combined with ozone-based advanced oxidation processes. Chem. Eng. J. 2014, 240, 211–220. [Google Scholar] [CrossRef]
- Ganiyu, S.O.; van Hullebusch, E.D.; Cretin, M.; Esposito, G.; Oturan, M.A. Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: A critical review. Sep. Purif. Technol. 2015, 156, 891–914. [Google Scholar] [CrossRef]
- Wang, L.; Ben, W.; Li, Y.; Liu, C.; Qiang, Z. Behavior of tetracycline and macroline antibiotics in activated sludge process and their subsequent removal during sludge reduction by ozone. Chemosphere 2018, 206, 184–191. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, H.; Xiong, P.; Zhu, Q.; Liao, C.; Jiang, G. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review. Sci. Total Environ. 2021, 753, 141975. [Google Scholar] [CrossRef] [PubMed]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alhaji, N.B.; Isola, T.O. Antimicrobial usage by pastoralists in food animals in Northcentral Nigeria: The associated socio-cultural drivers for antimicrobials misuse and public health implications. One Health 2018, 6, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Liu, M.; Li, J.; Yang, S.; Sun, Y.; Sun, Q.; Wang, W.; Lu, L.; Zhang, K.; Xu, J.; et al. A review on pollution situation and treatment methods of tetracycline in groundwater. Sep. Sci. Technol. 2020, 55, 1005–1021. [Google Scholar] [CrossRef]
- Babin, M.; Boleas, S.; Tarazona, J. In vitro toxicity of antimicrobials on RTG-2 and RTL-W1 fish cell lines. Environ. Toxicol. Pharmacol. 2005, 20, 125–134. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Yin, X.; Shi, M.; Dahlgren, R.A.; Wang, H. Toxicity assessment of combined fluoroquinolone and tetracycline exposure in zebrafish (Danio rerio). Environ. Toxicol. 2016, 31, 736–750. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.; Zang, L.; Zhang, Y.; Zhang, Y.; Wang, X.; Ai, W.; Ding, N.; Wang, H. Joint toxicity of fluoroquinolone and tetracycline antibiotics to zebrafish (Danio rerio) based on biochemical biomarkers and histopathological observation. J. Toxicol. Sci. 2017, 42, 267–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, J.; Du, Y.; Wang, L.; Qian, J.; Chen, J.; Wu, Q.; Hu, X. Toxin Release of Cyanobacterium Microcystis aeruginosa after Exposure to Typical Tetracycline Antibiotic Contaminants. Toxins 2017, 9, 53. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Xiao, Y.; Pan, H.; Mei, Y. Toxic effects of tetracycline and its degradation products on freshwater green algae. Ecotoxicol. Environ. Saf. 2019, 174, 43–47. [Google Scholar] [CrossRef]
- Zhang, M.; Yuan, L.; Li, Z.; Zhang, H.; Sheng, G. Tetracycline exposure shifted microbial communities and enriched antibiotic resistance genes in the aerobic granular sludge. Environ. Internat. 2019, 130, 104902. [Google Scholar] [CrossRef]
- Jia, J.; Cheng, M.; Xue, X.; Guan, Y.; Wang, Z. Characterization of tetracycline effects on microbial community, antibiotic resistance genes and antibiotic resistance of Aeromonas spp. in gut of goldfish Carassius auratus Linnaeus. Ecotoxicol. Environ. Saf. 2020, 191, 110182. [Google Scholar] [CrossRef] [PubMed]
- Zainab, S.M.; Junaid, M.; Xu, N.; Malik, R.N. Antibiotics and antibiotic resistant genes (ARGs) in groundwater: A global review on dissemination, sources, interactions, environmental and human health risks. Water Res. 2020, 187, 116455. [Google Scholar] [CrossRef] [PubMed]
- Klavarioti, M.; Mantzavinos, D.; Kassinos, D. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ. Int. 2009, 35, 402–417. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Lin, X.; Feng, W.; Li, W. Enhanced catalytic performance of a bio-templated TiO2 UV-Fenton system on the degradation of tetracycline. Appl. Surf. Sci. 2019, 465, 223–231. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Zhang, J.; Lu, C.; Huang, Q.; Wu, J.; Liu, F. Degradation of tetracycline in aqueous media by ozonation in an internal loop-lift reactor. J. Hazard. Mater. 2011, 192, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Y.; Ma, Y.L.; Yang, J.; Wang, L.Q.; Lv, J.M.; Ren, C.J. Aqueous teracycilne degradation by H2O2 alone: Removal and transformation pathway. Chem. Eng. J. 2017, 307, 15–23. [Google Scholar] [CrossRef]
- Zhi, D.; Wang, J.; Zhou, Y.; Luo, Z.; Sun, Y.; Wan, Z.; Luo, L.; Tsang, D.C.W.; Dionysiou, D.D. Development of ozonation and reactive electrochemical membrane coupled process: Enhanced tetracycline mineralization and toxicity reduction. Chem. Eng. J. 2020, 383, 123149. [Google Scholar] [CrossRef]
- Dalmázio, I.; Almeida, M.O.; Augusti, R.; Alves, T.M.A. Monitoring the degradation of tetracycline by ozone in aqueous medium via atmospheric pressure ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 2007, 18, 679–687. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Niu, Z.; Bao, R.; Wan, D.; Liu, Y.; Zhang, L. Degradation of tetracycline with Fenton reagent in aqueous solution. Chin. J. Environ. Eng. 2017, 11, 2227–2232. [Google Scholar]
- López-Peñalver, J.J.; Sánchez-Polo, M.; Gómez-Pacheco, C.V.; Rivera-Utrilla, J. Photodegradation of tetracyclines in aqueous solution by using UV and UV/H2O2 oxidation processes. J. Chem. Technol. Biotechnol. 2019, 85, 1325–1333. [Google Scholar] [CrossRef]
- Rivera-Utrilla, J.; Ocampo-Pérez, R.; Sánchez-Polo, M.; López-Peñalver, J.J.; Gómez-Pacheco, C.V. Removal of tetracyclines from water by adsorption/bioadsorption and advanced oxidation processes. A short review. Curr. Org. Chem. 2018, 22, 1005–1021. [Google Scholar] [CrossRef]
- Khan, M.H.; Bae, H.; Jung, J.Y. Tetracycline degradation by ozonation in the aqueous phase: Proposed degradation intermediates and pathway. J. Hazard. Mater. 2010, 181, 659–665. [Google Scholar] [CrossRef] [PubMed]
- Fatta-Kassinos, D.; Vasquez, M.I.; Kümmerer, K. Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes—Degradation, elucidation of byproducts and assessment of their biological potency. Chemosphere 2011, 85, 693–709. [Google Scholar] [CrossRef] [PubMed]
- Miao, H.F.; Cao, M.; Xu, D.Y.; Ren, H.Y.; Zhao, M.X.; Huang, Z.X.; Ruan, W.Q. Degradation of phenazone in aqueous solution with ozone: Influencing factors and degradation pathways. Chemosphere 2015, 119, 326–333. [Google Scholar] [CrossRef]
- Benitez, F.J.; Acero, J.L.; Real, F.J.; Roldán, G. Ozonation of pharmaceutical compounds: Rate constants and elimination in various water matrices. Chemosphere 2009, 77, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Michael, I.; Frontistis, Z.; Fatta-Kassinos, D. Removal of pharmaceutically relevant matrices by advanced oxidation processes (AOPS). Compr. Anal. Chem. 2013, 62, 345–407. [Google Scholar]
- Tizaoui, C.; Grima, N.; Hilal, N. Degradation of the antimicrobial triclocarban (TCC) with ozone. Chem. Eng. Process. Proc. Intens. 2011, 50, 637–643. [Google Scholar] [CrossRef]
- Rodríguez, E.M.; Márquez, G.; León, E.A.; Álvarez, P.M.; Amat, A.M.; Beltrán, F.J. Mechanism considerations for photocatalytic oxidation, ozonation and photocatalytic ozonation of some pharmaceutical compounds in water. J. Environ. Manag. 2013, 127, 114–124. [Google Scholar] [CrossRef]
- Antoniou, M.G.; Hey, G.; Vega, S.R.; Spiliotopoulou, A.; Fick, J.; Tysklind, M.; la Jansen, J.C.; Andersen, H.R. Required ozone doses for removing pharmaceuticals from wastewater effluents. Sci. Total Environ. 2013, 456–457, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Zhao, Z.; Xu, Y.; Tian, J.; Qi, H.; Lin, W.; Cui, F. Oxidation of sulfamethoxazole (SMX) by chlorine, ozone and permanganate—A comparative study. J. Hazard. Mat. 2014, 274, 258–269. [Google Scholar] [CrossRef]
- Quero-Pastor, M.; Valenzuela, A.; Quiroga, J.M.; Acevedo, A. Degradation of drugs in water with advanced oxidation processes and ozone. J. Environ. Manag. 2014, 137, 197–203. [Google Scholar] [CrossRef]
- Kim, S.; Chu, K.H.; Al-Hamadani, Y.A.J.; Park, C.M.; Jang, M.; Kim, D.H.; Yu, M.; Heo, J.; Yoon, Y. Removal of contaminants of emerging concern by membranes in water and wastewater: A review. Chem. Eng. J. 2018, 335, 896–914. [Google Scholar] [CrossRef]
- Nasirabadi, P.S.; Saljoughi, E.; Mousavi, S.M. Membrane processes used for removal of pharmaceuticals, hormones, endocrine disruptors and their metabolites from wastewaters: A review. Desalin. Water Treat. 2016, 57, 24146–24175. [Google Scholar] [CrossRef]
- Taheran, M.; Brar, S.K.; Verma, M.; Surampalli, R.Y.; Zhang, T.C.; Valero, J.R. Membrane processes for removal of pharmaceutically active compounds (PhACs) from water and wastewater. Sci. Total Environ. 2016, 547, 60–77. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.D.; Jaeweon, C.; Kim, I.S.; Vanderford, B.J.; Snyder, S.A. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Res. 2007, 41, 1013–1021. [Google Scholar] [CrossRef] [PubMed]
- Belkacem, M.; Bensadok, K.; Refes, A.; Charvier, P.M.; Nezzal, G. Water produce for pharmaceutical industry: Role of reverse osmosis stage. Desalination 2008, 221, 298–302. [Google Scholar] [CrossRef]
- Radjenović, J.; Petrović, M.; Ventura, F.; Barceló, D. Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res. 2008, 42, 3601–3610. [Google Scholar] [CrossRef]
- Al-Rifai, J.H.; Khabbaz, H.; Schäfer, A.I. Removal of pharmaceuticals and endocrine disrupting compounds in a water recycling process using reverse osmosis systems. Sep. Purif. Technol. 2011, 77, 60–67. [Google Scholar] [CrossRef]
- Abdelmelek, S.B.; Greaves, J.; Ishida, K.P.; Cooper, W.J.; Song, W. Removal of pharmaceutical and personal care products from reverse osmosis retentate using advanced oxidation processes. Environ. Sci. Technol. 2011, 45, 3665–3671. [Google Scholar] [CrossRef] [PubMed]
- Real, F.J.; Benitez, F.J.; Acero, J.L.; Roldan, G. Combined chemical oxidation and membrane filtration techniques applied to the removal of some selected pharmaceuticals from water systems. J. Environ. Sci. Health Part A 2012, 42, 522–533. [Google Scholar] [CrossRef]
- Justo, A.; Gonzáles, O.; Aceña, J.; Pérez, S.; Barceló, D.; Sans, C.; Esplugas, S. Pharmaceuticals and organic pollution mitigation in reclamation osmosis brines by UV/H2O2 and ozone. J. Hazard. Mater. 2013, 263, 268–274. [Google Scholar] [CrossRef]
- Miralles-Cuevas, S.; Oller, I.; Pérez, J.A.; Malato, S. Removal of pharmaceuticals from MWTP effluent by nanofiltration and solar photo-Fenton using two different iron complexes at neutral pH. Water Res. 2014, 64, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, O.; Rivero, M.J.; Utriaga, A.M.; Ortiz, I. Membrane-based photocatalitic systems for process intensification. Chem. Eng. J. 2016, 305, 136–148. [Google Scholar] [CrossRef]
- Kim, J.O.; Jung, J.T.; Jung, J.T.; Yeom, I.T.; Aoh, G.H. Effect of fouling reduction by ozone backwashing in a microfiltration system with advanced new membrane material. Desalination 2007, 202, 361–368. [Google Scholar] [CrossRef]
- Kim, J.; Davies, S.H.R.; Baumann, M.J.; Tarabara, V.V.; Masten, S.J. Effect of ozone dosage and hydrodynamic conditions on the permeate flux on a hybrid ozonation-ceramic ultrafiltration system treating natural waters. J. Membr. Sci. 2008, 311, 165–172. [Google Scholar] [CrossRef]
- Nguyen, S.T.; Roddick, F.A. Effects of ozonation and biological activated carbon filtration on membrane fouling in ultrafiltration of an activated sludge effluent. J. Membr. Sci. 2010, 363, 271–277. [Google Scholar] [CrossRef]
- Zhu, H.; Wen, X.; Huang, X. Membrane organic fouling and the effect of pre-ozonation microfiltration of secondary effluent organic matter. J. Membr. Sci. 2010, 352, 213–221. [Google Scholar] [CrossRef]
- Dong, H.; Qiang, Z.; Lian, J.; Qu, J. Degradation of nitro-based pharmaceuricals by UV photolysis: Kinetics and simultaneous reduction on halonitromethanes formation potential. Water Res. 2017, 119, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Hu, J. Photolytic and photocatalytic degradation of tetracycline: Effect of humic acid on degradation kinetics and mechanisms. J. Hazard. Mater. 2016, 318, 134–144. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, X.R.; Sun, H.; Li, R.; Fang, Y.; Huang, Y. The degradation of tetracycline in a photo-electro-Fenton system. Chem. Eng. J. 2014, 231, 441–448. [Google Scholar] [CrossRef]
- Żyłła, R.; Sójka-Ledakowicz, J.; Michalska, K.; Kos, L.; Ledakowicz, S. Effect of UV/H2O2 oxidation on fouling in textile wastewater nanofiltration. Fibres Text. East. Eur. 2012, 20, 99–104. [Google Scholar]
- Bilińska, L.; Blus, K.; Gmurek, M.; Żyłła, R.; Ledakowicz, S. Brine recycling from industrial textile wastewater treated by ozone. by-products accumulation. Part 2: Scaling-up. Water 2019, 11, 233. [Google Scholar] [CrossRef] [Green Version]
- Maroga Mboula, V.; Héquet, V.; Gru, Y.; Colin, R.; Andrès, Y. Assessment of the efficiency of photocatalysis on tetracycline biodegradation. J. Hazard. Mater. 2012, 209–210, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Żyłła, R.; Milala, R.; Kamińska, I.; Kudzin, M.; Gmurek, M.; Ledakowicz, S. Impact of advanced oxidation products on nanofiltration efficiency. Water 2019, 11, 541. [Google Scholar] [CrossRef] [Green Version]
- Park, M.; Anumol, T.; Simon, J.; Zraick, F.; Snyder, S.A. Pre-ozonation for high recovery of nanofiltration (NF) membrane system: Membrane fouling reduction and trace organic compound attenuation. J. Membr. Sci. 2017, 523, 255–263. [Google Scholar] [CrossRef]
- Żyłła, R.; Boruta, T.; Gmurek, M.; Milala, R.; Ledakowicz, S. Integration of advanced oxidation and membrane filtration for removal of micropollutants of emerging concern. Process. Saf. Environ. Prot. 2019, 130, 67–76. [Google Scholar] [CrossRef]
- Comerton, A.M.; Andrews, R.C.; Bagley, D.M.; Yang, P. Membrane adsorption of endocrine disrupting compounds and pharmaceutically active compounds. J. Membr. Sci. 2007, 303, 267–277. [Google Scholar] [CrossRef]
- Schäfer, A.I.; Akanyeti, I.; Semião, A.J.C. Micropollutant sorption to membrane polymers: A review of mechanisms for estrogens. Adv. Colloid Interface Sci. 2011, 164, 100–117. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-L.; Wang, X.-M.; Yang, H.-W.; Xie, Y.F. Quantifying the influence of solute-membrane interactions on adsorption and rejection of pharmaceuticals by NF/RO membranes. J. Membr. Sci. 2018, 551, 37–46. [Google Scholar] [CrossRef]
- Gmurek, M.; Olak-Kucharczyk, M.; Ledakowicz, S. Influence of dissolved organic matter in natural and simulated water on the photochemical decomposition of butylparaben. J. Environ. Health Sci. Eng. 2015, 13, 28. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value | Standard Deviation |
---|---|---|
pH | 8.06 | 0.007 |
Conductivity, µS/cm | 570 | 0.71 |
COD, mg/L | 30.7 | 0.07 |
TOC, mg/L | 10.2 | 0.14 |
K+, mg/L | 4.66 | 0.25 |
PO43−, mg/L | 0.148 | 0.01 |
SO42−, mg/L | 43 | 1.56 |
NO3−, mg/L | 1.73 | 0.08 |
Cl−, mg/L | 31.3 | 1.77 |
CO2, mg/L | 162 | 2.12 |
Molecule | Retention Time, min | Formula | Experimental m/z, [M + H]+ | Theoretical m/z, [M + H]+ | Error (Δm/z) |
---|---|---|---|---|---|
TRC | 2.3 | C22H24N2O8 | 445.1609 | 445.1605 | +0.0004 |
P1 | 1.9 | C22H24N2O9 | 461.1540 | 461.1555 | −0.0015 |
P2 | 3.6 | ||||
P3 | 1.6 | C22H24N2O10 | 477.1526 | 477.1504 | +0.0022 |
P4 | 2.9 | C22H24N2O12 | 509.1401 | 509.1402 | −0.0001 |
P5 | 2.6 | C22H22N2O9 | 459.1394 | 459.1398 | −0.0004 |
O (% at.) | N (% at.) | C (% at.) | O/N | C-C/C-H | C-O/C-N | C=O | |
---|---|---|---|---|---|---|---|
Virgin membrane | 16.00 | 11.29 | 72.71 | 1.42 | 47.8 | 36.6 | 15.6 |
Membrane after O3 exposition | 19.02 | 10.37 | 70.60 | 1.83 | 51.1 | 32.2 | 16.7 |
Membrane after H2O2 exposition | 16.29 | 10.09 | 73.61 | 1.61 | 54.2 | 32.1 | 13.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Żyłła, R.; Ledakowicz, S.; Boruta, T.; Olak-Kucharczyk, M.; Foszpańczyk, M.; Mrozińska, Z.; Balcerzak, J. Removal of Tetracycline Oxidation Products in the Nanofiltration Process. Water 2021, 13, 555. https://doi.org/10.3390/w13040555
Żyłła R, Ledakowicz S, Boruta T, Olak-Kucharczyk M, Foszpańczyk M, Mrozińska Z, Balcerzak J. Removal of Tetracycline Oxidation Products in the Nanofiltration Process. Water. 2021; 13(4):555. https://doi.org/10.3390/w13040555
Chicago/Turabian StyleŻyłła, Renata, Stanisław Ledakowicz, Tomasz Boruta, Magdalena Olak-Kucharczyk, Magdalena Foszpańczyk, Zdzisława Mrozińska, and Jacek Balcerzak. 2021. "Removal of Tetracycline Oxidation Products in the Nanofiltration Process" Water 13, no. 4: 555. https://doi.org/10.3390/w13040555
APA StyleŻyłła, R., Ledakowicz, S., Boruta, T., Olak-Kucharczyk, M., Foszpańczyk, M., Mrozińska, Z., & Balcerzak, J. (2021). Removal of Tetracycline Oxidation Products in the Nanofiltration Process. Water, 13(4), 555. https://doi.org/10.3390/w13040555