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Abstract: Currently many countries are struggling to rationalize water quality monitoring stations
which is caused by economic demand. Though this process is essential indeed, the exact elements
of the system to be optimized without a subsequent quality and accuracy loss still remain obscure.
Therefore, accurate historical data on groundwater pollution is required to detect and monitor
considerable environmental impacts. To collect such data appropriate sampling and assessment
methodologies with an optimum spatial distribution augmented should be exploited. Thus, the
configuration of water monitoring sampling points and the number of the points required are now
considered as a fundamental optimization challenge. The paper offers and tests metaheuristic
approaches for optimization of monitoring procedure and multi-factors assessment of water quality
in “New Moscow” area. It is shown that the considered algorithms allow us to reduce the size of
the training sample set, so that the number of points for monitoring water quality in the area can
be halved. Moreover, reducing the dataset size improved the quality of prediction by 20%. The
obtained results convincingly demonstrate that the proposed algorithms dramatically decrease the
total cost of analysis without dampening the quality of monitoring and could be recommended for
optimization purposes.

Keywords: water quality network optimization; genetic algorithm; variable neighborhood search;
water quality index; groundwater

1. Introduction

Water quality monitoring networks are essential for regulatory bodies including
governments and policymakers for evaluating and managing water pollution. In the last
fifty years, water quality monitoring networks of different spatial and temporal scales
have been created by various environmental agencies and regulators in many countries [1].
However, taking into account the increasing rate of human industrial activity and growth of
the population, we must admit that the monitoring networks established decades ago may
be insufficient to meet the demands imposed by the current trends in pollution. Moreover,
the system should be not only efficient but also cost-effective. One of the topical issues
that should be addressed is that an average concentration over the monitoring sites is
sensitive to biases in the monitoring network. Though it may seem to be effective to
create a well-distributed network of locations exclusively, the actual selection of points for
water quality monitoring depends on several site-specific factors: what the locations of the
existing wells, springs, and rivers are; how suitable these sources could be by for water
sampling; whether they are accessible or not; what budget and time are available. Merging
and improving older networks not infrequently may result in subsequent streamlining,
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rationalizing, and modifying their composition. Another approach to optimize current
monitoring methodologies is harnessing new ecological monitoring data. This is especially
useful for a water monitoring program on a regional scale. The aforementioned issues could
be addressed using machine learning approaches and various optimization algorithms.

The approaches currently proposed to tackle the problem of optimizing water quality
monitoring networks can be roughly classified into two categories: analytical methods
and meta-heuristic algorithms. Among the former multi-criteria decision and multivariate
statistical approaches seem to be most popular [2–4]. Some studies suggest clustering of
water quality data based on a dynamic algorithm for choosing optimal water sampling
locations [5]. The other one apply graph theory combined with a simulated annealing for
optimized selection of river sampling sites [6]. There is a research proposal to use Principal
Component Analysis [7] in order to find optimum monitoring positions and ultimately to
reduce the monitoring costs.

Most studies focus on searching for and selecting an optimal position to install the
equipment for observing large surface water bodies, such as rivers and lakes. Meanwhile,
natural groundwater outlets, such as wells and springs, have yet received much less
attention [8], since they normally appear to be among the least damaged freshwaters in the
investigated area [9]. Additionally, at present, only few articles encompass the information
about the integrated water quality index [10].

The problem of finding the best subset of training samples to optimize an existing
network of water quality assessment could be considered as a combinatorial optimization
problem. The methods for solving such problems can be roughly divided into two groups:
the exact methods and approximate ones [11]. For solving NP-hard problems that are
difficult to approach, metaheuristic algorithms are used [12,13]. However, these algorithms
do not guarantee that an optimal solution would be found. Still they are widely used in
practice as they allow users to obtain good solutions in reasonable time. Genetic algorithms
also tend to be quite popular and are used for optimizing monitoring networks [14,15].

The present research aims to evaluate the effectiveness and robustness of genetic
algorithms and compare them to variable neighborhood search family algorithms for
solving problem of water quality assessment. We aimed to create an approach that would
reduce the number of tested water-quality sites. One of the key feature of the proposed
approach is that it allows user to find optimal sampling set of points capturing (i) the
locations with the highest pollution rate and (ii) the locations representing the average
regional level of pollution. To accomplish these goals, metaheuristic approaches were tested
for optimization and multi-factors assessment of water quality monitoring in the New
Moscow area. Namely, the dataset including 1182 samples from wells was analyzed. Our
approach included five steps: selecting environmental factors, dividing the sampling grid,
setting the initial stations, optimizing the sampling stations, and assessing reproducibility
and efficiency of the proposed network.

2. Materials and Methods
2.1. Dataset for Case Study

Natural groundwater resources, such as springs, wells, and small rivers, are primary
sources of fresh water in many countries, including Russia. They usually reflect human-
made pollution sources, and environmental changes in soils and air [9,16]. To adjust the
proposed approach, we used the dataset obtained in the course of the study by large-scale
monitoring of small water bodies in New Moscow (see Figure 1), which is now part of
Moscow, Russia.

The New Moscow region was chosen to be the case study because of its unusually
great abundance of monitoring sites. We should mention that not all researches can boast
such a wide and various range of samples, which should definitely give rise to the need
for methods that evaluate the urbanization trend (i.e., the overall change in concentration
across the network of monitoring sites) in the absence of long-term monitoring sites.
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Figure 1. Study area: territory of New Moscow. Red points correspond to the water sampling
locations considered in the research. The dataset consists of 1182 water sampling points allocated in
wells. For each point 25 parameters of chemical properties are available.

This dataset under discussion includes three types of water sources: wells (1215 sam-
ples), springs (225 samples), small rivers (160 samples) monitored in 2017–2018—1600
samples in total [17]. Wells were selected to be an object for the research since they comprise
the largest part of the sample set, 1182 samples remained on the list after outliers have
been excluded. The outliers were discarded based on DBSCAN clustering algorithm (this
methodology was described in detail in [18]). Each sample was evaluated according to 25
parameters of chemical properties. In order to use the model, we scaled all coordinates
from 0 to 10. The Universal Transverse Mercator coordinate system [19] was used to ensure
a correct conversion of geographical coordinates. The conversion was carried out using the
utm library for python [20].

2.2. Integral Water Quality Index

Water quality assessment is usually based on a large number of parameters, i.e., phys-
ical and chemical characteristics (25 items in our case). One of the challenging task was
to integrate the measured parameters within a single meaningful composite value (Water
Quality Index—WQI). WQI was supposed to be a function of the measured parameters and
represent the water quality in the particular sampling point. Principal component analysis
(PCA) has already been proposed as a means to aggregate all measurements into the final
WQI without overestimating parameters [21,22]. In this study, we used the WQI geospatial
modeling approach proposed by Shadrin et al. [18]. This approach includes two steps:
(i) calculating PCA-weighted WQI for each tested sample, (ii) applying Gaussian Process
Regression (GPR) with optimal kernel structure search using Bayesian informational crite-
ria in order to build a precise map of water quality distribution. It was successfully tested
on a similar dataset and helped reveal the actual situation with water pollution.

A parameter selection work-flow for the further WQI construction, in brief, was as
follows. According to previous study, from the whole data-set twenty-one parameters
presented in water samples in significant concentrations were included in the PCA. From
the output only components which corresponding eigenvalue was higher than or equal
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to 1 following Varimax rotation, and PCs that explained at least 5% of the observed data
variation were considered for further calculations. Those parameters that were correlated
with other significant parameters (correlation was more than 0.6) were eliminated if they
had the smallest loadings among correlated parameters. After the above-mentioned data
analysis procedures, only 12 parameters were left for constructing the water quality index.

Finally, water quality index was calculated using the following equation taken from
the work [18]:

WQI = 0.2912 · (Cl) + 0.0979 · (pH + Alkalinity)+

+ 0.0884 · (NH4 + PO4) + 0.0735 · (Cr + Fe + Mn)+

+ 0.0589 · (Cu + SO4 + K + NO3)

(1)

The values of WQI were also scaled from 0 to 1. The general workflow of our research
is presented on Figure 2.

Figure 2. Outlines of the research.

2.3. Optimization Algorithms

The optimization criteria for monitoring networks has certain limits. In the algo-
rithms, the main priority was given to those sampling points which have the most diverse
neighbors in terms of WQI values and which represented the regional average values. All
algorithms are implemented in the Python programming language.

2.3.1. Variable Neighborhood Search Algorithms

Two algorithms from the Variable Neighborhood Search (VNS) family were applied
to the following cases: Variable Neighborhood Descent (VND) and basic VNS proposed
by Hansen and Mladenovic in 2003 [23] and 2007 [24], respectively. The main idea of
these methods is to change the neighborhoods and apply the local search procedure. Since
the performance of VNS depends significantly on the choice of a neighborhood at each
iteration [25], we used the neighborhood structure based on geographical similarity and
k-mean clustering. The initial solution was randomly selected. It had to contain at least
one point from each cluster and, at the same time, to exclude points from the similar area;
as a result, the solution divided all points into clusters according to their coordinate.

One of the most popular algorithms of the VNS family is Variable Neighborhood
Descent (VND). In order to apply this algorithm for solving the problem, system of neigh-
borhoods and the initial solution had to be specified. In this algorithm the change of
neighborhood was applied in a deterministic way. The proceeding search was performed
using the selected neighborhood that had been obtained using the best improvement,
which tended to be the most effective strategy. If an improved solution was obtained, all
neighborhood structures on the list would become available for the next iteration. The
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procedure ended when every enlisted structure had been exhaustively explored, and no
other improvement could achieved. The final solution is a local minimum with respect to
all neighborhoods.

Algorithm Basic Variable Neighborhood Search (BVNS) is based on VND with an
additional Shake function [26]. The idea of the Shake function is to generate a new solution
that will not be close that would significantly differ from the current solution, which allows
the optimizer to get away from the local optima.

VNS and BVNS implemented as randomized versions of these algorithms by search-
ing only in part of the neighbor points. In each experiment the algorithms explore 10%
of neighbors.

For each run of the VND algorithm, the change of neighborhoods is specified by a
random sequence of numbers; as for the BVNS algorithm, the order is defined both at the
beginning and after each shake. Randomization of algorithms helps to avoid the local
optima and reduce the running time of algorithms, and at the same time increases the
variance of solutions.

2.3.2. Genetic Algorithm

Genetic algorithm (GA), an evolutionary algorithm, was inspired by processes of biologi-
cal evolution observed in the nature, such as crossover, mutation, and selection [27,28]. GA
has been widely used for generating high-quality solutions to solve optimization problems.
The procedure of GA has four parts: generating initial population, crossover operation, mu-
tation operation, and selection (see Figure 3). A typical genetic algorithm requires a genetic
representation of the solution domain and a fitness function to evaluate it.

Figure 3. Schematic representation of the algorithms workflow. Variable Neighborhood Descent
(VND) systematically changes the neighborhood in two phases: descent to find a local optimum
and perturbation phase to get out of the corresponding valley. Basic Variable Neighborhood Search
(BVNS) is a version of VND adjusted with the shake function. Genetic algorithm relies on biologically
inspired operators such as mutation, crossover and selection. X* defines resulting solution.

In the case with genetic algorithm the fitness function is considered to be an objective
function. It is calculated in the same way as in VND and BVNS by maximizing R2 score (all
details about R2 score and accuracy evaluation are discussed in Section 2.6. The solution to
the optimization problem is a binary vector of length N, where N is the whole training data
size. In this vector, ones correspond to the points included in the new training sample set
and zeros correspond to the remaining points. The initial population of solutions is chosen
randomly in the same way as the start solution in VND and BVNS algorithms. The size of
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the initial population is regarded as an algorithm parameter. The fitness function decides
which of the current population solutions should be included in the next population. In
this case, the probability of choice depends on the place in the list of solutions sorted by
the value of the fitness function.

Number N of the solutions to be selected in the following population is an algorithm
parameter. Two or more parents are required for reproduction in genetic algorithms. At
that, the offspring inherits features from both parents. In the algorithm, we used the
strategy when both parents are randomly selected; thus, each individual in the population
has an equal chance of being selected.

2.4. Baseline

Some preliminary actions are to be taken before the algorithms get compared; namely,
it should be investigated whether they consider the problem in general terms or deal with
it in greater detail. Obviously, the solutions obtained using optimization algorithms would
outperform random sampling. Thus, we propose using the values of metrics for randomly
selected solutions as a baseline.

2.5. Water Quality Prediction

To reconstruct spatial distribution of WQI, Gaussian Process Regression (GPR) was
used [29]. Gaussian process is determined by its mean µ(·) and covariance (kernel)
k(·, ·) functions:

f (x) ∼ GP(µ(x), k(x, x′))

µ(x) = E f (x)

k(x, x′) = cov( f (x), f (x′))

(2)

where x ∈ Rd is a vector of input parameters. In this case, x is a vector of coordinates, so
d = 2.

To solve the problem of reconstruction, the combination of the basic kernels was
used [29,30]. Kernel hyper-parameter was obtained by using Bayesian Information Criteria
(BIC) [31] according to [18], the selected kernels are represented by Equations (3) and (4)
(see Table 1 for the obtained coefficients). The regression model for predicting the water
quality index was implemented by using the GPy library for python [32].

Radial Basis Function (RBF)

kRBF(x, x′) = exp

(
− (x− x′)2

2`2
RBF

)
(3)

Periodic kernels (PE)

kPE(x, x′) = exp

(
−2 sin2(πω(x− x′))

`2
PE

)
(4)

Table 1. Optimal kernel parameters for Gaussian Process Regression obtained by using Bayesian
Information Criteria [31].

Parameter Value

RBF variance 0.0367
`RBF 4.86

PE variance 0.0204
ωPE 5.67
`PE 0.1



Water 2021, 13, 888 7 of 14

Usually, all data are divided into two parts; one is used for training and the other for
testing, in order to measure the quality of model predictions. Such an approach required
us to consider different subsets of the training sample set. The training and testing data
were evenly spread across the area (Figure 4a): the size of test data was 119 sample (10% of
the whole dataset) (Figure 4c) and that of training data was 1063 samples (90% of the total
set) (Figure 4b).

Figure 4. (a) Training and test sample sets. (b) Training part is 90% of the whole sample set, (c) test
part—10%. Samples evenly cover the whole area of interest.

2.6. Optimization Problem Formulation and Accuracy Evaluation

To estimate the performance of the above-described algorithms, two statistical indices
were used. The former is the coefficient of determination denoted R2, which shows how
well the observed outcomes would be replicated by the model, based on the proportion of
total variation of the outcomes explained by the model [33].

In terms of optimization theory, the considered problem can be written as follows.
Suppose we are given a set of points Xtrain ∈ Rn×d and Xtest ∈ Rk×d with correspond-

ing target vectors ytrain ∈ Rn and ytest ∈ Rk and regression model f (·). We need to find
a subset X′ ⊂ Xtrain which will maximize the following objective function on the test
set Xtest:

R2score f (X′)(ypred, ytest)→ max
X′⊂Xthain

(5)

R2(ypred, ytest) = 1−

k
∑

i=1
(ypredi − ytesti)

2

k
∑

i=1
(ytesti − ytest)2

, (6)

where ypred is prediction of f (X′) on Xtest and R2score is a metric for measuring model
prediction quality. The best possible value of R2 score is 1.0. The goal is to find subset of
training sample set which maximizes R2 score on the test set, so summation only for points
in test set

The second statistical metric is the structural similarity index measure, denoted SSIM.
This index is usually used for comparing two images. Since in our study we display the
predicted water quality index on a map, we can treat the predictions of the model trained
on different data ( subsets of different sizes from training set) as pictures to compare them.

The structural similarity index is calculated for various windows of an image [34]. For
two windows x and y of typical size N × N:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (7)
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where µx is mean x, µy—mean y, σ2
x—variance x, σ2

y—variance y, σxy—covariance, c1 = (k1L)2

and c2 = (k2L)2, L—dynamic range of pixels 2(bits per pixel) − 1, k1 = 0.01 and k2 = 0.03. For
identical images the SSIM value is equal to 1.0.

SSIM score is significantly more computationally expensive than R2 score; thus, we
did not use it as the objective function for the considered optimization problems. Still, we
calculated the SSIM index for the best solutions that were found.

3. Results and Discussion

Figure 5 shows the result of comparing all algorithms. We plotted R2 score (a, b, c)
and SSIM score (d, e, f) against the training sample size. Red lines on the graph correspond
to the algorithms, while blue ones show the baseline, which contained 10 random solutions.
The black line stands for the score on full training data.

Figure 5. The performance of algorithms compared by R2 score (a–c) and SSIM score (d–f) against
the size of the training sample. Red lines correspond to the algorithms, and blue lines stand for
the baseline. The black line shows the score on full training data. All the considered algorithms
outperforms the baseline both by R2 and SSIM, BVNS shows the best results.

We obtained 10 solutions by each algorithm using the same value of the parameter
and plotted the confidence intervals. The baseline contains 10 random solutions. All the
considered algorithms outperformed the baseline both by R2 and SSIM; BVNS showed
the best results

Table 2 shows the best and average values of statistical characteristics for the consid-
ered algorithms obtained using the parameter search. The line “best perform n samples” in
Table 2 is the size of the training sample set. It is to be noted that that the problem under
discussion and the implementation of BVNS algorithm appeared to get better solutions
than others algorithms and had a smaller variance of values of the objective function.
Moreover, the quality of prediction based on selected samples was higher than the quality
of the prediction based on a full number of samples.

Figure 6 presenting spatial visualization of WQI prediction for water quality index
predictions made using Gaussian Process Regression. In our case the sizes of training
samples sets were 400, 500 and 700 sampling points. Noteworthily, predictions on 500
samples showed better results than predictions on 700 samples. The best performance was
obtained by VND on 500 samples. We assume that the model finds specific patterns in the
training data that described dependencies on the site better than the remaining data. This
hypothesis requires further research in terms of multi-objective optimization.



Water 2021, 13, 888 9 of 14

Table 2. Best and average values of statistical characteristics for the considered algorithms obtained
by the parameter search. BVNS shows the best accuracy for R2 and SSIM and has the smallest
variance for R2. All the algorithms show their best performance on 500 training samples. (see
Appendix A for the final set of best parameter values.)

Characteristics VND BVNS GA All Samples

Best perform n samples 500 500 500 1063
Best perform R2 0.905 0.905 0.889 0.737

Best perform SSIM 0.681 0.748 0.698
Average variance R2 0.0122 0.0011 0.0012

Average variance SSIM 0.0032 0.0032 0.0002

The results show that all 3 algorithms managed to cope with the problem quite
successfully. These algorithms helped to improve the quality of the prediction model from
0.73 to 0.9–0.93 of R2 score (Table 2). Hence, the model can be claimed to be effective in
finding in the training sample set some random patterns that have not described the data
in general [35]. Considering the structural similarity index, all algorithms also appeared to
cope with a specified baseline. Moreover, the values of SSIM over 0.6 are considered as
quite good for such an environmental problem.

All the abovementioned results were obtained by certain splitting data into train and
test. The issue to be focused upon in the course of the study was whether the splitting
data affect the solution of the optimization problem and what results we may face if all
significant points would fall into the test sample. Normally, to estimate accuracy of the
predictive model accuracy, the cross-validation procedure is used Table A1. We used k-fold
cross-validation (with k = 5, size of training part 80%, size of test part 20%). To estimate
the values of the objective function on these splits, it is necessary to find a solution of the
optimization problem

Based on the results of the greedy strategy, we would hypothesize that among the
points, a certain subset of points mainly contributes to the quality of model predictions
(e.g., this was the reason for a sharp jump of the R2 score in the value of size if the
training set is 242 points, see Figure 5). Having obtained this set, we observed no dramatic
improvements in the objective function. When a lot of points were included in the training
sample (over 800), the model found the patterns in the training data that do not describe
the full data. The proposed hypothesis requires further investigation in terms of multi-
objective optimization.

The dataset cross-validation process under discussion was found to affect insignifi-
cantly the search for the optimal subset of points if the points are uniformly distributed
across the study area. Running time appeared to be the main factor that hampers the
analysis of the implemented algorithms. Each calculation of the objective function required
the regression model to be trained and tested. Since the algorithms are randomized to
study the parameter space (as well as to search for the most suitable ones), the algorithms
have to be run several times to obtain a sample of solutions for each parameter. Though
the sample of 10 solutions does not seem large enough and sufficient, even such a sample
does demonstrate the performance of the proposed algorithms.

The resultant approach can be further used to create effective systems for monitor-
ing water quality in other geographical areas. To do so, firstly, an excessive number of
measurements in a new area should be carried out; then, using the proposed optimization
algorithms, the main points have to be determined at which water monitoring is required.
At that, no modifying of the implemented algorithms are needed; users can only give the
algorithms new data and get the results.

Moreover, the considered algorithms can be used in other monitoring problems, at
which geographical coordinates of the points to be monitored and values of the necessary
characteristics should be provided. Thus, to implement these algorithms, the prediction
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model has to be changed. All implemented algorithms accept the prediction model as an
input parameter.

Figure 6. Spatial visualization of water quality index predictions made using Gaussian Process
Regression. Training samples sets has sizes 400 (a–c), 500 (d–f) and 700 (g–i) sampling points. It can
be noticed that predictions on 500 samples show better results than epy predictions on 700 samples.
The best performance is obtained by VND on 500 samples.

4. Conclusions

The considered algorithms (variable neighborhood descent, basic variable neighbor-
hood search, genetic algorithm) make it possible to reduce the size of the training sample
set. For instance, the number of points for monitoring water quality in the New Moscow
area can be reduced by 500, which two times decreases the total cost of the analysis. The
quality of prediction has initially reached 93%, which was later improved by 18% after
the size of the training sample had been reduced. This may possibly be due to the model
managed to detect some specific random patterns not describing the data in general. All
the algorithms showed good results; the BVNS algorithm performed significantly better
than others as regarded to the value of the objective function and its variance. Thus, it
seems reasonable enough to use a combination of the algorithms to get better solutions. In
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addition, the implemented algorithms under investigation have been proved to be suitable
for the optimization problem under consideration in similar monitoring cases.

The presented study provides a good starting point for discussion and further research.
Future studies could investigate precisely the reasons why the fewer number of sampling
points gives a better WQI prediction. Furthermore, an interesting topic for future work
is considering the problem of water quality assessment as a multi-objective optimization
problem. For example, R2 score could be maximized simultaneously with minimization of
sampling points number. In this case, a subset of sampling points could be considered not
as a parameter of algorithm but as an input variable.
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VNS Variable Neighborhood Search
VND Variable Neighborhood Descent
WQI Water Quality Index

Appendix A

Table A1. Application of the genetic algorithm. Cross-validation.

Number of Points Calculation Experiments for Different Train/Test Split

Metric 1 2 3 4 5 Mean Std

100
R2 0.643 0.460 0.594 0.566 0.587 0.570 0.060

SSIM 0.296 0.293 0.382 0.414 0.273 0.332 0.056
Time (h) 1.224 1.240 1.027 1.406 1.139 1.207 0.125

200
R2 0.695 0.611 0.675 0.586 0.713 0.656 0.049

SSIM 0.408 0.332 0.432 0.500 0.408 0.416 0.054
Time (h) 2.491 2.547 2.546 2.415 2.339 2.468 0.081

https://doi.org/10.6084/m9.figshare.10283225.v4
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Table A1. Cont.

Number of Points Calculation Experiments for Different Train/Test Split

Metric 1 2 3 4 5 Mean Std

300
R2 0.719 0.709 0.741 0.638 0.717 0.705 0.035

SSIM 0.474 0.642 0.562 0.540 0.473 0.538 0.063
Time (h) 6.384 6.004 6.486 6.932 7.591 6.679 0.543

400
R2 0.724 0.702 0.751 0.670 0.754 0.720 0.032

SSIM 0.558 0.641 0.692 0.658 0.449 0.600 0.087
Time (h) 14.70 14.23 16.29 15.75 14.82 15.16 0.752

959 R2 0.638 0.469 0.574 0.544 0.586 0.562 0.055
SSIM (t) 0.938 0.920 0.908 0.932 0.941 0.928 0.012

Appendix A.1. Variable Neighborhood Descent

Algorithm A1 VND
INPUT a set of neighborhoods Nk, k = 1, ..., kmax, initial solution x := x0

1: while k ≤ kmax do

2: Find the best neighbor x′ of x in Nk(x)

3: if f (x′) < f (x) then

4: x := x′ , k := 1

5: else

6: k := k + 1
OUTPUT Best solution found

Hyperparameters used in the article
Observed part of neighborhood: 10%
Stopping criteria: lack of improvements in all neighborhoods or OF ≥ 0.9
Number of clusters: input parameter
Size of training sample set: input parameter

Appendix A.2. Basic Variable Neighborhood Search

Algorithm A2 Basic VNS
INPUT a set of neighborhoods Nk, k = 1, ..., kmax, initial solution x := x0

1: repeat until stopping criteria

2: k := 1

3: while k ≤ kmax do

4: x′ := Shake()

5: Find the best neighbor x′′ of x′ in Nk(x) (local search)

6: if f (x′′) < f (x) then

7: x := x′′ , k := 1

8: else

9: k := k + 1
OUTPUT Best solution found

Hyperparameters used in the article
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Observed part of neighborhood: 10%
Number of shaking: 5
Stopping criteria: lack of improvements in all neighborhoods or OF ≥ 0.9
Number of clusters: input parameter
Size of training sample set: input parameter

Appendix A.3. Genetic Algorithm

Algorithm A3 Genetic Algorithm
INPUT Initial population

1: repeat until stopping criteria

2: Reproduction

3: Mutation

4: Calculate the value of the Fitness Function for all individuals (solutions)

5: New population formation (Selection)
OUTPUT Resulting population

Hyperparameters used in the article
Population size: 30
Number of populations: 1000
Number of mutations: 10%
Number of survivors individuals: 40%
Number of reproduced individuals: 60%
Stopping criteria: number of populations or OF ≥ 0.9
Number of clusters: input parameter
Size of training sample set: input parameter

References
1. Howden, N.; Mather, J. History of Hydrogeology; CRC Press: Boca Raton, FL, USA, 2012.
2. Tavakol, M.; Arjmandi, R.; Shayeghi, M.; Monavari, S.M.; Karbassi, A. Application of multivariate statistical methods to optimize

water quality monitoring network with emphasis on the pollution caused by fish farms. Iran. J. Public Health 2017, 46, 83.
3. Alilou, H.; Nia, A.M.; Keshtkar, H.; Han, D.; Bray, M. A cost-effective and efficient framework to determine water quality

monitoring network locations. Sci. Total Environ. 2018, 624, 283–293. [CrossRef]
4. Zhu, X.; Yue, Y.; Wong, P.W.; Zhang, Y.; Ding, H. Designing an Optimized Water Quality Monitoring Network with Reserved

Monitoring Locations. Water 2019, 11, 713. [CrossRef]
5. Lee, S.; Kim, J.; Hwang, J.; Lee, E.; Lee, K.J.; Oh, J.; Park, J.; Heo, T.Y. Clustering of Time Series Water Quality Data Using Dynamic

Time Warping: A Case Study from the Bukhan River Water Quality Monitoring Network. Water 2020, 12, 2411. [CrossRef]
6. Dixon, W.; Smyth, G.K.; Chiswell, B. Optimized selection of river sampling sites. Water Res. 1999, 33, 971–978. [CrossRef]
7. Nguyen, T.H.; Helm, B.; Hettiarachchi, H.; Caucci, S.; Krebs, P. Quantifying the Information Content of a Water Quality

Monitoring Network Using Principal Component Analysis: A Case Study of the Freiberger Mulde River Basin, Germany. Water
2020, 12, 420. [CrossRef]

8. Jiang, J.; Tang, S.; Han, D.; Fu, G.; Solomatine, D.; Zheng, Y. A comprehensive review on the design and optimization of surface
water quality monitoring networks. Environ. Model. Softw. 2020, 132, 104792. [CrossRef]

9. Biggs, J.; Von Fumetti, S.; Kelly-Quinn, M. The importance of small waterbodies for biodiversity and ecosystem services:
implications for policy makers. Hydrobiologia 2017, 793, 3–39. [CrossRef]

10. Mooselu, M.G.; Liltved, H.; Nikoo, M.R.; Hindar, A.; Meland, S. Assessing optimal water quality monitoring network in road
construction using integrated information-theoretic techniques. J. Hydrol. 2020, 589, 125366. [CrossRef]

11. Puchinger, J.; Raidl, G. Combining Metaheuristics and Exact Algorithms in Combinatorial Optimization: A Survey and
Classification. In Proceedings of the International Work-Conference on the Interplay between Natural and Artificial Computation,
La Palma, Spain, 15–18 June 2005; Volume 3562, pp. 41–53. [CrossRef]

12. Boschetti, M.A.; Maniezzo, V.; Roffilli, M.; Bolufé Röhler, A. Matheuristics: Optimization, Simulation and Control. In Hybrid
Metaheuristics; Blesa, M.J., Blum, C., Di Gaspero, L., Roli, A., Sampels, M., Schaerf, A., Eds.; Springer: Berlin/Heidelberg, Germany,
2009; pp. 171–177.

13. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms, 2nd ed.; MIT Press: Cambridge, MA, USA, 2001.

http://doi.org/10.1016/j.scitotenv.2017.12.121
http://dx.doi.org/10.3390/w11040713
http://dx.doi.org/10.3390/w12092411
http://dx.doi.org/10.1016/S0043-1354(98)00289-9
http://dx.doi.org/10.3390/w12020420
http://dx.doi.org/10.1016/j.envsoft.2020.104792
http://dx.doi.org/10.1007/s10750-016-3007-0
http://dx.doi.org/10.1016/j.jhydrol.2020.125366
http://dx.doi.org/10.1007/11499305_5


Water 2021, 13, 888 14 of 14

14. Puri, D.; Borel, K.; Vance, C.; Karthikeyan, R. Optimization of a water quality monitoring network using a spatially referenced
water quality model and a genetic algorithm. Water 2017, 9, 704. [CrossRef]

15. Park, S.Y.; Choi, J.H.; Wang, S.; Park, S.S. Design of a water quality monitoring network in a large river system using the genetic
algorithm. Ecol. Model. 2006, 199, 289–297. [CrossRef]

16. Weldeslassie, T.; Naz, H.; Singh, B.; Oves, M. Chemical Contaminants for Soil, Air and Aquatic Ecosystem. In Modern Age
Environmental Problems and Their Remediation; Oves, M., Zain Khan, M., Ismail, I., Eds.; Springer International Publishing: Cham,
Switzerland, 2018; pp. 1–22. [CrossRef]

17. Pukalchik, M.; Shadrin, D.; Nikitin, A.; Jana, R.; Tregubova, P.; Matveev, S. Freshwater Chemical Properties for New Moscow
Region. 2019. Available online: https://figshare.com/articles/dataset/freshwater_chemical_properties_for_New_Moscow_
region/10283225/4 (accessed on 21 March 2021).

18. Shadrin, D.; Nikitin, A.; Tregubova, P.; Terekhova, V.; Jana, R.; Matveev, S.; Pukalchik, M. An Automated Approach to
Groundwater Quality Monitoring—Geospatial Mapping Based on Combined Application of Gaussian Process Regression and
Bayesian Information Criterion. Water 2021, 13, 400. [CrossRef]

19. Snyder, J. Map Projections: A Working Manual; Professional Paper; United States Geological Survey, U.S. Government Printing
Office: Washington, DC, USA, 1994.

20. Bieniek, T. utm: Bidirectional UTM-WGS84 Converter for Python. 2012. Available online: https://github.com/Turbo87/utm
(accessed on 17 February 2021).

21. Boyacioglu, H. Development of a water quality index based on a European classification scheme. Water SA 2007, 33,
doi:10.4314/wsa.v33i1.47882. [CrossRef]

22. Tripathi, M.; Singal, S.K. Use of Principal Component Analysis for parameter selection for development of a novel Water Quality
Index: A case study of river Ganga India. Ecol. Indic. 2019, 96, 430–436. [CrossRef]
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