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Abstract: Extreme precipitation events such as floods and droughts have occurred with higher
frequency over the recent decades as a result of the climate change and anthropogenic activities.
To understand and mitigate such events, it is crucial to investigate their spatio-temporal variations
globally or regionally. Global precipitation products provide an alternative way to the in situ
observations over such a region. In this study, we have evaluated the performance of the latest version
of the Global Precipitation Measurement-Integrated Multi-satellitE Retrievals (GPM-IMERGV6.0
Final Run (GPM-IMERGF)). To this end, we have employed ten most common extreme precipitation
indices, including maximum indices (Rx1day, Rx5day, CDD, and CWD), percentile indices (R95pTOT
and R99pTOT), and absolute threshold indices (R10mm, R20mm, SDII, and PRCPTOT). Overall,
the spatial distribution results for error metrics showed that the highest and lowest accuracy for
GPM-IMERGF were reported for the absolute threshold indices and percentile indices, respectively.
Considering the spatial distribution of the results, the highest accuracy of GPM-IMERGF in capturing
extreme precipitations was observed over the western highlands, while the worst results were
obtained along the Caspian Sea regions. Our analysis can significantly contribute to various hydro-
metrological applications for the study region, including identifying drought and flood-prone areas
and water resources planning.

Keywords: climate change; extreme precipitation indices; global precipitation products; GPM-IMERG

1. Introduction

Extreme precipitation events have a significant effect on many facets of the water
systems e.g., [1–5]. Such events result in floods and droughts that cause manifold problems
with various socio-economical to political aspects [6–8]. Monitoring and forecasting such
events play a vital role in mitigating their adverse event and is the key for resilience water
resource management [9].

Precipitation extremes have happened at a higher frequency and with more intensity
over the recent decades [10]. Such a dramatic shift in the precipitation patterns has already
been observed in various regions including Iran, a country with an arid to a semi-arid
climate located in the Middle East [11]. Between December 1998 and January 2002, Iran
among many other Middle East countries faced a prolonged meteorological drought period
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resulting in significant socio-economic and environmental impacts. Furthermore, within
2008–2009, Iran observed an unprecedent drought which triggered several water related
issues including the acceleration of the groundwater withdrawal over the majority of its
plains [12–16]. More recently, in January 2019, heavy rainfalls resulted in country-wide
flood events that caused more than 78 deaths and about 1136 injuries [17]. Moreover, about
36 percent of the country’s road network was damaged and 725 bridges were completely
washed away [18]. Based on the governmental estimation, the above-mentioned events
cost a record of more than 2.2 billion USD [19]. In contrast to the flood events in 2019, Iran
has observed its driest year within the last four decades over the preceding year [20].

Over the recent decades, several high-resolution precipitation products have been
developed due to development of the remote sensing techniques and the enhancement of
the computational capacities [21–23]. Different precipitation satellite based precipitation
products were examined using various statistical metrics over the whole Iran or some parts
of the countries [24–30]. The satellite-based precipitation products with their high spatio-
temporal resolution have enriched our knowledge on the statistics of the precipitation
extremes [31]. Meanwhile, Hardware and software differences, in addition to following var-
ious approaches, could facilitate the records by capturing extremes and anomalies [32,33].
GPM is an international mission that provides a deep understanding of precipitation on
the Earth. The GPM observatory core was launched in February 2014 in collaboration
with NASA and the Japan Space Agency. This mission improves the quality and quantity
of precipitation measuring as it provides records with high spatio-temporal consistency,
leading to a better understanding of precipitation variability on Earth [34]. GPM-IMERG
Version 6 is the latest version of GPM, which has a higher spatio-temporal resolution than
its successor (TRMM). The high spatiotemporal resolution of GPM-IMERG (30 min and
0.1◦ × 0.1◦) and its combination with broad coverage from north to south of the IMERG is
highly regarded for extreme events studies [35–37].

Different studies were carried out to assess the performance of GPM-IMERG products
in different spatial extents including global, regional, and local scales [38–49]. Among the
abovementioned studies [37,39,41,42] found that GPM-IMERGF was outperformed other
products and GPM-IMERG late and early versions in terms of different statistical metrics
across China. Furthermore, in two studies across Netherland and Canada GPM-IMERGF
were evaluated against in situ data and marked as a reliable source of precipitation for
this region at daily and hourly time steps [39,43]. Evaluating the accuracy of GPM-era in
multiple complex terrain regions for global scale were also showed that GPM-IMERGF
and GPM-IMERGF and GSMaP Version 7 were superior upon other products in different
regions [38].

Previous studies have examined extreme precipitation events over the entire Iran or
its basins [50–58]. The above-mentioned studies have observed a strong positive trend in
the extreme precipitation events across Iran, particularly over the northern coastal areas
and western highlands of Zagros Mountains. Refs. [59,60] have shown that satellite-based
products vastly underestimated extreme precipitation events, mostly in wet regions while
being able to capture such events over southwestern parts of Iran. Some recent studies
have evaluated GPM-IMERGF over Iran and its basins [61–66]. However, to the best of our
knowledge, the literature lacks a comprehensive assessment of the GPM-IMERGF product
in detecting the extreme events over Iran. This study offers a comprehensive assessment of
the GPM-IMERGF dataset in estimating extreme events over Iran. We have analyzed the
performance of GPM-IMERGF against a network of consistent in situ observations at daily
time scale from 2007 to 2016. To this end, we have included the latest version (V06) of the
GPM-IMERGF together with the gauged precipitation at the 281 synoptic stations within
2007–2016.

We acknowledge the necessity of having a reliable near-real time precipitation esti-
mation dataset for flood prediction and warning systems. However, there are also other
applications of precipitation products in which extreme precipitation play key role as well.
For example, when studying historical flood records to construct floodgates with gabion
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fortifications, having a reliable record of extreme precipitation values is needed over the
study area. Or when investigating extreme hazards and natural disasters, having access
to precipitation datasets with accurate estimations of historical extreme values are also
important. Considering the fact that GPM-IMERGF is a grid summary of precipitation,
and in our study area there are large areas with no rain gauge stations and interpolating
might results in poor understanding of extreme precipitation events, therefore evaluation
of GPM-IMERGF in terms of correctly simulating the extreme precipitation is relevant
and necessary. In addition, GPM-IMERG final version is the gauge adjusted version of
GPM-IMERG and in most previous studies it has performed far better than other versions
in capturing spatio-temporal variability of precipitation in various regions [47,48]. On the
other hand, most studies of extreme precipitation events in Iran are related to the frequency
of such events and changes in their pattern over time. Therefore, it seems that due to the
lack of unreliable in situ data in Iran, bias-adjusted precipitation products are receiving
more attention from various stockholders rather than near-real time products.

Our finding improves characterization of the spatio-temporal consistent view of ex-
treme precipitation events. Iran enjoys diversity of climate regions including arid and
semi-arid to fully humid region. Therefore, the findings of this study show the performance
of the GPM-IMERGF V6 over various climate regions which can be utilized by the stockhold-
ers, researchers, and policymaker over regions with heterogenous climates. Considering
the rise in the frequency of flood and drought events, such evaluations are necessary for
various hydro-metrological applications and water resources management planning.

2. Materials and Methods
2.1. Study Area

Iran, as one of the Middle East countries, is located within the latitudes of 25–39◦ N and
the longitudes of 40–64◦ E. The country is surrounded by the Alborz Mountain range in the
north and Zagros Mountain ranges in the western and southwestern parts (Figure 1). These
two mountain chains make the country among the most complex terrain across the Middle
East, with its average elevation increasing drastically from −28 to 5610 m above sea level
across Iran. However, the central parts are mostly covered by deserts. Owing to dominant
complex topography, the spatio-temporal pattern of precipitation is highly variable across
Iran. Mean annual precipitation in Iran is approximately 250 mm/year, with decreasing
trend over recent years [67]. The spatial variation of precipitation range from <50 mm/year
on extra arid low-elevation regions (Kavir and Lut deserts) to >1600 mm/year in north-
ern areas close to the Caspian Sea [61]. According to the recent climatic classifications
based on Demartone aridity index [68], Iran’s climates can be categorized to Arid (A),
Extra-Arid (EA), Semi-Arid (SA), Mediterranean (M), and Semi-Humid (SH) climates,
while the southern shores of the Caspian Sea enjoy Humid (H) and Per-Humid (PH1 and
PH2) climates [69,70]. Figure 1 illustrates climate regions and spatial distribution of IR-
IMO (Islamic Republic of Iran Meteorological Organization) stations and the study area’s
topographical map.

2.2. Datasets
2.2.1. Reference Dataset

The evaluation of the GPM-IMERGV6.0 Final Run (GPM-IMERGF hereafter) has been
conducted against a set of high-quality synoptic stations provided by the Islamic Republic
of Iran Meteorological Organization (IRIMO). IRIMO is responsible for recording hourly
and daily precipitation and the quality control is carried out by IRIMO and could be
considered as the most reliable data across the country [52,71].

Daily data from a total of 281 stations across Iran within ten years from 2007 to 2016
has been collected in this study for the analyses (Figure 1).
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squares along with the topographical map.

The reference dataset does not properly spatially cover the whole area of the study area.
We argue that the spatial coverage would not affect our analysis due two main reasons. First,
synoptic stations are the most accurate observational rain gauges in Iran, and in our study,
we have included all available synoptic stations across Iran to evaluate the performance
of the GPM-IMERGF dataset. Second, many of the poorly gauged regions in the central
and eastern of Iran are mainly deserts or dried areas with annual precipitation of around
zero mm/year. Therefore, despite the lack of gauged precipitation over some regions, our
analysis would serve as a fair and comprehensive assessment of the GPM-IMERGF dataset
in estimating extreme events.
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In order to consider this limitation in the study, the evaluations have been conducted
based on different climatic zones. To this end, we categorized the whole study area based
on different climate zones, of which, every climate enjoys maximum available synoptic
stations. In this way, we have aggregated error indices in different climate zones with an
adequate number of observational stations that can satisfy statistical conclusions.

2.2.2. GPM-IMERGF

The idea behind IMERG applicants is a combination of passive microwaves and in-
frared data from a large ensemble of satellite imagery and radar satellites [72]. GPM-IMERG
combines precipitation measurements from 9 international satellites: GPM, GCOM-W1,
NOAA-18, NOAA-19, DMSP F-16, DMSP F-17, DMSP F-18, Metop-A, and Metop-B [73].
Dual-frequency precipitation radar (DPR) and GPM microwave imager (GMI) are two
distinctive features of the GPM core observatory. Although GPM utilizes only two mea-
suring instruments compared to the five in TRMM, combining these two instruments is
more valuable for achieving scientific purposes. Evaluating algorithms, detecting solid
precipitation or sensitivity to light rainfall, and the cloud process are among the GPM
instrument’s key capabilities [74]. DPR with two bands (Ku and Ka bands) measures the
three-dimensional structure of precipitation, which can measure the intensity of precipi-
tation, snow, rain, and ice. The GMI tool, with four channels more than TRMM, allows
GPM to measure rainfall intensity and types in different layers of the clouds [75]. The
GMI instrument offers well-calibrated, multi-band, wide-swath observation throughout
13 channels [76]. The spatial coverage of GPM is between latitude from 65 degrees north to
65 degrees south that stretches approximately to the Arctic and Antarctic Circles, however,
TRMM covers only tropical and subtropical regions [77]. In this study, the recently released
(June 2021) version (V06) of IMERG mission Final Run with a spatial resolution of 0.1◦

and temporal resolution of 1-day is evaluated over Iran within 2007–2016. The IMERG
algorithm combines, calibrates, and interpolates precipitation estimations from various
sources, including microwave estimates, microwave-calibrated infrared estimates, and in
situ observations [78]. The IMERGV6.0 data are available globally with three different
versions Early run (with the latency of 4 h after observation time), Late run (with the
latency of 14 h after observation time), and Final run (with the latency of 3.5 months after
the observation time) to meet different user requirements for different purposes [79]. To
provide reliable precipitation estimations for research purposes, the GPM-IMERGF uses
the Global Precipitation Climatology Center (GPCC) monthly precipitation along with the
European Centre for Medium-Range Weather Forecasts (ECMWF) data for calibration [78].
The GPM-IMERGF derived from the half-hourly GPM_3IMERGHH. The derived result
represents the daily accumulated precipitation estimation.

The four different precipitation fields of the IMERG data are classified as calibrated
precipitation (precipitationCal), uncalibrated precipitation (precipitationUncal), infrared
(IR) geostationary satellite precipitation data (IRprecipitation), and precipitation extracted
from merging high-quality passive microwave (PMW) sensors (HQprecipitation). Pre-
cipitationCal which represents records after the final post-processing is considered the
most reliable IMERG precipitation estimate [78]. The latter is used in the current study for
the evaluations.

2.3. Extreme Precipitation Indices

To evaluate the performance of GPM-IMERGF in capturing extreme precipitation
events, we have employed ten extreme precipitation indices defined by the Expert Team on
Climate Change Detection and Indices (ETCCDI) (see Table 1).
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Table 1. List of extreme precipitation indices used in this study.

Category Index Description Definition Unit

Maximum indices

Rx1day Maximum 1-day
precipitation Maximum 1-day precipitation mm

Rx5day Maximum 5 days of
consecutive precipitation

Maximum 5 days of
consecutive precipitation mm

CDD Consecutive Dry Days
Annual largest number of

consecutive days with daily
precipitation < 1 mm

days

CWD Consecutive Wet Days
Annual largest number of

consecutive days with daily
precipitation ≥ 1 mm

days

Percentile indices

R95pTOT Very wet days The 95th percentile of daily
precipitation on days ≥ 1 mm mm/days

R99pTOT Extremely wet days The 99th percentile of daily
precipitation on days ≥ 1 mm mm/days

Absolute threshold
indices

R10mm Count of heavy
precipitation days

Annual number of days when
precipitation ≥ 10 mm days

R20mm Count of very heavy
precipitation days

Annual number of days when
precipitation ≥ 20 mm days

SDII Simple precipitation
intensity index

The ratio of precipitation on wet
days to number of wet days mm/day

PRCPTOT Wet-day precipitation total amount of precipitation on
days with ≥1 mm precipitation mm

These indices are of great importance within the context of climate change and rising
global warming [80]. Among the abovementioned indices, Rx1day and Rx5day can be
utilized as a useful indices for flash floods and landslides as they are representing mag-
nitude of extreme precipitation events. Similarly, the frequency of heavy and very heavy
precipitation events is characterized by R10mm and R20mm. However, drought conditions
are characterized by CDD (dry) and CWD, R95Ptot, and R99pTOT (wet) indices, respec-
tively. Therefore, they can be very helpful for agricultural activities as they are indirectly
representing dry and wet period [81]. Furthermore, all other indices could be very helpful
when combined with each other.

To better examine the performance of GPM-IMERGF we divided extreme precipitation
indices into three separate groups: maximum indices, percentile indices, and absolute
indices [82,83].

2.4. Evaluation Approach

Global precipitation estimation models provide their outputs in a spatially aggregated
format and grid cells, while most observational and reference datasets are point sources and
not spatially representative of the area. Therefore, there have been two main approaches in
the literature for facing this spatial inconsistency in the model and observational data. In
the first approach, as suggested by the reviewer, the reference dataset is firstly aggregated in
space with a chosen interpolation method that can be as simple as IDW or more advanced
and complicated geospatial methods. Then the comparison is made, and error indexes
are calculated accordingly. In the second approach that is followed in this study, the
error indexes are firstly calculated by direct comparison of gridded data with point source
observations and then, in the end, aggregated in space to present the area-averaged error
values. Both of these methods have their own advantages and disadvantages; however,
the critical point is that uncertainties of spatial aggregation will ultimately impact the
final results in both methods but in different stages of the calculation (in the first method
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when making the spatially aggregated reference dataset and in the second method when
aggregating the error indexes in space). In a comprehensive evaluation of 44 gridded
precipitation studies in Iran, both aforementioned methods compared the results with
each other [62]. The outcome of that study proved that the ranking of the datasets would
remain similar in both pointwise (second approach as defined above) and pixel-wise (first
approach as defined above) approaches [62].

In this study, we have deliberately followed the point-to-pixel approach to evaluate
the GPM-IMERGF over Iran as the interpolation of the synoptic stations to grids would
add error to the assessment. To evaluate the performance of GPM-IMERGF in capturing
precipitation extremes, we have conducted the following steps. Initially, the De Martonne
aridity index [68] was calculated for all synoptic stations for the period 2007–2016. This
index is one of the most commonly used aridity indices with good accuracy in identifying
dry/humid conditions of different regions (see Appendix A for more information).

The evaluation is divided in different climate zones to verify if the performance of
IMERGF differs in different climate conditions or not. This can have important implications
for model development and enhancement, as well as providing a better and more in-depth
evaluation across the study area and scientific contribution to the literature. In addition,
As the stations for the whole country are unevenly distributed and most stations were
scattered along western and northern parts of the country, a minority of stations were
scattered across central and eastern parts of the country. As such, we categorized the whole
study area based on different climate zones, of which, every climate enjoys some stations.
In this way, regions that suffer from low station density can be associated with the result
from the same climate zones and the results can be generalized to other regions with the
same climate.

Later, the annual means of ETCCDI indices were calculated at each station. Finally,
trend analysis was used to evaluate the performance of GPM-IMERGF in capturing the
trend of all extreme precipitation indices for the study region.

2.4.1. Performance Metrics

The accuracy of GPM-IMERGF precipitation product was assessed using the Kling-
Gupta efficiency (KGE) index along with its three main components; correlation coeffi-
cient I, bias (β), and variability component (γ). The KGE score varies between −∞ to 1
(Equation (1)), with a perfect score of 1 [84,85]. In the following equations, r measures
the Pearson correlation coefficient (CC) (Equation (2)), β measures the bias component
defined as the ratio between average observed and estimated values with a perfect score of
1 (Equation (3)), and γ with a perfect score of 1 stand for the variability ratio as defined by
the ratio of the estimated and observed coefficients of variations (Equation (4)). µO and µE
indicate the average values for the observational data and estimated times series, respec-
tively, while σO and σE stand for the standard deviations of observations and estimations. n
is the number of records in the time series with valid observed or estimated data (number
of records excluding the no-data values in the time series). Oi and Ei also stand for the
reference and estimated data.

KGE = 1 −
√
(r − 1)2+(β − 1)2+(γ − 1)2 (1)

r =
1
n

n

∑
1

(Oi − µO) ∗ (Ei − µE)

σO ∗ σE
(2)

β =
µE
µO

(3)

γ =

σE
µE
σO
µO

(4)
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2.4.2. Trend Analysis

Trend analysis provides valuable information regarding climate change impacts across
the study region. In this study, the trends in GPM-IMERGF based precipitation indices
were compared with indices based on gauge observations. The Kendall nonparametric
test [86,87] was used to identify the annual trends in extreme precipitation indices.

3. Results and Discussion
3.1. Maximum Precipitation Indices

Figure 2 shows the spatial distribution of KGE, CC, bias, and VR indices for different
maximum precipitation indices across the study area. The KGE scores ranged from around
−8.87 for CWD to approximately 0.95 for Rx5day across various regions, indicating the
varying performance of the GPM-IMERGF in matching maximum extreme precipitation
indices. Considering the KGE score, it is worth mentioning that 65%, 42%, 47%, and 64%
of the stations for Rx1day, Rx5day, CDD, and CWD lay below 0.3, showing that GPM-
IMERGF has low accuracy in most stations of the country. The spatial pattern of KGE for
all maximum indices showed that many stations scattered along with the northern parts of
the country, particularly the northern coastal areas, stand for the worst results. However,
GPM-IMERGF showed reasonable accuracy (KGE > 0.5) across some western regions in
the Zagros mountainous areas.

Analyzing the results of Rx1day showed that climate regions including Arid, Extra-
Arid, and Humid had a relatively better KGE score than other climate regions; furthermore,
in these regions, GPM-IMERGF had a correlation coefficient ranging between 0.3 to 0.5,
and bias and VR values were close to the optimal value. However, the worst results were
observed in Semi-Humid and Per-Humid1 climates, mainly scattered along with the coastal
areas of the Caspian Sea. Bias and VR indicated that GPM-IMERGF had underestimation
(<0.8) broadly. For the other climates, acceptable results were not observed based on the
KGE score.

Considering the Rx5day index, climate regions including Arid, Semi-Arid, and Humid
had a relatively high KGE. The correlation coefficient lies between 0.6 to 0.7, which signifi-
cantly impacts the KGE score. Furthermore, the variability ratio and bias were close to the
optimal value (except for Humid climate, which has a relatively low bias compared to the
other two regions). Similar to the Rx1day index, the worst performance of GPM-IMERGF
was observed in Per-Humid1 climate that has a significant low variability ratio (VR < 0.77)
estimate of less than 0.62 and largely underestimate (bias < 0.65) Rx5day for this region.

The results for the CDD index showed that GPM-IMERGF had a relatively higher
KGE in Arid, Semi-Arid, and Extra-Arid climates compared to others with a correlation
coefficient of about 0.5, the VR and the bias values the optimal range for these three regions.
However, the worst performance of this GPM-IMERGF was observed in the Per-Humid2
climate. Although, VR and bias were approximately close to the optimal value in terms of
their median value, the very low correlation coefficient significantly affects the KGE score
in this climate region.

Considering the CWD index, the results showed that the GPM-IMERGF performance
was superior in the Humid class, with a relatively significant difference compared to
other climate regions. The correlation coefficient of 0.64 and the optimal bias and VR
values have led to the excellent performance of GPM-IMERGF in this region. Similar
to Rx1day and Rx5day index, the worst performance of GPM-IMERGF was observed in
Per-Humid1 climate with a negative KGE score (−0.2); the low KGE score in this region
was mainly because of negative CC value. Considering the climatic regions of Iran and its
complex topography, the results for the KGE and its components showed relatively higher
accuracy across Zagros chains, and poor performance of GPM-IMERGF was also found in
humid northern areas. Overall, the spatial distribution of all metrics and wetness classes
indicated that arid regions, dominant across Iran, receive higher accuracy than wet regions,
particularly across northern coastal areas and central Alborz.



Water 2022, 14, 1650 9 of 24

Water 2022, 14, x FOR PEER REVIEW 9 of 25 
 

 

2.4.2. Trend Analysis 

Trend analysis provides valuable information regarding climate change impacts 

across the study region. In this study, the trends in GPM-IMERGF based precipitation 

indices were compared with indices based on gauge observations. The Kendall nonpara-

metric test [86,87] was used to identify the annual trends in extreme precipitation indices. 

3. Results and Discussions 

3.1. Maximum Precipitation Indices 

Figure 2 shows the spatial distribution of KGE, CC, bias, and VR indices for different 

maximum precipitation indices across the study area. The KGE scores ranged from 

around −8.87 for CWD to approximately 0.95 for Rx5day across various regions, indicat-

ing the varying performance of the GPM-IMERGF in matching maximum extreme pre-

cipitation indices. Considering the KGE score, it is worth mentioning that 65%, 42%, 47%, 

and 64% of the stations for Rx1day, Rx5day, CDD, and CWD lay below 0.3, showing that 

GPM-IMERGF has low accuracy in most stations of the country. The spatial pattern of 

KGE for all maximum indices showed that many stations scattered along with the north-

ern parts of the country, particularly the northern coastal areas, stand for the worst results. 

However, GPM-IMERGF showed reasonable accuracy (KGE > 0.5) across some western 

regions in the Zagros mountainous areas. 

 

Figure 2. Reliability of GPM-IMERGV6.0 Final Run (GPM-IMERGF) in capturing maximum precipi-
tation indices based on bias, correlation coefficient (CC), variability ratio, and Kling-Gupta efficiency
(KGE) error metrics.

Figure 3 illustrates the temporal change of maximum precipitation indices over dif-
ferent climate regions throughout the study period (2007–2016). The results revealed that
GPM-IMERGF shows lower performance in capturing the trend of maximum precipitation
indices across various wet climates rather than arid to semi-arid regions. The results also
show that GPM-IMERGF generally underestimates Rx1day and Rx5day over regions with
the Mediterranean to PH2 climate while the underestimation increased by the wetness of
the region which is consistent with [88].
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Figure 3. Temporal behavior of GPM-IMERGF in capturing maximum precipitation indices beside
corresponding indices based on synoptic stations throughout 2007 to 2016.

The performance of the datasets improves in terms of CDD and CWD from Per-
Humid2 to Extra-Arid climates. A slight overestimation is observed for arid and Semi-
Humid regions regarding CWD index with no particular pattern for other wetness classes.
It is worth mentioning that significant overestimation by GPM-IMERGF for wet regions
might be due to its calibration procedure and its auxiliary sources. GPM-IMERGF utilizes
ERA5 estimations for bias correction through its calibration procedure [78]. Previous results
from various studies [30,88,89] suggested that ERA5 largely overestimates precipitation
across humid regions, so the consequence of a high bias rate for ERA5 might reflect on
GPM-IMERGF estimations.

3.2. Percentile Precipitation Indices

Figure 4 shows the spatial distribution of KGE, CC, bias, and VR metrics for percentile
indices. Overall, the performance of GPM-IMERGF based on KGE in percentile indices
does not follow a specific pattern in different regions of the study area with relatively
good performance along Zagros mountains. The percentage of stations with KGE < 0.3
for R95pTOT and R99pTOT were 58% and 75%, respectively. However, the unfavorable
results of GPM-IMERGF in the Caspian Sea strip are primarily due to the more considerable
underestimation of bias and VR components of KGE, such that in terms of these two indices,
Per-Humid1, Per-Humid2, and Mediterranean climates had low values. GPM-IMERGF
performance for KGE has been somewhat better in R95pTOT than R99pTOT, which is
estimated to be due to the high CC value in the study area, especially in some Zagros
mountains. Moreover, the KGE range in different climates for GPM-IMERGF was between
0.11 to 0.28 for R95pTOT index, and R99pTOT was between −0.34 to 0.25. Furthermore, in
both indices, the best KGE score for the GPM-IMERGF was observed in Humid climate,
mainly due to the optimal value of bias and VR components of KGE.
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Figure 4. Reliability of GPM-IMERGV6.0 Final Run (GPM-IMERGF) in capturing percentile precipi-
tation indices based on bias, correlation coefficient (CC), variability ratio, and Kling-Gupta efficiency
(KGE) error metrics.

Figure 5 illustrated the temporal change of percentile indices for different climate
regions throughout the study period from 2007 to 2016. Analyzing the trend of R95pTOT
indices had shown that GPM-IMERGF had good accordance with observations in capturing
the overall trend of R95pTOT. However, GPM-IMERGF slightly overestimated R95pTOT at
arid classes while largely underestimated R95pTOT for the humid classes. Compared to
other regions, GPM-IMERGF significantly underestimated R95pTOT for the Per-Humid1
and Per-Humid2 regions.
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precipitation indices beside corresponding indices based on synoptic stations throughout 2007 to 2016.

On the contrary, the overall performance of GPM-IMERGF in capturing the temporal
trend of R99pTOT across all wetness classes was not acceptable. The results of GPM-
IMERGF for R99pTOT were not acceptable and failed to capture the quantity and trend of
R99pTOT throughout the study period. Overall, the results showed that GPM-IMERGF
showed reletivaly reliable performance considering R95pTOT compared to R99pTOT
index. Our finding for R95pTOT and R99pTOT is partially consistent with previous
results obtained from [83] and [60]. They suggested that satellite-based precipitation
products largely underestimated highly rainy days precipitation indices (e.g., R95pTOT
and R99pTOT) across whole Iran and southwestern parts of Iran, respectively.

3.3. Absolute Threshold Precipitation Indices

Figure 6 shows the spatial distribution of bias, CC, VR, and KGE measures for absolute
indices. The results showed that low KGE scores (<0.3) were found for approximately 43%,
63%, and 42% of stations for R10mm, R20mm, and SDII, respectively, by GPM-IMERGF
across various regions. Moreover, the results revealed that low KGE scores were mainly
distributed across Alborz and northern Zagros mountains. However, GPM-IMERGF had
relatively reasonable accuracy (0.4–0.6) across the central Zagros mountains. Furthermore,
the results showed that GPM-IMERGF was following observational data in capturing
the PRCPTOT index. The best results for GPM-IMERGF in capturing PRCPTOT were
obtained across the Zagros mountains and eastern Alborz regions. Overall, the KGE score
results and other metrics showed that GPM-IMERGF had low to high accuracy in capturing
absolute threshold indices. Moreover, there were some encouraging results for the central
Zagros, which defines some areas of interest for implementing GPM-IMERGF estimations
for detecting extreme precipitation events in this region.
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Figure 6. Reliability of GPM-IMERGV6.0 Final Run (GPM-IMERGF) in capturing absolute threshold
precipitation indices based on bias, correlation coefficient (CC), variability ratio, and Kling-Gupta
efficiency (KGE) error metrics.

In the matter of absolute threshold indices, the results showed that GPM-IMERGF was
in good accordance with three Humid, Mediterranean, and Semi-Humid regions compared
to others. However, the worst performance was observed in Per-Humid1 and Per-Humid2
climates for approximately all absolute threshold indices (except for R20mm).

Regarding R10mm, it can be acknowledged that the best results of GPM-IMERGF were
observed along the Zagros Mountains. Furthermore, all climatic regions except Per-Humid1
and Per-Humid2 range between 0.3 to 0.4 in terms of median KGE. Moreover, GPM-
IMERGF receives lower KGE values in wet climates regarding the R10mm index. Lower
KGE values are mainly due to the significant under-estimation in the bias (bias < 0.65)
and the combined effect of the low variability ratio (VR < 0.7). However, GPM-IMERGF
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is in good accordance with in situ data; the CC term ranged from 0.54 to 0.69 in all
climate regions. Compared to R10mm, GPM-IMERGF had a lower KGE score, such
that KGE < 0.3 was scattered along 42% and 63% of stations for R10mm and R20mm,
respectively. Moreover, stations located in the Zagros Mountains have performed better
than other areas in terms of KGE. The performance of GPM-IMERGF in different climates
in terms of KGE (in wet and dry climates) does not have the same pattern, such that the
worst performance was observed in Mediterranean climate (KGE < 0.07) and the best
performance was observed in climates Semi-Humid, Arid, Per-Humid1, with KGE varying
around 0.25.

The main reason behind the poor performance of GPM-IMERGF for KGE values in
R20mm is related to low CC value, such that the percentage of stations with CC < 0.3 has
increased from 20% in the R10mm to 37% in R20mm. It is important to note that the range
of bias and VR changes has not changed significantly in different climates compared to R10.

Analyzing the performance of GPM-IMERGF for SDII showed that better KGE results
mainly were scattered along the Zagros mountains. Furthermore, the results for the Humid
and Semi-Humid climates were superior to other regions. The results also showed that
Per-Humid1 and Per-Humid2 stand for the worst performance based on GPM-IMERGF
results. Spatial distribution of bias index for SDII showed that 50% of the stations have lied
between optimal value for GPM-IMERGF. Meanwhile, 53% of stations had a low variability
ratio (VR < 0.8). These indicate that high CC values have mainly influenced the high KGE
for some regions regarding SDII in the study area.

The KGE results of PRCPTOT for the GPM-IMERGF showed that the KGE score
has significantly improved in most stations in the study area (above 0.6, 35% of stations)
and (below 0.3, 25% of stations) GPM-IMERGF was superior to other extreme indices in
terms of KGE performance. Regarding PRCPTOT, it is worth mentioning that the high
performance of GPM-IMERGF was also found in some parts of the northeastern area, as
well as the Zagros mountains. It should be noted that the KGE values of GPM-IMERGF in
the Caspian Sea strips have been affected by the noticeable low bias and VR index, such
that even high CC values have not increased the value of KGE. Considering climate regions,
GPM-IMERGF receives the lowest KGE value (KGE < 0.3) Per-Humid1 and Per-Humid2,
however, it was well-performed in Semi-Arid and Arid classes with KGE of 0.59 and
0.56, respectively.

Figure 7 shows the temporal variation of absolute threshold indices calculated by the
GPM-IMERGF product and its corresponding gauge values. Overall, analyzing temporal
variations of GPM-IMERGF indices with gauge-based indices showed that GPM-IMERGF
had acceptable accuracy in capturing the overall behavior of the gauge-based indices.
The results showed that GPM-IMERGF showed a consistent pattern for all indices, such
that it slightly underestimated or matched with gauge-based indies throughout 2007 to
2017 for the arid regions. Whereas, for the humid regions, GPM-IMERGF significantly
underestimated all absolute indices for all years.

Overall, based on various error metrics, the results showed that GPM-IMERGF esti-
mations were relatively reliable for absolute threshold indices compared to other indices.
The higher accuracy for SDII and PRCPTOT might result from their inherent formula-
tion procedure as they consider the total precipitation amount in their calculation steps.
Our findings for southwestern parts of Iran for SDII index were totally against [60], who
reported that TRMM satellite showed lower accuracy considering SDII. However, our
results for PRCPTOT index were consistent. One significant difference between TRMM
and GPM-IMERGF for this particular area might be due to GPM-IMERGF improvement
through its complicated calibration with ERA5 and GPCC information [78].
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3.4. Trend Analysis

To determine the performance of GPM-IMERGF in estimating the trend of precipitation
extremes, we have compared the trend in the indices from in situ measurement and the
GPM-IMERGF dataset within the study period (2007–2016). To obtain the trends, we have
employed the Mann–Kendall test.

Figure 8 shows an overall agreement between the observed and estimated patterns.
Regarding Rx1day and Rx5day, it is evident that GPM-IMERGF is in good accordance with
in situ observation (AE < 0.3) in most regions. Considering CDD, it is worth mentioning
that negative trends over the south of the Zagros Mountains with PH1 and SA climate
regions have been well captured by the GPM-IMERGF (AE < 0.3). The trend analysis for the
CWD index showed that the observed positive trend over the southwest, the coastal areas
in the north, and the highlands of Zagros is well captured by GPM-IMERGF (AE < 0.3).

Additionally, for other regions, GPM-IMERGF captured the negative trend of CWD
with acceptable accuracy (AE < 0.3). Overall, both datasets show a positive trend over the
coast of Caspian and the western part of the Zagros Mountains. At the same time, it depicts
a clear negative trend over the high latitudes of Zagros and arid and extra arid regions.
Considering Rx1day, Rx5day, CDD, and CWD, it is evident that areas with negative trends
were scattered across dry regions (Extra-Arid, Semi-Arid, and Arid), while positive trends
were mainly found across humid areas regions (Humid, Semi-Humid, Per-Humid1, and
Per-Humid2).
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Figure 8. Maximum precipitation indices trends based on GPM-IMERGV6.0 Final Run (GPM-
IMERGF) dataset and the observed data. (a–c) are observational trends, GPM-IMERGF estimated
trends, and absolute error between estimated Tau Kendall (Z score) and observed ones, respectively.

Figure 9 shows the trend for R95pTOT and R99pTOT based on in situ and GPM-
IMERGF datasets. The results showed a general agreement between the observed and
estimated patterns of trends for R95pTOT and R99pTOT. Both datasets show a positive
trend over the coast of Caspian, Alborz, and Zagros, while the other parts of the study
area mainly present a negative trend, which is captured well by GPM-IMERGF (AE < 0.3).
Like maximum precipitation indices, most negative trends were mainly found across arid
regions (Extra-Arid, Arid, and Semi-Arid regions), while positive trends were mainly
dominant across northern and western humid regions. The results also showed that the
absolute error for GPM-IMERGF mainly was laid in the optimum range (AE < 0.3), however,
there were some regions with higher absolute error (AE > 0.5) that is scattered unevenly
across the study region.
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Figure 9. Percentile precipitation indices trends based on GPM-IMERGV6.0 Final Run (GPM-
IMERGF) data and observational data. (a–c) are observational trends, GPM-IMERGF estimated
trends, and absolute error between estimated Tau Kendall (Z score) and observed ones, respectively.

Based on Figure 10, there is a good agreement between the in situ observations and
GPM-IMERGF regarding Absolute threshold indices. R10mm and R20mm depict a positive
trend across Caspian, Alborz, and Zagros high altitude, which GPM-IMERGF reasonably
captures (AE < 0.3). Regarding SDII and PRCPTOT indices, the results show that GPM-
IMERGF has an excellent ability to capture trends all over the study area. Similar to
maximum and percentile indices, the positive and negative trends were mainly scattered
along humid and arid regions. However, compared to other groups, there were relatively
negative trends in northern areas. Regarding the absolute error, it is evident that GPM-
IMERGF showed high accuracy in most stations except for some regions mainly scattered
across northwestern parts of the country (AE > 0.5). However, the trend results showed
that the poor results obtained by GPM-IMERGF did not follow a specific pattern similar
to previous trends for maximum and percentile indices. Overall, positive trends were
mainly scattered along the Zagros mountains and Caspian with humid climates, while the
negative trends for these indices were mainly found across arid regions. The dominant
positive trends of maximum precipitation indices, percentile indices, and absolute threshold
indices indicated that throughout 2007–2016 the frequency and amount of the heavy
precipitation had increased drastically, mainly across Zagros highlands that are in line
with previous results from [52]. However, the results from [83] were different as they
found that most indices had decreasing trends across the major parts of Iran. The different
results obtained from various studies might be due to the different periods and sources of
precipitation used.
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4. Summary and Conclusions

Figure 11 summarizes the overall performance of the GPM-IMERGF precipitation
product among all indices in terms of median KGE scores. The results highlight a low to
moderate accuracy in capturing maximum precipitation indices across different climate
regions. Considering Rx1day and CWD indices, it is evident that GPM-IMERGF performs
poorly for most climates (except for Humid and Arid climates in CWD), with KGE scores
varying between 0 to 0.3. The results also indicate that the performance of GPM-IMERGF
was slightly increased in capturing Rx5day indices with KGE > 0.4 for arid and semi-arid
regions, as well as KGE > 0.3 for Humid, Semi-Humid, and Extra-Arid climates. GPM-
IMERGF estimates CDD with similar accuracy to Rx5day (except for Semi-Arid regions),
however, it fails to capture the CDD patterns over Semi-Humid climate with KGE < 0.1.

Considering GPM-IMERGF performance regarding percentile indices the KGE score
varies between −0.34 to 0.28, indicating poor performance of the dataset in capturing the
variability of R95pTOT and R99PTOT over different climate zones.
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Figure 11. Summary of evaluations for all extreme precipitation indices over varying climate regions
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Based on the results from Figure 11, the overall performance of GPM-IMERGF in
capturing R10mm and SDII indices is similar to each others (KGE varying between 0.3
to 0.4) for different climates (except for Per-Humid1 and Per-Humid2 classes). However,
the results highlighted the poor performance of GPM-IMERGF in capturing the R20mm
index with KGE < 0.26. The most robust performance by GPM-IMERGF is observed
for the PRCPTOT with KGE within 0.3–0.6 for almost all climate regions (except for the
Per-Humid2 class).

In this study, we have evaluated the GPM-IMERGF precipitation product in estimating
extreme precipitation indices (maximum precipitation indices, percentile indices, and
absolute threshold indices) over Iran, within 2007–2016. We have analyzed the performance
of the datasets against a set of country-wide 281 synoptic stations using various statistical
and visualization methods.

Based on the results of our analysis, the findings can be summarized as follows:

1. The results revealed that GPM-IMERGF had low to moderate accuracy regarding max-
imum precipitation indices based on different error metrics. However, relatively better
performance of GPM-IMERGF was mainly found for Rx5day and CDD compared to
other indices, especially over western parts of Iran.
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2. The best and the worst results for GPM-IMERGF were reported in capturing absolute
threshold indices and percentile indices, respectively. GPM-IMERGF product was in
good accordance with observational data in capturing PRCPTOT index across varying
climate and topographies.

3. The results also indicated that GPM-IMERGF was more effective in capturing R10mm
index than R20mm higher accuracy across western Zagros mountainous regions.

4. Considering extreme precipitation indices, statistical metrics indicated that GPM-
IMERGF had low to moderate overestimation across arid regions. However, signifi-
cant underestimation was observed over wet regions by GPM-IMERGF.

5. Considering the spatial variation of different statistical metrics, it is evident that
GPM-IMERGF estimations were more effective across Zagros mountainous regions.
However, the worst results were obtained across northern coastal regions, dominated
by a complex precipitation system.

6. The trend analysis showed that GPM-IMERGF had acceptable accuracy regarding
all precipitation indices based on the Mann–Kendall test. Furthermore, the results
showed that most indices had mainly upward trend across the Zagros mountains and
northern coastal regions.

The main contribution of this study is to assess the reliability of GPM-IMERGF in
the context of extreme events while expanding our perception of the precipitation ex-
tremes variability over different climates of Iran. Floods and droughts may seem to be
two independent events, but they are closely linked. Hence, studying extreme events in
flood/drought-prone areas is essential for water resources planning and infrastructure
design. GPM-IMERGF with high spatio-temporal resolution and proper latency cover-
ing extreme precipitation values with acceptable accuracy. However, applying statistical
methods to provide rescaled data by eliminating the effects of over/underestimations such
as bias correction is necessary, important shortcomings and drawbacks of GPM-IMERGF
remains challenging and more deep error analysis needs to be considered from variety
of aspects for this product. Moreover, it is evident from the results that GPM-IMERGF
have major drawbacks across complex topographies. Another major issue in assessments
of these products may attribute to gauge observations uncertainties which is worthy of
attention for further researches. GPM-IMERGF data by feasible coverage of extreme values
and anomalies could provide reliable data for hydrologic models, climate studies, and
forecasting in the matter of extreme events, flood-drought propagation turns the GPM
family into a long-standing member of global precipitation products.
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Appendix A. Aridity Index

To examine the performance of GPM-IMERGF estimations regarding climate regions,
we used Demartone Aridity Index [68] to identify climate zones for all stations. De Mar-
tonne classification system is a commonly used climate classification method based on
Aridity Index (Equation (A1)). Based on aridity index stations mainly characterized by
Semi-Arid regions (see Table A1)
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AI =
P

T + 10
(A1)

where P denotes Mean Annual Precipitation (MAP) in mm and T is mean annual tempera-
ture in Centigrade (◦C).

Table A1. Climate zones of the studied stations based on De Martonne method.

Climate Regions No. of Stations Aridity Index

Extra-Arid 65 AI < 5

Arid 66 5 ≤ AI < 10

Semi-Arid 110 10 ≤ AI < 20

Mediterranean 9 20 ≤ AI < 24

Semi-Humid 13 24 ≤ AI < 28

Humid 5 28 ≤ AI < 35

Per-Humid1 11 35 ≤ AI < 55

Per-Humid2 2 ≥55
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