
Citation: Portuguez-Maurtua, M.;

Arumi, J.L.; Lagos, O.; Stehr, A.;

Montalvo Arquiñigo, N. Filling Gaps

in Daily Precipitation Series Using

Regression and Machine Learning in

Inter-Andean Watersheds. Water

2022, 14, 1799. https://doi.org/

10.3390/w14111799

Academic Editors: Zheng Duan and

Scott Curtis

Received: 26 March 2022

Accepted: 27 May 2022

Published: 2 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Filling Gaps in Daily Precipitation Series Using Regression and
Machine Learning in Inter-Andean Watersheds
Marcelo Portuguez-Maurtua 1,2,3,* , José Luis Arumi 2,4 , Octavio Lagos 2,4, Alejandra Stehr 5

and Nestor Montalvo Arquiñigo 3

1 Doctoral Program in Water Resources and Energy for Agriculture, Universidad de Concepcion, Av. Vicente
Mendez 595, Chillan 3812120, Chile

2 CRHIAM Water Research Center, Universidad de Concepcion, Victoria 1295, Concepcion 4070386, Chile;
jarumi@udec.cl (J.L.A.); octaviolagos@udec.cl (O.L.)

3 Water Resources Department, College of Agricultural Engineering, Universidad Nacional Agraria La Molina,
Av. La Molina s/n, Lima 15024, Peru; nmontalvo@lamolina.edu.pe

4 Water Resources Department, College of Agriculture Engineering, Universidad de Concepción, Av. Vicente
Mendez 595, Chillan 3812120, Chile

5 Centro de Ciencias Ambientales EULA-Chile, Departamento de Sistemas Acuáticos, Facultad de Ciencias
Ambientales, Universidad de Concepción, Concepcion 4070386, Chile; astehr@udec.cl

* Correspondence: mportuguez@lamolina.edu.pe; Tel.: +51-1-949-377-610

Abstract: As precipitation is a fundamental component of the global hydrological cycle that governs
water resource distribution, the understanding of its temporal and spatial behavior is of great interest,
and exact estimates of it are crucial in multiple lines of research. Meteorological data provide input
for hydroclimatic models and predictions, which generally lack complete series. Many studies have
addressed techniques to fill gaps in precipitation series at annual and monthly scales, but few have
provided results at a daily scale due to the complexity of orographic characteristics and in some cases
the non-linearity of precipitation. The objective of this study was to assess different methods of filling
gaps in daily precipitation data using regression model (RM) and machine learning (ML) techniques.
RM included linear regression (LRM) and multiple regression (MRM) algorithms, while ML included
multiple regression algorithms (ML-MRM), K-nearest neighbors (ML-KNN), gradient boosting trees
(ML-GBT), and random forest (ML-RF). This study covered the Malas, Omas, and Cañete River
(MOC) watersheds, which are located on the Pacific Slope of central Peru, and a nineteen-year period
of records (2001–2019). To assess model performance, different statistical metrics were applied. The
results showed that the optimized machine learning (OML) models presented the least variability in
estimation errors and the best approximation of the actual data from the study zone. In addition, this
investigation shows that ML interprets and analyzes non-linear relationships between rain gauges at
a daily scale and can be used as an efficient method of filling gaps in daily precipitation series.

Keywords: precipitation gap filling; regression; machine learning; standard normal homogeneity
test; K-nearest neighbors; gradient boosting tree; random forest

1. Introduction

Precipitation is a fundamental component of the hydrological cycle that governs water
resource distribution [1]. The hydrological cycle of a given region is directly related to its
topography, geology, physical mechanisms, and climate; precipitation is the most important
phenomenon [2,3]. Precipitation, due to its high spatiotemporal variability and the large
number of interconnected variables involved, is one of the most difficult atmospheric
variables to characterize, estimate and forecast [4], especially on a daily scale, due to its
high spatial and temporal variability [5]. The understanding of the temporal and spatial
behavior of precipitation is of great interest, especially in studies on climatic risks [6]. In
addition, exact estimates of precipitation are fundamental in multiple lines of research, as
they serve as the basis for statistical models and analysis [7,8].
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Peru is composed of three slopes, one that drains into the Pacific Ocean (Pacific Slope),
another that drains into the Atlantic Ocean (Atlantic Slope), and a third that drains into
Lake Titicaca (Titicaca Slope) [9]. The Peruvian Pacific Slope is located in tropical latitudes,
and precipitation there is mainly influenced by orographic conditions, the ocean, and the
atmosphere [10,11]. The spatial distribution of rainfall stations in Peru is heterogenous. In
addition, precipitation series are frequently incomplete, which complicates the hydrological
or climatological characterization of a given place [12].

Recent studies on the Peruvian Pacific Slope and coast have allowed it to be classified
into homogenous regions [11], which has aided the understanding of spatial and seasonable
precipitation variability patterns [9,13]. There are numerous methods of precipitation
series gap filling, including least squares regression, predictive mean matching, nearest
neighbor techniques, decision tree techniques, gradient boosting, and artificial neural
networks [12,14–17]. In addition, geostatistical methods such as ordinary kriging tend to
overestimate the number of rainy days and underestimate their magnitudes, and a negative
correlation is even found in several reports between nearby stations [18–20]. In addition, the
authors Huang et al. [21] and Gorshenin et al. [22] have evaluated the k-nearest-neighbor
algorithm, together with machine learning models, such as multilayer perceptron (MLP),
support vector machine (SVM) and random forest (RF), with promising results. A study
in Germany used machine learning (ML) techniques, analyzing non-linear relationships
between spatially distributed rain gauges [12]. In addition, in a recent study conducted by
Bellido-Jiménez et al. [23] to fill possible gaps in precipitation datasets, in semi-arid regions
of Andalusia, several machine learning models (MLP, SVM and RF) were tested, showing
good results using neighboring data with MLP.

However, studies on precipitation series gap filling have mainly addressed annual
and monthly scales [24–26]. Similarly, there are other studies that have addressed regional-
scale development techniques, merging estimates based on quantile mapping, spatial
interpolation, machine learning, and multi-strategy fusion [27,28], with few investigations
focused on a daily scale, due to the complexity of orographic characteristics and in some
cases the non-linearity of precipitation series between neighboring stations [8,29,30]. The
objective of this study was to fill gaps in daily precipitation series through comparative
analysis of regression model (RM) and ML techniques. RM included linear (LRM) and
multiple regression models (MRM). For ML, multiple regression models (ML-MRM), K-
nearest neighbors (ML-KNN), gradient boosting trees (ML-GBT), and random forest (ML-
RF) were used. In addition, an optimization process, optimized machine learning (OML),
was used with the multiple regression (OML-MRM), K-nearest neighbors (OML-KNN),
gradient boosting tree (OML-GBT), and random forest models (OML-RF), for a network of
17 rainfall stations located in the Malas, Omas, and Cañete River (MOC) watersheds. We
assessed the efficiency of the results obtained from each model using statistical metrics.
However, in order to guarantee reliable results using raw rainfall data, it is an essential
requirement to perform the quality control process, such as the homogenization of the
daily rainfall series, which allowed the detection of observation and measurement errors,
which are problems that occur in a rainfall observation network [31]. In addition, it is
important to identify homogeneous zones through the regionalization process, using up to
three methods as a means of verifying the results.

The aim of this study was to demonstrate that ML techniques can interpret and
analyze non-linear relationships between rain gauges at a daily scale and can be used as an
efficient method of filling gaps in daily precipitation series. The results of the gap-filled
precipitation series can be used in future investigations to evaluate the performance of the
of the daily precipitation data obtained from satellite sensors based on a hydrological model
and evaluate its performance based on time series of discharges measured at hydrometric
stations. Finally, the results of this study showed that the ML models presented better
approximations to the actual data than the RM models.

The structure of the paper is organized as follows. Section 2 shows the information
about the locations, the dataset, the theoretical background of the different machine learning
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(ML) models evaluated, the preprocessing algorithms and evaluation metrics, in addition
to the quality control of the dataset by homogenization and regionalization. Then, in
Sections 3 and 4, the results are reported and discussed, respectively. Finally, Section 5
describes the conclusions reached in this work.

2. Materials and Methods
2.1. Study Area

The study area comprised the Mala, Omas, and Cañete River (MOC) watersheds
(Figure 1), located in the central part of the Peruvian Pacific Slope and coast; its total area is
9496 km2 (2250, 1167 and 6079 km2, MOC basins, respectively). The area is characterized
by a significant latitudinal gradient that goes from 0 to 6500 masl; above 2500 masl is the
wet watershed area [32]. The rivers flow from east to west from the Andes to the Pacific
Ocean, with bare, steep slopes that favor significant swelling, floods, and erosion during
heavy rainfall episodes [9]. In addition, in normal conditions, the region is influenced by
the South Pacific High, in combination with the Humboldt current that produces dry, stable
conditions with moist air trapped below the inversion layer at about 1000 masl, and it
presents major seasonal and interannual precipitation variability [9,11,13].
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Figure 1. Elevation of the study area, main rivers, selected watershed boundaries, and location of
rainfall stations.

2.2. Methods

The methodology has four stages; Figure 2 shows the methodological diagram. The
first stage is the collection of available daily precipitation information from within and near
the study area. The second stage is the exploratory analysis and homogenization of rainfall
data. The third stage is the regionalization process, which includes the use of the Ward,
K-means, and regional vector analysis methods (RVM). Finally, the fourth stage consists of
the filling of gaps in daily precipitation series using the RM and ML methods. In addition,
the performance of each model was evaluated using metrics.
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Figure 2. Methodological diagram for daily precipitation series gap filling.

2.2.1. Collection of Available Information

A total of 17 rainfall stations were selected, some with records since 1965, others since
1980, etc., all of which had periods with irregular records. The stations are part of the
network managed by the National Meteorology and Hydrology Service of Peru (SENAMHI,
https://www.senamhi.gob.pe/mapas/mapa-estaciones/mapadepesta1.php accessed on:
5 March 2020). In addition, stations located outside the study region and those inactive
during the selected period were discarded. Similarly, there are rainfall stations with more
than 10% missing (empty) data relative to the total length of the analyzed series. Figure 1
shows the spatial locations of the rainfall stations. In addition, Table 1 shows the geographic
coordinates, quantity of observed data, and quantity of missing data.

https://www.senamhi.gob.pe/mapas/mapa-estaciones/mapadepesta1.php
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Table 1. Rainfall stations of MOC watersheds, 2001–2019 period.

ID Stations
Coordinates Altitude Observed Data Missing Data

Latitude Longitude (masl) No of Data (%) No of Data (%)

1 Ayaviri −12.38 −76.13 3228 6881 99.2 58 0.8
2 Cañete −13.07 −76.32 158 3830 55.2 3109 44.8
3 Carania −12.34 −75.87 3875 6939 100 0 0
4 Huancata −12.22 −76.22 2700 6939 100 0 0
5 Huangascar −12.9 −75.83 2533 6908 99.6 31 0.4
6 Huañec −12.29 −76.14 3205 6939 100 0 0
7 Huarochiri −12.13 −76.23 3154 6787 97.8 152 2.2
8 Langa −12.13 −76.42 2863 6484 93.4 455 6.6
9 Pacaran −12.83 −76.07 700 5132 74 1807 26

10 San Juan de Yanac −13.21 −75.79 2550 6482 93.4 457 6.6

11 San Lazaro de
Escomarca −12.18 −76.35 3758 6486 93.5 453 6.5

12 San Pedro de Pilas −12.45 −76.22 2600 6909 99.6 30 0.4
13 Socsi −13.03 −76.19 500 4687 67.5 2252 32.5
14 Tanta −12.12 −76.02 4323 6819 98.3 120 1.7
15 Vilca −12.11 −75.83 3864 6297 90.7 642 9.3
16 Yauricocha −12.32 −75.72 4675 6818 98.3 121 1.7
17 Yauyos −12.49 −75.91 2327 6878 99.1 61 0.9

2.2.2. Exploratory Data Analysis (EDA)

It is an essential requirement to guarantee reliable results using raw rainfall data, the
application of quality control procedures, by means of graphs and the homogenization
of time series, allowing the detection of observation and measurement errors, supported
in recommended by Estévez et al. [31]. This process was carried out in two phases: first,
a time series graph and boxplot, which allowed the identification of missing values and
outliers; this process is performed in Python. Second, in order to determine inconsistencies
at the stations, which could stem from a change in instrument location, variations in the
conditions at the measurement site, or an observer change, the data were analyzed using
the standard normal homogeneity test (SNHT), as described by [33–35].

The SNHT was developed by [36] and modified by [37,38]; it uses Y to denote the
candidate series and Yi to denote a specific value (for example, cumulative annual precip-
itation or mean annual temperature) in the year (or other unit of time) i. In addition, Xj
denotes one of the surrounding reference sites (jth of a total of k) and Xji a specific value
from that site. The following equations were used to detect the relative non-homogeneities
(traditionally used in precipitation studies):

Qi =
Yi

[
∑k

j=1 ρ2
j Xji

Ŷ
Xj

]
∑k

j=1 ρ2
j


(1)

and

Qi = Yi −

∑k
j=1 ρ2

j
[
Xji − X̂j + Ŷ

]
∑k

j=1 ρ2
j

 (2)

where Qi is the ratio in Equation (1) and the difference in Equation (2) in a specific year
i; Ŷ represents the multi-annual mean of the candidate time series; and ρj is the correla-
tion coefficient between the test variable Y and the reference variable Xj [36,38,39]. This
method is implemented in the Climatol package for R language [34]. Climatol has three
normalization methods: division by mean values, subtraction of means, and complete
standardization; here, we opted for subtraction of means, as the minimum precipitation
values can be zero [34,40,41]. On a preliminary basis, Climatol was run for a monthly time
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step, identifying breaks; based on these breaks, Climatol was run again for a daily time
step. The results show graphs of absolute maximum autocorrelation (ACmx), SNHT, root
mean square error (RMSE), and percentage of original data (POD).

2.2.3. Regionalization Process

This section describes the regionalization process, which was performed using three
methods. In the first method, Ward’s hierarchical clustering analysis was applied. This
method is also known as “minimum variance” grouping, where Ward’s objective function
of the [42] algorithm minimizes the sum of squared deviations of the attribute vectors from
the centroid of their respective groups; instead of merging samples or clusters as a function
of distance, it starts by assigning “zero variance” to all clusters. This method was applied
to ascertain the preliminary clustering of the stations [43]. This process was carried out by
programming in R language.

In the second method, non-hierarchical K-means clustering (KM) was applied, which
is a statistical technique designed to assign objects to a fixed number of clusters according
to a set of specified variables [11,44]. It consists of obtaining a partition that minimizes
intraclass inertia. This is achieved locally (it depends on the initial points) using the
Euclidian distance between individuals and the moving centers used for aggregation. The
KM algorithm is an iterative procedure in which the attribute vectors move from one group
to another to minimize the value of the objective function, F, defined in Equation (3).

F =
k

∑
k=1

m

∑
j=1

Nk

∑
i=1

d2
(

yk
ij − yk

•j

)
(3)

In Equation (3), k indicates the number of groups, Nk represents the number of attribute
vectors in group k; yk

ij denotes the rescaled value of attribute j in attribute vector i assigned
to group k; and yk

•j is the mean value of attribute j for group k (Equation (4)) [43,45].

yk
•j =

∑Nk
i=1 yk

ij

NK
(4)

However, one of the problems encountered when applying the KM method lies in
choosing the number of clusters. Although there is no single criterion for choosing the
number of clusters, here we used the elbow method, implementing it by programming in
R language.

Finally, the regional vector method (RVM), described by [10,11,44], was the third to be
applied, in order to corroborate the previously obtained results. It consists of creating a
fictitious station (vector) with average values from all stations in the zone. This method is
aimed at the homogenization and completion–extension of precipitation data [46,47] and
is based on the creation of an “average value” “vector” station. This concept refers to the
calculation of a weighted average of rainfall anomalies for each station, overcoming the
effects of stations with extreme and low rainfall values and problems associated with the
weight of the rainiest stations relative to the least rainy ones.

This method applies the least squares method to find annual regional rainfall
indices Zi and extended mean precipitation Pj, which is achieved by minimizing the
expression [10,11,45]:

S =
N

∑
I=1

M

∑
J=1

(
Pij

Pj
− Zi

)2

(5)

where i is the index of the year; j is the index of the station; N is the number of years;
M is the number of stations; Pij is annual precipitation at station j in year i; Pj is mean
precipitation extended to a period of N years; and, finally, Zi is the regional rainfall index
of year i. This process was carried out using the Hydracces program [48].
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2.2.4. Gap-Filling Model

In this stage of the study, the results from the regionalization process were used. The
RM and ML techniques were applied for each homogenous region. The daily precipitation
series were graphed for each homogenous region, allowing the dates with missing data to
be identified. In addition, the intensity of the relationships between stations was analyzed
using Pearson coefficient correlations [29,30].

To apply the LRM and MRM techniques, in both cases, target stations (Y) and variables
to predict were identified. Predictor stations (X) were identified for LRM and multiple
predictor stations (Xm) for MRM. LRM is a computing procedure based on the alternate least
squares algorithm (ALS) [49]. It has two steps: first estimating the relationship between
predictors and missing values and then using the trend equation to fill the gaps [50], in
accordance with Equation (6):

Pi(t) = a + b ∗ Pi(t) (6)

The values of a and b can be estimated using Equations (7) and (8), respectively.

a = y − bx (7)

b =
∑n

i=1 xy − ∑n
i=1 x ∑n

i=1 y
n

∑n
i=1 x2 − (∑n

i=1 x) x2

n

(8)

where y and x are mean values of the data series of the reference and similarity stations,
respectively [50,51].

Meanwhile, MRM is a statistical technique that consists of finding a linear relation-
ship between a dependent variable and more than one independent variable. It can be
represented using the following equation:

Yi = a + b1X1 + b2X2 + . . . + bmXm + C (9)

where Yi is the dependent variable; X1, X2, . . . Xm are the independent variables; a is
the intersection; b1, b2, . . . bm are the multiple regression coefficients, estimated using the
method of least squares; and C is the error term [50,51]. ML is a scientific discipline in
the artificial intelligence field that creates systems that learn automatically [8,14]. For gap
filling using this technique, the data available at each station were divided randomly to
generate a training dataset (train) and test dataset (test) in proportions of 75% and 25%,
respectively [8]. The algorithms implemented were MRM, K-nearest neighbors (KNN),
gradient boosting trees (GBT), and random forest (RF). In addition, an optimization process
was carried out, generating OML-MRM, OML-KNN, OML-GBT, and OML-RF models.
These algorithms were implemented using the Python programming language. KNN is a
non-parametric method that can be used for both classification and regression.

The result is calculated based on the weighting of a number of nearest neighbors in
the attribute space based on a distance function; the most common is Euclidian distance
for continuous data [8]. GBT is a method in which multiple decision trees are iteratively
fit to the data, and each tree is based on the previous tree to reduce losses and improve
performance. It is based on the boosting principle, that is, on the creation of a set of
weak learners to improve prediction precision [8,52]. This method has three advantages:
first, it does not require the application of a direct physical model; second, it serves as a
computationally feasible method of capturing complex non-linear interactions between
variables and a response [52,53]; and finally, it presents almost no overfitting problems,
which is an important advantage, as many models over- or underestimate results [14,52,53].
RF was proposed by [54]. It is a semi-unsupervised non-parametric algorithm in the
decision tree family that consists of a set of uncorrelated trees to produce predictions for
classification and regression tasks [55].
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2.2.5. Bayesian Optimization

One of the critical aspects of machine learning models’ efficiency is hyperparameter
selection. It is very important to establish the correct values; performance can change
drastically from excellent to very poor. A common practice in the scientific community
uses a trial and error technique, where different values, ranging from tens to thousands of
possibilities, are evaluated [23,31]. Therefore, efficiently setting the hyperparameter space
is essential, because if the hyperparameter space is ample, the algorithm wastes significant
time in non-promising configurations (apart from being very slow). On the other hand,
when the hyperparameter space is small, an accurate hyperparameter configuration set
may be missing, even though it is fast [23,31].

Bayesian optimization was used to estimate the hyperparameters due to its great
popularity in machine learning models and its good performance in optimization [56,57].
The procedure consists of four steps, as described by [23]: (1) define the hyperparameter
space; (2) the algorithm considers previous evaluations to choose the next set of values to
be evaluated (acquisition function); (3) to assess the new hyperparameter configuration
using an objective function; and (4) if the optimization process has not finished yet, it goes
to the second point. In this work, this algorithm was implemented using Python.

2.2.6. Evaluation Metrics

To assess the efficiency of the developed models, coefficient of determination (R2), root
mean square error (RMSE), Nash–Sutcliffe coefficient (NSE) and percentage bias (PBIAS) were
used [8,51,58]. All of them are mathematically expressed as Equations (10)–(13), respectively:

R2 =

[
∑n

t=1
(

Pobs − Pobs
)(

Pped − Ppred

)]2

∑n
t=1
(

Pobs − Pobs
)2

∑n
t=1

(
Ppred − Ppred

)2 (10)

RMSE =

√√√√∑n
i=1

(
Pobs,i − Ppred,i

)2

n
(11)

NSE = 1 −
∑n

i=1

(
Ppred,i − Pobs,i

)2

∑n
i=1

(
Ppred,i − Ppred,i

)2 (12)

PB =
∑n

i=1

(
Pobs,i − Ppred,i

)
× 100

∑n
i=1 Ppred,i

(13)

where n represents the number of prediction days, Pobs corresponds to the measured value
for a specific day, Ppred is the predicted value, i represents measurement on a specific day,
and Ppred correspond to the average measured and predicted values, respectively.

3. Results
3.1. Analysis of Missing Data, Outliers, and Homogenization

In Figure 3, the bar graph shows the quantity of unavailable precipitation data by
station; there are three stations with more than 10% missing data (Cañete, Socsi, and
Pacaran), while the remaining stations present less than 10% missing data. The Cañete,
Socsi and Pacaran rainfall stations are located in the lower part of the basin, which is
characterized by being dry almost all year round (less than 20 mm/year).
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Figure 3. Missing daily precipitation data: quantity of unavailable daily precipitation data as a
percentage by station.

Figure 4a shows the boxplots for daily precipitation series of each station; these contain
a large number of scattered values, which initially could be considered outliers. However,
it should be taken into account that daily precipitation shows high temporal and spatial
variability patterns. Figure 4b shows the boxplot at a monthly scale, showing smaller
dispersions, probably lower outliers, reflecting less spatial and temporal variability.
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Figure 5a shows the results of Pearson coefficient correlations; high spatial and tempo-
ral variability on a daily scale are observed, complicating the detection of homogeneities.
The high variability of daily records compared to that of monthly or annual values makes it
very difficult to directly apply methods for identifying inhomogeneities at the daily scale; in
accordance with the recommendations of [34], the homogenization process was performed
at a monthly scale, at which it is possible to detect cutoffs or breakpoints. Once the break-
points were identified, the homogenization process was carried out on a daily scale using
the Climatol package in R (https://cran.r-project.org/web/packages/climatol/index.html
accessed on: 5 May 2020) [34,59]. The results in Figure 5a,b show the correlation between
the original normalized series and the reference series obtained based on the other stations.
The reference series was constructed based on the average value of the nearest stations,
which is weighted by the inverse of the distance from the analysis station [34,39,41]. The
daily-scale correlation results present a maximum value of 0.40 and a minimum below zero
(Figure 5a); the monthly-scale results reach values close to 1.0 (Figure 5b). This analysis
was carried out for all the stations.
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Figure 5. Correlogram between stations: (a) Daily precipitation series and (b) Monthly precipitation series.

Climatol provided overall absolute maximum autocorrelation (ACmx), SNHT, root
mean square error (RMSE), and percentage of original data (POD) results. The ACmx
values are not significant until the third quartile of the series (0.34); the values are below
60% autocorrelation, which indicates that the series are non-seasonal (Figure 6a). The
series present anomalies in SNHT values between the original and homogenized series; the
values range from 9.10 to 80.90, with the exception of the Cañete station, which reaches a
maximum of 228, creating a rather wide variation spectrum (Figure 6b). RMSE presents
high variation, with a minimum value of 1.26 and a maximum of 4.79 (Figure 6c). Finally,
POD, which compares the original and homogenized data series, presents high values,
meaning that the original data available are of good quality (Figure 6d). In addition, results
of the analysis of homogeneity by station were obtained (Table 2). The Cañete, Socsi, and
Pacaran stations presented ACmx values above 0.60, SNHT values above 90.0, and POD
values above 10%. Only RMSE presented low values.

https://cran.r-project.org/web/packages/climatol/index.html
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Figure 6. Homogeneity analysis statistics: (a) Station maximum absolute autocorrelation (ACmx),
(b) Standard normal homogeneity test (SNHT), (c) Root mean squared error (RMSE) and (d) Percent-
age of original data (POD).
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Table 2. Homogeneity analysis statistics for each station.

Stations ACmx SNHT RMSE POD

Ayaviri 0.19 47.4 2.9 99
Cañete 0.65 228.0 1.3 55
Carania 0.20 26.1 2.6 100

Huancata 0.33 95.0 2.4 100
Huangascar 0.14 35.9 1.9 99

Huañec 0.29 68.7 2.2 100
Huarochiri 0.13 55.0 2.7 97

Langa 0.08 80.9 2.0 93
Pacaran 0.73 166.1 1.3 73

San Juan de Yanac 0.10 21.5 1.5 93
San Lazaro de Escomarca 0.32 20.9 3.4 93

San Pedro de Pilas 0.15 13.4 2.0 99
Socsi 0.78 40.8 1.4 67
Tanta 0.34 155.6 4.8 98
Vilca 0.34 30.5 3.9 90

Yauricocha 0.36 38.6 4.6 98
Yauyos 0.08 9.1 1.9 99

3.2. Regionalization Analysis

The results provided by ward showed four groups of regions for the 17 stations
(Figure 7). This process, implemented based on R code, allowed the initial clustering to be
ascertained. Clustering analysis with KM is a method that creates the most heterogenous
clusters possible; that is, the objects in the k-clusters must be as similar as possible to
those that belong to their cluster and completely unlike the objects in other clusters [11].
A fundamental point in the application of KM is to ascertain the optimum number of
clusters. There are many criteria for choosing the optimal number of clusters, however; for
this study, the elbow method (EM) was used due to its extensive application in diverse
hydrological studies with good results. The optimal cluster or region value is shown in
Figure 8. According to EM analysis, the optimal number of regions was four. In addition,
KM was used to define the stations belonging to each homogenous region. Table 3 details
the number and names of the stations in each region.
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Table 3. Annual regional vector indices—Region 1.

Station
Time Standard Station/Vector

(Years) Deviation Correlation

Langa 16 0.252 0.882
San Lazaro de

Escomarca 16 0.263 0.664

Ayaviri 17 0.116 0.904
Huancata 19 0.341 0.863
Huañec 19 0.187 0.751

Huarochiri 14 0.159 0.851
Carania 19 0.191 0.679

The results obtained with ward and KM indicate that precipitation during the evalu-
ated period was not similar at every station throughout the watersheds. The application of
the ward and KM methods was performed using code written in R, and for EM, the code
written in Python.

Finally, the RVM method was applied to validate the results obtained based on the
described models. The Hydraccess program was used to apply RVM (https://hybam.
obsmip.fr/es/hydraccess-3 accessed on: 5 May 2020). The results show clustering of
stations with similar behaviors in terms of interannual precipitation variation, taking
the standard deviation and correlation coefficient/vector as indicators. The regions are
considered homogenous if the values of the standard deviation (SD) are lower than 0.4
and the correlation coefficient/vector values are above 0.7 [11]. The final results show the
clustering of rainfall stations into homogenous regions.

The RVM method was used to obtain three final clusters that, in accordance with
their statistics and analysis of the results, included the stations that are shown in Table 3
and Tables S1 and S2 (Supplementary Material), and Figure 9, and Figures S1 and S2
(Supplementary Material). It was not possible to analyze cluster 3, as its stations presented
a high percentage of missing data.

https://hybam.obsmip.fr/es/hydraccess-3
https://hybam.obsmip.fr/es/hydraccess-3


Water 2022, 14, 1799 14 of 23
Water 2022, 14, x FOR PEER REVIEW 14 of 23 
 

 

 
Figure 9. Annual indices of the regional vector and stations in Region 1. 
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Figure 9. Annual indices of the regional vector and stations in Region 1.

The results obtained with the ward and KM methods are consistent in the number
of homogenous regions. However, the number of stations in Regions 1 and 2 presented a
slight discrepancy between the results obtained with ward and KM; therefore, the results
obtained with RVM were used for verification, showing accord between the KM and RVM
results. Table S3 (Supplementary Material) shows the final results of the homogenous
region clustering. In addition, Figure 10 shows the regionalization of rain gauge stations
based on the KM and RVM results.
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3.3. Analysis of the Series Gap-Filling Process

In Table 4 and Tables S4 and S5 (Supplementary Material), the correlation values
corresponding to the stations clustered by homogenous region are shown. The correlations
were below 0.60 and above 0.38; below 0.58 and above 0.32, and below 0.45 and above 0.37
in Regions 1, 2, and 4, respectively. These coefficients are considered acceptable given the
dry conditions, with more than 90% of the rain gauge records close to zero throughout the
year due to the hydroclimatic conditions, with any value greater than zero causing high
variability [11]. Therefore, this analysis allowed the level of representation using Pearson
coefficient correlations within a region to be highlighted.

Table 4. Correlation coefficient—Region 1.

Ayaviri 1
Carania 0.48 1

Huancata 0.60 0.47 1
Huañec 0.51 0.43 0.49 1

Huarochiri 0.56 0.55 0.58 0.46 1
San Lazaro de Escomarca 0.45 0.40 0.43 0.39 0.44 1

Langa 0.45 0.38 0.46 0.38 0.46 0.55 1
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In the application of RM for filling missing precipitation data, the models were gener-
ated based on the homogenous regions. For the LRM algorithm, the Ayaviri station was
designated as variable Y and the Huancata station was designated as variable X based on
the greater Pearson coefficient correlations value. The other stations with missing data
were selected in a similar manner. Table 5 shows the Y and X variables for each region.
Meanwhile, for MRM, the procedure was similar to that of the previous case; the Ayaviri
station was identified as the Y variable and all the remaining stations (Huancata, Langa,
San Lazaro de Escomarca, Huañec, Huarochiri, and Carania) were identified as Xm (see
Table 5).

Table 5. Identification of target stations (Y) and predictor stations by homogenous region.

Regions Target Station (Y) Predictor Station (X) Multiple Predictor Stations (Xm)

Region 1

Ayaviri Huancata Huancata, Langa, San Lazaro de Escomarca, Huañec,
Huarochiri, Carania

Huarochiri Huancata Huancata, Langa, San Lazaro de Escomarca, Ayaviri,
Huañec, Carania

San Lazaro de Escomarca Langa Langa, Ayaviri, Huancata, Huañec, Huarochiri, Carania

Langa San Lazaro de Escomarca San Lazaro de Escomarca, Ayaviri, Huancata, Huañec,
Huarochiri, Carania

Region 2

San Pedro de Pilas Huangascar Huangascar, San Juan de Yanac, Yauyos
Huangascar San Pedro de Pilas San Pedro de Pilas, Yauyos, San Juan de Yanac
Yauyos San Pedro de Pilas San Pedro de Pilas, Huangascar, San Juan de Yanac
San Juan de Yanac San Pedro de Pilas San Pedro de Pilas, Huangascar, Yauyos

Region 4
Tanta Vilca Vilca and Yauricocha
Yauricocha Vilca Vilca and Tanta
Vilca Yauricocha Yauricocha and Tanta
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For the application of the different gap-filling algorithms, this process was carried
out independently in each homogenous region. The Y stations with missing data in each
homogenous region were identified, as were the Xm stations corresponding to each target
station. The Y and Xm stations for each homogenous region are shown in Table 5.

For the filling of missing precipitation data with ML, the analysis was also carried out
independently in each homogenous region. First, the available data were divided, with one
portion for training and another for testing (75% and 25% respectively); this division was
performed randomly. Then, the ML-MRM, ML-KNN, ML-GBT and ML-RF were selected
along with their respective parameters (see Table 6). In addition, considering that many
models contain parameters that cannot learn from training data, it was necessary to carry
out an optimization process. To this end, it was important to ascertain the hyperparameter
values using the Bayesian Optimization method. The results of a model can depend largely
on the values taken by its hyperparameters; however, it cannot be known beforehand what
values are suitable. The most common means of finding optimal values is testing different
possibilities; in this study, optimization processes were carried out for the OML-MRM,
OML-KNN, OML-GBT, and OML-RF algorithms (Table 7).

Table 6. Parameter and hyperparameter values for the ML algorithms.

Algorithm Parameters [Values] Hyperparameters [Values]

Multiple Regression
alpha [1] alpha [logspace(–5, 5, 500)]
solver [‘auto’] solver [‘auto’]
modelo[Ridge] modelo[Ridge]

K-nearest neighbors

n_neighbors [5] n_neighbours [linspace(1, 100, 500]
leaf_size [30] leaf_size [1, 3]
algoritm [‘auto’] algoritm [‘auto’]
modelo[KNeighborsRegressor] modelo[KNeighborsRegressor]

Gradient boosting tree

n_estimators [100] n_estimators [50, 100, 1000, 2000]
max_feature [‘none’] max_feature [‘auto’, 3, 5, 7]
max_depth [3] max_depth [‘None’, 3, 5, 10, 20]
subsample [1] subsample [0.5, 0.7, 1]
modelo[GradientBoostingRegressor] modelo[GradientBoostingRegressor]

Random forest

n_estimators [100] n_estimators [50, 100, 1000, 2000]
max_feature [‘auto’] max_feature [‘auto’, 3, 5, 7]
max_depth [‘None’] max_depth [‘None’, 3, 5, 10, 20]
modelo[RandomForestRegressor] modelo[RandomForestRegressor]

Based on the Y and Xm variables, ML was first applied for default parameter values
using the ML-MRM, ML-KNN, ML-GBT, and ML-RF models. It was also applied using
parameters called hyperparameters, generating the OML-MRM, OML-KNN, OML-GBT,
and OML-RF models. This process allowed the model parameters to be optimized. The
parameter and hyperparameter values used in the algorithms created in Python are shown
in Table 6.

Table 6 describes the parameter and hyperparameter values used in each algorithm
in ML. It is observed that only one parameter value was assigned when using the default
algorithm. However, for the algorithm optimization process, a wide range of values
was defined, and using the Bayesian optimization method, the optimal hyperparameters
were estimated.
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3.4. Assessment of Model Performance

To assess the performance of the models, different statistical metrics—R2, RMSE, NSE
and PBIAS—were used for both datasets (training and test). The obtained results are
presented in Table 7 and Tables S6 and S7 (Supplementary Material). These statistics were
calculated for the 2001–2019 period; periods with missing data were not considered.

Many linear models, among them LRM, contain parameters that cannot learn from
training data, making it necessary for the modeler to establish them. In addition, to
establish the predictive capacity of ML, which consists of testing how close its predictions
are to the actual values of the response variable, a set of observations is needed, with its
corresponding response variables, but that the model has not “seen”, that is, which have not
participated in its initial fitting. Finally, to assess the performance of models by comparing
predicted and actual precipitation values, the use of statistical metrics is important.

Table 7. Model efficiency according to fit statistics—Region 1.

Stations Samples Statistics LRM MRM
Machine Learning Optimized Machine Learning

MRM KNN GBT RF MRM KNN GBT RF

Ayaviri

Train R2 0.36 0.49 0.48 0.57 0.64 0.89 0.48 0.49 0.59 0.59
Train RMSE 3.15 2.81 2.87 2.61 2.39 1.36 2.87 2.89 2.55 2.58
Train NSE 0.36 0.49 0.48 0.57 0.64 0.88 0.48 0.47 0.59 0.58
Train PBIAS 0.00 0.00 0.00 3.92 0.00 −1.73 0.00 0.45 0.00 0.38
Test R2 0.52 0.38 0.49 0.45 0.52 0.48 0.71 0.70
Test RMSE 2.62 3.03 2.75 2.86 2.62 2.83 2.05 2.14
Test NSE 0.52 0.36 0.47 0.43 0.52 0.44 0.71 0.68
Test PBIAS 0.00 0.67 −8.46 −10.65 0.00 21.64 0.00 1.01

Huarochiri

Train R2 0.34 0.49 0.49 0.60 0.65 0.92 0.49 0.51 0.60 0.61
Train RMSE 3.12 2.74 2.80 2.47 2.32 1.19 2.80 2.76 2.49 2.48
Train NSE 0.34 0.49 0.49 0.60 0.65 0.91 0.49 0.50 0.60 0.60
Train PBIAS 0.00 0.00 0.00 6.48 0.00 −1.39 0.00 4.38 0.00 0.47
Test R2 0.52 0.41 0.51 0.49 0.53 0.53 0.73 0.73
Test RMSE 2.54 2.83 2.58 2.64 2.51 2.57 1.93 1.96
Test NSE 0.52 0.40 0.50 0.48 0.53 0.51 0.72 0.71
Test PBIAS −1.72 7.12 −5.63 −9.30 0.00 18.36 0.00 0.95

San
Lazaro
de Esco-
marca

Train R2 0.30 0.38 0.38 0.49 0.65 0.90 0.38 0.41 0.54 0.45
Train RMSE 3.44 3.22 3.16 2.87 2.42 1.41 3.17 3.11 2.75 3.03
Train NSE 0.30 0.38 0.38 0.49 0.64 0.88 0.38 0.40 0.53 0.43
Train PBIAS 0.00 0.00 0.00 7.01 0.00 −1.96 0.00 10.88 0.00 0.14
Test R2 0.42 0.28 0.34 0.37 0.41 0.43 0.73 0.56
Test RMSE 3.33 3.73 3.55 3.46 3.34 3.35 2.31 2.98
Test NSE 0.42 0.27 0.33 0.37 0.41 0.41 0.72 0.53
Test PBIAS 0.00 16.25 9.41 1.78 0.00 14.86 0.00 −0.05

Langa

Train R2 0.30 0.39 0.40 0.53 0.68 0.93 0.40 0.45 0.59 0.60
Train RMSE 1.98 1.85 1.85 1.64 1.37 0.71 1.85 1.80 1.55 1.55
Train NSE 0.30 0.39 0.40 0.53 0.67 0.91 0.40 0.43 0.58 0.58
Train PBIAS 0.00 0.00 0.00 5.79 0.00 −3.09 0.00 10.61 0.00 0.60
Test R2 0.36 0.24 0.32 0.31 0.37 0.36 0.70 0.70
Test RMSE 1.85 2.09 1.94 1.98 1.83 1.87 1.28 1.33
Test NSE 0.35 0.17 0.28 0.26 0.37 0.34 0.69 0.67
Test PBIAS −4.32 0.76 −7.22 −16.36 0.00 17.93 0.00 1.23
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The R2 values for the dataset (training and test) present a correlation between the Y
and X variables in each model. For the Ayaviri station, which belongs to homogenous
region 1 (see Table 7), the ML-RF model gives the best R2 value (0.89) for the training
data; however, for the test dataset, this value is reduced by nearly half (R2 = 0.45). For
optimized ML, the training and test R2 values are close to each other, and in some cases,
the R2 values are better for the test datasets than the training datasets. RMSE is a measure
of the variance of residuals, which allows the magnitude of deviation of simulated values
from observed values to be quantified; the LRM model presents the greatest RMSE (3.15)
for the Ayaviri station. It was also observed that the test dataset generally presents a lower
RMSE, particularly with the optimized ML models (OML-GBT and OML-RF).

The NSE is a tool that measures the predictive capacity of a model, which can take
values between −∞ and 1.0, with 1.0 being the optimal value. Values between 0.0 and
1.0 are generally seen as acceptable performance levels, while values equal to or less than
0.0 indicate that the mean of the observed values is a better predictor than the simulated
value, indicating inadequate performance [60]. In accordance with the results shown in
Table 7, values for the Ayaviri station are between 0.36 and 0.88 for both datasets (test and
training). However, the ML models present values very close to 1.0 (ML-RF, NSE = 0.88)
for the training dataset, indicating an acceptable level of performance.

PBIAS measures the tendency of simulated data to be larger or smaller than their
observed counterparts; its optimal value is 0. Positive values indicate a model with an
underestimation bias and negative values indicate an overestimation bias. For the Ayaviri
station, the OML-KNN presents high underestimation (PBIAS = 21.64), while the ML-
RF model presents high overestimation (PBIAS = −10.65). However, the LRM, MRM,
ML-MRM, OML-MRM, and OML-GBT models present an optimal PBIAS value for both
datasets (training and test).

4. Discussion

Based on the results obtained in the exploratory analysis, the Cañete, Socsi and
Pacaran stations presented large quantities of missing values (over 10%); they also failed
the homogeneity test. Therefore, the initial number of stations (17) was reduced to 14. In
this study, the RM and ML methods were used to fill gaps in daily precipitation series
at stations located in the MOC watersheds on the Peruvian Pacific Slope and coast. The
procedure was carried out in three stages: collection of information on daily precipitation
series, exploratory analysis, and homogenization. Therefore, it is essential to implement
quality control procedures for raw rainfall data to ensure their reliability for use. In addition,
preliminary ward cluster analysis, followed by KM and RVM analysis, through which
three homogenous regions that concisely represent the relationship between precipitation
variability and altitude were identified; and, finally, RM and ML were applied as a method
of filling gaps in precipitation series.

RM and ML are customizable and easy-to-implement techniques that seek the best
performance for a given problem among numerous algorithms. ML analyses with hy-
perparameter values (OML-MRM, OML-KNN, OML-GBT, and OML-RF) presented the
best data recovery performance, demonstrating that ML models can extract additional
information from data that by nature present noisy characteristics due to their high spatial
and temporal variability [8,34,39]. In general terms, the decision tree methods (OML-GBT
and OML-RF) perform the regression task well; however, some variations are observed that
demonstrate that not all ML algorithms are equal in datasets that are superficially similar
and can vary widely in terms of their prediction power. This also underlines the variation
in the mechanisms of ML algorithms, even though all of them are capable of extracting
information from non-linear and noisy datasets.
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Figure 11a shows the Taylor diagram for the Ayaviri station for the training dataset; the
ML-RF model presents the best results, with prediction precipitation the most consistent
with observed precipitation (R2 = 0.89, RMSE = 1.36, NSE = 0.88, and PBIAS = −1.73).
Figure 11b shows the Taylor diagram for the Ayaviri station for the test dataset; the OML-
GBT and OML-RF present the best results (R2 = 0.71, RMSE = 2.05, NSE = 0.71, and
PBIAS = 0.00 and R2 = 0.70, RMSE = 2.14, NSE = 0.68 y PBIAS = 1.01, respectively). The
analyses of the other stations (Huarochiri, San Lazaro de Escomarca, and Langa), are shown
in Figure 11c–h; all these stations are located in homogenous region 1, and the values
of the results obtained for them are similar to those of the Ayaviri station. Likewise, it
is observed that in terms of the statistical metrics for the training and test datasets, the
optimized ML models present the best results, particularly the OML-GBT and OML-RF
models. The results of the analysis of the statistical metrics are shown in the figures. For
the Ayaviri station, the OML-RF model presents a slight underestimation, while the results
of the OML-GBT model are more efficient. Finally, in regions 2 and 4, Figures S3 and S4
respectively (Supplementary Material), the OML-GBT and OML-RF present the best results
in terms of statistical metrics.
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5. Conclusions

This study has demonstrated the performance advantages of ML techniques for filling
gaps in daily precipitation series as well as the potential of ML models in the optimization
process using hyperparameter values for training (75%) and test datasets (25%), based on
the efficiencies of the statistical metrics. However, it is important to note that a quality
control raw rainfall data and regionalization process are necessary, which allows homoge-
nous regions to be identified. Precipitation along the Peruvian Pacific Slope is highly
influenced by El Niño, with marked positive asymmetry of strong events, and La Niña,
with non-Gaussian distribution of precipitation data, which limits to a certain extent the
linear analysis approach [9]. Finally, the results obtained in this study showed that the
OML-GBT and OML-RF models presented the least variability in estimation errors and the
best approximation to the actual data, efficiently interpreting the spatiotemporal variability
of precipitation, as demonstrated by the analyzed statistical metrics.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14111799/s1, Figure S1: Annual indices of the regional vector
and stations in Region 2; Figure S2: Annual indices of the regional vector and stations in Region 4;
Figure S3: Taylor diagrams that show a statistical comparison (normalized standard deviation and
correlation coefficient) of observed precipitation and modeled precipitation based on precipitation
datasets (training and test) for four stations: (a) San Pedro de Pilas (training), (b) San Pedro de
Pilas (test), (c) Huangascar (training), (d) Huangascar (test), (e) Yayos (training), (f) Yayos (test),
(g) San Juan de Yanac (training), and (h) San Juan de Yanac (test); Figure S4: Taylor diagrams
that show a statistical comparison (normalized standard deviation and correlation coefficient) of
observed precipitation and modeled precipitation based on precipitation datasets (training and
test) for four stations: (a) Tanta (training), (b) Tanta (test), (c) Yauricocha (training), (d) Yauricocha
(test), (e) Vilca (training), (f) Vilca (test); Table S1: Annual regional vector indices—Region 2; Table
S2: Annual regional vector indices—Region 4; Table S3: K-means clustering (2001–2019 period);
Table S4: Correlation coefficient—Region 2; Table S5: Correlation coefficient—Region 4; Table S6:
Model efficiency according to fit statistics—Region 2; Table S7: Model efficiency according to fit
statistics—Region 4.
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