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Abstract: Groundwater fluoride (F) occurrence and mobilization are controlled by geotectonic,
climate, and anthropogenic activities, such as land use and pumping. This study delineates the
occurrence and mobilization of F in groundwater in a semi-arid environment using groundwater,
and an artificial intelligence model. The model predicts climate, soil type, and geotectonic as major
predictors of F occurrence. We also present unsaturated zone F inventory, elemental compositions,
and mineralogy from 25 boreholes in agricultural, forest, and grasslands from three different land
use terrains in the study area to establish linkages with the occurrence of groundwater F. Normalized
unsaturated zone F inventory was the highest in the area underlain by the granitic–gneissic com-
plex (261 kg/ha/m), followed by residual soils (216 kg/ha/m), and Pleistocene alluvial deposits
(78 kg/ha/m). The results indicate that the unsaturated zone mineralogy has greater control over F
mobilization into the groundwater than unsaturated zone F inventory and land-use patterns. The
presence of clay minerals, calcite, and Fe, Al hydroxides beneath the residual soils strongly retain
unsaturated zone F compared with the subsurface beneath Pleistocene alluvial deposits, where the
absence of these minerals results in enhanced leaching of unsaturated zone F.

Keywords: unsaturated zone F; random forest; geotectonic; calcite; clay minerals

1. Introduction

Enriched fluoride (F) concentration in unsaturated zone poses a serious risk to human
exposure by leaching into groundwater [1] and through plant accumulation [2]. F exposure
through drinking water is common in regions with elevated (>1.5 mg/L) groundwater F [3].
Humans can also be exposed to F through food [4], supplements [5], toothpaste [6], and
atmospheric sources [7]. Consumption of elevated levels (>1.5 mg/L) of F may cause dental
fluorosis [8], whereas severe exposure can lead to the development of skeletal fluorosis [9],
decreased birth rates [10], and kidney and liver damage [11]. However, F at optimal
levels (~0.7 mg/L) is linked with lower incidences of dental caries and a reduced risk of
fluorosis [12,13]. India has set a threshold of 1.0 mg/L drinking water guidelines taking
into account the hot climate in certain parts [14]. Although the health effects of ingesting
drinking water F (<1 mg/L) are debatable, its chronic health impacts due to long-time
exposure are irrefutable [3].

An estimated 120 million people (9% of the population) in India, and an estimated
7 million people (12% of the population) in the eastern state of West Bengal (WB), India are
exposed to elevated levels of F and are at risk of fluorosis [15,16]. The prevalence of dental
fluorosis has been evident in population of the state of WB, where the incidences have been
correlated with the occurrences of elevated groundwater F [17–20]. Das and Mondal [19]
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also show that elevated F levels in drinking water have resulted in higher F excretion
through urine and impaired development of intelligence in children of WB. Elevated
groundwater F in WB has been linked with the occurrence of F-bearing minerals in the
underlying rocks (Chotanagpur Gneissic Complex (CGC), Singbhum Granites, unclassified
metamorphics, Pleistocene Alluviums, and laterites) [17,21,22].

Elevated groundwater F is often associated with igneous and metamorphic rocks
(India, Sri Lanka, China, eastern Africa, and the Pampean ranges in the southern parts of
South America) and/or secondary precipitates of calcium carbonates [23]. It results due to
the weathering and dissolution of F-rich minerals such as fluorite (CaF2), and fluorapatite
(FAP) in arid to semi-arid climates in Ca-deficient and HCO3-rich groundwater [24]. In
granitic terrains, minerals such as apatite, micas, and amphibole are groundwater’s pri-
mary source of F. In sedimentary basins, elevated groundwater F is associated with the
release from primary sources and desorption from Fe and Mn oxy(hydro)oxides under
acidic conditions [25]. Fluorite (and FAP) dissolution pulled by calcite precipitation is the
dominant mechanism of F mobilization into the groundwater [26]. A decrease in calcium
activity in the solution can also be achieved by an ion-exchange process with the clay
minerals, which triggers fluorite dissolution [24,26].

Producing accurate and reliable groundwater pollutant prediction models offer strate-
gic and scientifically efficient measures to explore and manage groundwater resources. The
resultant groundwater pollutant distribution maps can provide city planners and ground-
water well drillers with an indispensable tool to explore safe drinking water resources.
Machine learning algorithms have been used to predict the occurrences of groundwater
pollutants [16,27–29] and groundwater level changes [30–34]. Machine learning algo-
rithms offer greater accuracy and reliability against traditional interpolation techniques
for determining the extent of groundwater pollutants by using predictor variables that
significantly control the occurrence, mobility, and distribution of pollutants in question.
Podgorski et al. [16] used the random forest machine learning algorithm to predict the
probability of occurrence of elevated groundwater F across India using geology, climate,
and soil parameters as predictor variables, and have estimated around 120 million people to
be exposed to F. Sarkar et al. [27] predicted the first nationwide extent of nitrate pollution in
groundwater across India using random forest, boosted regression, and logistic regression,
where they identified precipitation, aridity, and anthropogenic influences as important
variables of prediction.

F in the unsaturated zone is associated with the clay fractions, iron, aluminum, and/or
calcium by forming strong bonds. Their fate depends on the soil pH, sorption capacity,
sorbents, and types of sorbents salinity. Silt and clayey loam sediments have higher F
content than sandy sediments [35]. Barrow and Ellis [36] predict that complexes formed
between F and Al in the soil at low pH have very few free F ions. The greater solubility of F
under low pH can be explained by the formation of AlFx (Aluminium fluoride) complexes,
whereas at high pH conditions, desorption of free F is due to the result of repulsion by the
negatively charged surfaces [32]. At low pH Fe, Al oxides and hydroxides adsorb F more
efficiently than clay minerals, whereas among the clay minerals, kaolinite and halloysite
have greater adsorption capacity [37,38]. Soils with high calcium content are very efficient
F-fixers in the soil. At pH ≥ 6.5, if sufficient calcium carbonate is available, F is completely
fixed as CaF2 (Calcium fluoride) [39]. Soils irrigated with elevated F water result in the
formation of CaF2, or it may also form when F adsorption capacity is reached [40]. Most
of the F in the soil is not easily exchangeable, and its retention in the unsaturated zone
depends upon the recharge rates, which directly depend upon the permeability of the
subsurface [41,42].

Unsaturated zone F inventory is primarily derived from the weathering of F-rich
bedrocks [43], impurities from fertilizers [44], irrigational return flow [40], and significantly
from atmospheric depositions. Although the importance of solute transport from the unsat-
urated zone to the groundwater is well recognized and studied, the processes and factors
controlling the mobilization are poorly understood, especially for F. The significance of
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unsaturated zone solute mobilization is realized by the fact that the infiltrating groundwater
recharge has to pass through it. The unsaturated zone is also susceptible to human-induced
changes, such as land-use patterns. Groundwater recharge variations through changes in
land-use patterns have been found to mobilize sediment anions such as Cl, F, and SO4 [41].
Increased recharge beneath agricultural lands has been found to mobilize water-soluble
ions from the unsaturated zone to the underlying aquifers [45]. Increased recharge also
leads to a rise in the water table, which can result in the enhanced mobilization of solutes
from the previously unsaturated zone to the groundwater [45,46]. Changes in the land-
use pattern may result in an increase in F concentration in groundwater. For example,
Zhu et al. [47] show that changes in land use from natural to industrial purposes have
increased F and As (arsenic) concentrations in groundwater in China.

Previous studies [21–23,46] have primarily focused on the mobilization of F into
the groundwater from the aquifer rocks within the saturated zone, where rock-water
interaction within the saturated zone serves as an important process of F enrichment
in the groundwater due to an extended interaction time. Therefore, we focus on the
processes and factors that control F mobilization within the unsaturated zone, which could
influence F concentrations in the groundwater. Firstly, we present an understanding of
the hydrogeochemical processes and groundwater thermodynamics for the dissolution
and precipitation of mineral phases influencing F mobility in the groundwater. Secondly,
insights were drawn from a machine learning algorithm (Random Forest) to model the
groundwater F distribution exceeding a threshold value of 1.0 mg/L and its associated
F exposure to the population using geotectonic, climate, hydrologic, and anthropogenic
factors as predictor variables. The model is validated using collected groundwater samples
from the study area. Finally, to further understand the influences of geotectonic and land-
use patterns on the F mobilization in the groundwater, we present extensive unsaturated
zone F profiles from 25 boreholes beneath three different land-uses (i.e., agricultural, forest,
and grasslands) from three different geological terrains. Our study would be the first
of its kind to link groundwater F occurrence with unsaturated zone solute mobilization,
influenced by land-use patterns and geotectonic; predicting groundwater F occurrence
using a machine learning algorithm for the study area and validating it with field-surveyed
groundwater F results. Hence, this study would have implications for identifying elevated
groundwater F areas from the prediction maps and can provide an understanding of F
mobilization within the unsaturated zone, and could help develop F removal techniques
using geological media.

2. Materials and Methods
2.1. Study Area

The study area comprises the three districts of Bankura, Puruliya, and Paschim Me-
dinipur (P. Medinipur) in West Bengal, India. The study area demonstrates three different
geological terrains, i.e., CGC, Residual Soils, and Pleistocene Alluviums. The 3 districts
were selected for the study as there have been reported incidences of fluorosis and elevated
groundwater F occurrences in the area [15,17,19]. Another reasoning for the selection
of drilling sites in the area is the occurrences of F-bearing minerals in the subsurface
lithology [21,22], which may be susceptible to leaching F into the groundwater.

Bankura district comprises older to newer alluviums, with laterite blocks as nodules
in some places [48]. The pediment–peneplain complex with the relatively broad and flat
surface of bedrocks of denudational origin forms the landform of the region. Hills and
mounds of the Puruliya district are generally formed from granitic rocks, which show
planar banding of alternate layers of feldspar phenocrysts. The finer-grained assemblage of
quartz; feldspar is also found in the area [49]. P. Medinipur district faces a water scarcity
situation for irrigation and domestic water purposes [50]. Hard-rock upland, laterite-
covered fringe areas, and flat alluvial plains are the main geomorphological features of the
P. Medinipur district [51]. North-west and south-west parts of the district possess irregular
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terrain composed of laterite. However, the eastern part of the district is mostly gentle in
gradient. The main source of recharge in the area is the percolation of rain and river water.

Sand and silts form the sub-surface of Pleistocene Alluvium terrain drilling sites;
intrusive granites and quartzites in CGC terrain and quartz, phyllites, granites pebbles,
and gravels, sand with silts, clay impregnated with caliche nodules, and Al, Fe hydroxides
below the Residual Soils. The aquifer in the Pleistocene Alluvium terrain is composed of
unconsolidated quaternary sand silt and clay with faulted structure and high permeability;
Paleoproterozoic to upper Pleistocene crystalline aquifer with fissures, faults, and foliation
and upper Pleistocene to Holocene sand silt and clay with very high permeability under-
neath the Residual Soils, and Pleistocene to recent semiconfined crystalline aquifer formed
of faults, bedding planes and foliation underneath the CGC (Figure 1).
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2.2. Groundwater Sampling and Analysis

Twenty-nine groundwater samples were collected around the borehole sites from
the three geological terrains encompassed by the study area from hand-pumped tube
wells following the procedures of Mukherjee and Fryar [52] in June 2022. The depth
of the wells varies between 12 to 80 m and represents shallow aquifers. Groundwater
samples were collected from the tube wells after purging them for several minutes until a
constant temperature and electrical conductivity was recorded and then filtered through a
0.45 µm membrane filter. Essential physicochemical parameters such as pH, EC (electrical
conductivity), TDS (Total dissolved solids), salinity, and temperature were measured using
a portable handheld meter (Thermo Scientific, Eutech PCSTestr 35, Waltham, MA, USA).
The major cation samples were preserved by adding 6N HNO3 to reduce the pH to ~2,
while the anion samples were added CHCl3. Samples collected for estimation of alkalinity
were collected without any headspace or preservatives.

The collected groundwater samples were analyzed on the subsequent days of sam-
pling at IIT Kharagpur. The cation samples were analyzed in an ion chromatograph
(Thermofisher, Dionex ICS-2100, Waltham, MA, USA), while the anion samples were ana-
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lyzed in an ion chromatograph (Metrohm, 883 Basic IC Plus, Herisau, Switzerland). Total
alkalinity (as CaCO3), HCO3

− and CO3
2− were calculated by titration with 0.1 N H2SO4

by the inflection point method using the US Geological Survey alkalinity calculator.
Saturation index (SI) indicates, thermodynamically, whether water will tend to dissolve

or precipitate a particular mineral and is expressed as the ratio between the chemical
activities of the dissolved ions of the mineral (Ion Activity Product, IAP) and their solubility
product (Ksp).

SI = log
(

IAP
Ksp

)
(1)

If SI = 0, it indicates that the mineral and the solution are at equilibrium; SI < 0 reflects
that the solution is under-saturated with respect to the mineral; SI > 0 indicates that the
solution is supersaturated with respect to the mineral, which would lead to the precipitation
of the mineral [53].

Saturation indices (SI) with PHREEQC [54] (USGS, Version 3.4.0.12927, USA) using
the WATEQ4F database were calculated to understand the thermodynamics of the stable
mineral phases with the groundwater. This calculation distributes the total concentration of
elements in a solution using an aqueous model to find the activities of the aqueous species.
In the absence of data of redox couples and electron activity (pe), a default pe = 4.0 was
used to calculate the SI of the solution.

2.3. Groundwater F Prediction Model

Groundwater F data (n = 205) from the Central Groundwater Board (CGWB) [55] was
used to develop the groundwater F prediction model and the population map exposed to
elevated groundwater F in the study area. CGWB collects groundwater samples during the
pre-monsoon season every year from their hydrograph monitoring stations and analyzes
them for groundwater quality. For analyzing F, ion-selective electrodes were utilized.

For the prediction of groundwater F in the study area, 15 predictor variables were
used, i.e., area irrigated with groundwater, precipitation, temperature, aridity, potential
evapotranspiration (PET), topographic slope, topographic wetness index, depth to the
water table, fluvisols, subsoil pH, and cation exchange capacity, topsoil pH, and cation
exchange capacity, geotectonic, and hydraulic conductivity. The supporting information
Text S1 includes the details for the selection of these variables as predictors and details on
the type and spatial resolution of the variables are provided in Table S1. Here, we apply
random forest, a machine learning algorithm, to predict groundwater F occurrence using
15 predictor variables and groundwater F data from the study area.

Random Forest (RF) is a supervised learning approach that grows multiple decision
trees to form a ‘forest’ and provide outputs. Individual trees in the RF model are supplied
with a random subset of the data, hence called ‘random’ [56]. A randomly chosen portion
of the training data is used to supply each decision tree employing the bagging method,
and a subset of randomly selected predictor variables are provided at each split-node
(split selection) to add randomization [57]. The introduction of randomness leads to the
distinct formation of each tree in the model. Thus, all the information embedded in the
data can be incorporated into the model, subsequently developing a robust model and
therefore, RF is tolerant to issues like the presence of predictor variables multicollinearity,
noise, outliers, and overfitting [58,59]. We have tested the continuous variables for the
existence of any collinearity (Figure S1) based on Pearson correlation among them. If any
two variables showed correlation > 0.80 (both positive and negative), the variables can
be considered collinear. In this case, only topsoil and subsoil cation exchange capacity
showed a correlation >0.80 [28]. However, as RF models are tolerant to multicollinearity, we
retained these two variables in the model. RF is well-known for showing highly accurate
results for classification and regression problems [60–62]. For classification predictions,
each decision tree produces binary classes as an output based on probabilities and a cutoff
value. The highest-voted class from the ensemble of all the trees in the forest serves as the
final output of the model [56].
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Each tree (Ti) in the RF model is fed with the random data subset consisting of p
predictor variables out of total P predictors. Predictors with the best split and the split
points are then fixed. The trees are then formed by splitting the data into fixed splitting
points. Repeating this with new bagged data, the ensemble of the desired number of trees
(N) is formed [60], and the most voted tree class is considered the final model output.

R(P) =
1
N

N

∑
n=1

Ti(p) (2)

where R is the target variable in binary form. In this study prior to the development of the
RF model, the groundwater F concentrations exceeding 1.0 mg/L were binary-classified
into 1 and those ≤1.0 mg/L, were classified as 0. The entire dataset used to develop the
RF model (n = 205) comprised mostly ≤1.0 mg/L F concentrations (87.4%) and very less
(12.6%) concentrations exceeded 1.0 mg/L, indicating an imbalance in the dataset. Thus,
we have applied the downsampling with the replacement method embedded in the RF
model to supply trees with an equal number of 0 (i.e., ≤1.0 mg/L F) and 1 (>1.0 mg/L F)
data [27]. This downsampling with the replacement method enabled the model to handle
an imbalance in the data without any information loss. The entire dataset was split in an
80:20 ratio to train and test datasets. To tune the RF model for the most accurate outputs,
the number of trees and the number of randomly selected predictors at each split node
can be altered. The performance of the RF model was assessed using the parameters like
accuracy, sensitivity, specificity, and area under the curve (AUC) value from the receiver
operating characteristic (ROC) curve. The cutoff value for the classification was fixed using
the intersect (or trade-off) of the sensitivity and specificity [27,63]. The out-of-bag (OOB)
error rate is also an internal performance analysis parameter, and this was calculated over
one-third of the training dataset that was held out during the formation of each tree in the
model [64]. The OOB error rate helps to understand the balance between train and test
set splits [16]. An important property of the RF model is the determination of the relative
importance of the predictor variables, which was determined as the mean decrease in the
accuracy of the model. In case, the mean decrease in the accuracy value of the model is
very high due to the removal of an individual variable, the variable is considered to have
higher relative importance. The RF modeling was executed in the R software using the
‘randomForest’ package [65].

2.4. Sediment Sampling and Analysis

To understand the influences of unsaturated zone F inventory on the groundwater
F concentrations, three types of land use patterns were identified, i.e., agricultural land,
grasslands land, and forest land from three different geological terrains, viz., CGC, Residual
Soils, and Pleistocene Alluviums, where dry drilling at 25 locations was done up to a depth
of ~10 m. Dry sediment samples were recovered with a hand auger with inter-changeable
nickel-coated iron rods in July 2016. The diameter of the auger was 20 cm. This auger was
rotated manually to an average depth of 3 m and pulled out on the surface with the help
of a 15 m tripod set. The very hard nature of the subsurface in some locations restricted
us from using a hollow iron stem catcher inserted in the subsurface with a 15 kg hammer
from the tripod setup.

Bulk sediment of ~200 g sample size was collected at ~0.15 m depth intervals for the
initial top 1.5 m and each 0.3 m depth intervals beyond 1.5 m. Samples were then placed in
air-tight plastic cups, sealed using para-films or plastic tapes, and then further sealed in
air-tight polyethylene bags to minimize drying of the samples.

A total of 324 unsaturated zone sediment samples were collected, which were analyzed
for their water-soluble concentrations of anions (Cl−, F−, SO4

2−, NO3
−, and PO4

3−). 25 g
of sediment was taken in centrifuge tubes where 40 mL of ultrapure water was added. The
mixture was shaken and then centrifuged at 7000 rpm for 4 h, and 45 min, respectively, to
separate water from sediment. The supernatant was filtered (using a 0.22 µm pore-sized
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membrane filter) before analysis by an ion chromatograph (Metrohm, 883 Basic IC, Herisau,
Switzerland). To determine the gravimetric water content the residual sediments in the
centrifuge tubes were then oven-dried at 105 ◦C for 48 h. For the water-extractable ion
concentration to be expressed on a mass basis as milligrams of ion per kilogram of dry
sediment the supernatant concentration was multiplied by extraction ratio (g water/g
sediment) and divided by water density. The mass concentrations (mg/kg) were divided
by the gravimetric water content and then multiplied by the density of water (997 kg/m3)
to get the ion concentrations in milligrams of ion per liter (mg/L). To account for the water
loss during sample collection and processing, which may overestimate ionic concentrations
when expressed as mg/L, ionic concentrations on a mass basis (mg ion/kg dry sediment)
are considered more reliable. For determination of elemental composition and mineral
phase identification by energy dispersive X-ray fluorescence (XRF) method (Malvern Pana-
lytical, Epsilon 3, Malvern, UK) and X-ray diffraction (XRD) method (Malvern Panalytical,
‘X’Pert Powder, Malvern, UK), respectively, the sediment samples (10 g) were oven-dried at
60 ◦C for 8 h, hand-grounded in a mortar and pestle and subsequently sieved through an
ASTM 200 mesh (75 µm). The mineral phases were quantified by Cu Ka radiation and a
positive-sensitive detector of X-ray diffraction with 20 mA current and 30 kV accelerating
voltage. The generated XRD peaks were processed in the ‘X’Pert HighScore software
(Malvern Panalytical, Malvern, UK) to search-match with the ICSD reference database for
the identification of mineral phases.

3. Results
3.1. Groundwater Chemistry and F Distribution

The maximum (mean) concentration of groundwater F in the vicinity (within 5 km) of
the drilling sites in the Residual Soils, CGC, and Pleistocene Alluvium terrains are 0.4(0.2),
0.6(0.4), and 0.6(0.3) mg/L, respectively. The spatial distribution of groundwater F in the
study area is shown in Figure 2, and the statistical summary of measured groundwater
chemistry is shown in Table 1. Groundwater has a neutral pH in Pleistocene Alluvium
terrain (mean pH 6.9), Residual Soils terrain (mean pH 6.5), and CGC terrain (mean pH 6.7).
Groundwater F in the study area, however, does not exceed the WHO permissible limit
(1.5 mg/L). The mean groundwater F in the three borehole locations is also lower than the
optimal range (0.7 mg/L) [66] Groundwater of the study area is fresh (TDS < 1000 mg/L)
and has naturally evolved without significant hydrogeochemical processes (Ca-Na-HCO3
hydrogeochemical facies). It has a moderate hardness in Pleistocene Alluvium and Residual
Soils, while in CGC it is hard, although it is temporary (carbonate hardness). The average
concentrations of the major cations are in the order of Ca > Na > Mg > K, and the major
anions are in the order of HCO3 > Cl > SO4 > NO3 > F > CO3.

3.2. Model Prediction of the F Distribution

The RF model developed here incorporated 1200 trees and the number of random
predictor variables provided at each split-node was four (the closest integer number to
the square root of the number of predictor variables). The RF model achieved an accuracy
of 90% and AUC of 0.95 with a cut-off value of 0.55 for the test dataset fixed from the
intersection of the sensitivity and specificity (Table S2 and Figure S2). Furthermore, the
model showed accuracy and AUC values of 93% and 0.99 using a cutoff of 0.58 for the
entire dataset, respectively (Table S2 and Figure S3). The accuracy of the training dataset
was 91% (Table S1). The model showed an OOB error rate of 35.15%, which indicate a
good split between the train and test set. The model also achieved balanced sensitivity
and specificity values for all the datasets, which suggested that the model successfully
handled the imbalance in the data (Table S2). These results depict the significant prediction
ability of the model. Therefore, the RF model was used to produce the probabilistic
occurrence of groundwater F above 1.0 mg/L for the three districts in the western part
of WB, i.e., Bankura, Puruliya, and P. Medinipur, which roughly conform to the three
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geological terrains, viz., Pleistocene Alluvium, CGC, and Residual Soils, respectively, at
1 km resolution—the same resolution of the majority of the predictor variables.

Table 1. Statistical summary of the groundwater chemistry from 29 collected samples.

Variables *

Pleistocene
Alluvium (n = 12)

Residual Soils
(n = 10) CGC (n = 7)

Mean (±SD) Mean (±SD) Mean (±SD)

EC (µs/cm) 25 ◦C 445 134 358 122 948 400
Total Alkalinity as CaCO3 191 61 173 68 218 69
Total Hardness as CaCO3 104.9 46 139.6 73.8 246.8 89.1

Salinity 219 66 175 59 476 214
pH 6.9 0.3 6.5 0.2 6.7 0.4
Ca 29.7 14.0 44.7 28.4 80.2 30.0
Mg 8.2 4.4 7.8 4.3 13.2 4.5
Na 13.4 4.8 16.2 10.8 76.7 73.4
K 0.9 0.9 1.2 1.3 1.5 0.9

CO3 0.1 0.1 0.1 0.1 0.1 0.1
HCO3 232.7 75.1 211.8 82.8 266.4 84.7

Cl 28.3 36.3 14.7 9.8 127.0 71.7
SO4 3.8 6.1 4.9 5.5 53.7 30.5
NO3 5.1 12.0 7.7 7.6 44.6 40.1

F 0.3 0.2 0.2 0.1 0.4 0.2
Note: * Unspecified units are in mg/L(ppm).
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The random forest model predicted the probability of occurrence of F (>1.0 mg/L) for
the study area and generated the F probability map (Figure 3a). The model predicts discrete
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pockets of the high probability (>0.55) of groundwater F (>1.0 mg/L) in the entire study
area with higher occurrences in Bankura. The predicted occurrence from the random forest
model is consistent with the measured F levels in the groundwater. The field surveyed
groundwater F measurements (n = 29) were used to validate the RF model. The validation
yielded a high accuracy of 96% with a sensitivity of 0.96 (Table S2). The sensitivity indicates
that the model has good accuracy in classifying elevated (>1.0 mg/L) groundwater F.
Figure 3b shows the population exposed to elevated groundwater F, generated using the
predicted probabilities of the random forest model. The population exposure map indicates
that in Bankura, 0.2 million (4% of the total population), 0.1 million (1.7%) in P. Medinipur,
and 0.1 million (2.6%) in Puruliya may be exposed to elevated groundwater F. The model
mostly makes correct predictions for Puruliya and P. Medinipur, except for a few over and
under predictions in Bankura (Figure 4a). RF model predicts 281 km2 area (4% of the land
area) in Bankura to have a high (>0.55) probability of elevated (>1.0 mg/L) groundwater F,
while in Puruliya and P. Medinipur it is 167 km2 (2.6 %) and 175 km2 (1.8%), respectively.

Among the 15 variables used for modeling, “area irrigated with groundwater”, “arid-
ity”, and “potential evapotranspiration (PET)” have the highest mean decrease in accuracy,
while “temperature”, “depth to the water table (WT)”, and “topsoil cation exchange capac-
ity (CEC)” are among with least mean decrease in accuracy (Figure 4b). Other variables
with a moderate mean decrease in accuracy are “fluvisols”, “geotectonic”, “subsoil pH”
and “topsoil pH” (Figure 4b).
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3.3. Model Limitations

The model only represents the 2D spatial distribution of F in groundwater on a regional
scale and holds with the measured F concentrations in groundwater. The predictions of
elevated groundwater F developed here do not represent depth-wise or well-to-well F
concentrations. However, the occurrence of F is also depth-sensitive; therefore, including
other depth-regulated variables is likely to provide more accurate predictions. The 1 km
resolution used here to develop the predictions was selected due to better model outputs.
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The majority of the predictors have a resolution of 1 km and may have caused such
results. Furthermore, the estimation of the population exposed to elevated groundwater
F does not account for factors such as the use of alternative sources, consumption rates,
duration of exposure, treatment of water, or F awareness, which are significant for a more
accurate F exposure assessment. The incorporation of such factors can provide further
precise estimations.
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3.4. Unsaturated Zone F profile

The unsaturated zone F concentration we present here is derived from the weathered
(~10 m) zones above the subsurface regolith. The drilled sites’ sediment F profiles with
depth are shown in Figure 5a–p. CGC has the highest unsaturated zone F concentration
(mean 2.2 mg/kg), followed by Residual Soils (mean 1.6 mg/kg) and Pleistocene Alluvi-
ums (mean 0.7 mg/kg). Forest-covered land in Pleistocene Alluviums has significantly
higher normalized unsaturated zone F inventory (120 kg/ha/m) compared to agricultural
(56 kg/ha/m) and grasslands (58 kg/ha/m) land. Unsaturated zone F profile in CGC
(Figure 5g) does not show any significant trend, showing peak bulges at 1 and 6 m depth.
The profiles from Pleistocene Alluviums (Figure 5a–f) show higher F concentrations within
1, and 6 m depth, whereas profiles from Residual Soils (Figure 5h–p) show a significant
peak at ~1 m depth, below which it decreases gently with depth.
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Figure 5. Unsaturated zone F depth profiles of the drilled sites; Blue circles and lines represent
mg/kg values, whereas grey squares and black lines represent mg/L values. PA—Pleistocene
Alluvium, CGC—Chotanagpur Gneissic Complex, RS—Residual Soils; letters in parenthesis indicate:
G—Grasslands, A—Agricultural, and F—Forest land.

4. Discussion
4.1. Hydrogeochemical Controls of F Mobilization

Groundwater F concentration is highest (maximum 0.6 mg/L) in Puruliya as per
the groundwater samples collected, underlain by the CGC, followed by groundwater
in Bankura (maximum 0.6), underlain by Pleistocene Alluviums, and groundwater in P.
Medinipur (maximum 0.4), underlain by Residual Soils [67]. The occurrence of F in the
groundwater of the study area has been attributed to the dissolution of F-bearing minerals
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found in the underlying rocks of the region [21,22]. The evolution of groundwater chemistry
can be explained by tracing the origin of solutes, their dominance, and hydrogeochemical
processes. Molar ratio bivariate plots such as Na-normalized Ca, Mg, and HCO3 can be
used to ascertain whether solutes have been derived from the weathering of silicate rocks
or the dissolution of carbonates and/or evaporites [68–70]. Here, silicate weathering, along
with carbonate and evaporite dissolution, is found to control the evolution of the hydro-
chemistry of the study area, as evident from the bivariate plots (Figure 6a,b). (Na + K)/Cl
milliequivalent ratio represents cation sources; a positive value indicates silicate weathering
source, while a negative value indicates evaporite dissolution [71,72]. Figure 7a shows that
most of the groundwater falls along the 1:1 line suggesting both silicate weathering and
evaporite dissolution. In the (SO4 + HCO3) vs. (Ca + Mg) plot (Figure 7b), groundwater
falls along the 1:1 line and some above it, which indicates the sources of Ca, and Mg to be
dominantly silicate weathering [71,73]. The HCO3 vs. (Cl + SO4) plot (Figure 7c) shows
that groundwater from Residual Soils terrain and Pleistocene Alluvium have dominance of
carbonate dissolution over evaporite dissolution as the samples plot above the 1:1 line. In
contrast, samples from CGC plots along the 1:1 line suggest both evaporite and carbonate
dissolution [71]

(Na+, K+, Ca2+, Mg2+) silicates + H2CO3 → H4SiO4 + HCO3
− + Na+ + K+ + Ca2+ + Mg2+ + Clay (3)
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Na and K ions may be removed from the solution by reverse cation exchange process,
while Ca may be removed from the solution by cation exchange process (Equation (4))
with clay minerals as indicated by Chloroalkaline Index (CAI) vs. TDS graph (Figure 8).
The CAI is calculated using the formula: CAI = [Cl− − (Na+ + K+)]/Cl−. A positive CAI
indicates a reverse cation exchange process (Equation (4) would proceed toward the left),
while a negative CAI indicates a forward cation exchange process (Equation (4) would
proceed towards the right) [71]. A bivariate plot of (Ca2+ + Mg2+ − HCO3

− − SO4
2−) vs.

(Na+− Cl−) (Figure 9) can also be utilized to understand ion exchange processes [71,74].
An excess of Na over Cl, deficiency of Ca + Mg over HCO3 + SO4, and a −1 slope indicate
the cation exchange process and vice versa [71,73,75]. However, the plot (Figure 9) shows
variable Ca, Mg, and Na ionic concentrations; moreover, groundwater of the study area has
dominant Ca-Na-HCO3 hydrogeochemical facies suggesting that both cation and reverse
cation exchange processes contribute to the hydrochemistry.

2Na+ + Caclay ↔ Ca2+ + 2Naclay (4)
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CO3
2− and HCO3

− ions and the pH of groundwater control the dissolution of fluorite
and F-rich minerals, as shown by Equations (5) and (6). Higher concentrations of CO3

2−

and HCO3
− ions favor the mobilization of F and precipitation of CaCO3.

CaF2 + CO3
2− → CaCO3 + 2F− (5)

CaF2 + HCO3
− → CaCO3 + 2F− + CO2 + H2O (6)

Fluorite (CaF2) and calcite (CaCO3) are under-saturated to an equilibrium state in the
groundwater system of all three geological terrains. The equilibrium condition of calcite
and fluorite in the solution can be expressed by Equation (7), and the coupled solubility of
calcite and fluorite is given by Equation (8). These equations suggest that the increase in
the HCO3

− coupled with the precipitation of CaCO3 would result in the increase of F− in
the solution.

CaCO3 + H+ + 2F− → CaF2 + HCO3- (7)

Kcalcite-fluorite(Eq) = [HCO3
−]/{[H+][F−]2} (8)

Equation (7) represents an essential process that releases F− into groundwater, evident
from the hydrochemistry. In all three geological terrains, where groundwater is mainly of
HCO3 dominance, it suggests that Equation (7) would proceed towards the left. The pres-
ence of caliche nodules in the subsurface and under-saturation of calcite further indicates
the development of this process. Saturation indices show whether a particular mineral
phase would precipitate (oversaturated) from a solution or dissolve (undersaturated) from
a stable phase into the solution [53]. Figure 10, which shows the SIfluorite vs. F concentration
in groundwater, suggests that fluorite is undersaturated, and thermodynamically, it is
possible that with an increase in residence time, groundwater F concentration may increase
in CGC, and Residual Soils terrains owing to their elevated unsaturated zone F inventory
until fluorite equilibrium is reached. The groundwater is also found to be undersaturated
with halite (NaCl), anhydrite (CaSO4), and gypsum (CaSO4.2H2O), and the dissolution of
these minerals could be the possible reason for high Cl and SO4 in the groundwater.
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4.2. Significance of Predictor Variables

The RF model shows that the anthropogenic predictor variable “area irrigated with
groundwater” has the highest importance in groundwater F prediction in the study area.
Groundwater aquifers may be susceptible to vertical leaching by irrigation return flows
and their interaction with the pore water, which may be an important driver of F migra-
tion [76]. Lowering the water table due to the extensive abstraction of groundwater for
irrigation may also exacerbate F mobilization [76]. Subsequently, climate variables “PET”
and “Aridity” have a relatively higher importance in predicting elevated groundwater F.
Drier climate with increased evapotranspiration, corroborated by decreased precipitation
and high temperature has been linked with groundwater F enrichment [3,23]. For the
study area, the predicted probability of elevated (>1.0 mg/L) groundwater F is found to
be more in the areas with lower precipitation and comparatively higher temperature and
PET (Figure S4), like the Bankura district. Similar studies [16,77,78] also show a higher
probability of elevated groundwater F occurrences in arid to semi-arid climates. Further,
soil variables such as “fluvisols”, “subsoil pH”, and “topsoil pH” also have high impor-
tance. It is observed that areas with a lower % of fluvisols and soil pH (topsoil and subsoil)
between 6.0–6.5 correspond with higher probabilities of elevated F predictions (Figure S4).
The presence of fine-grained soils with higher clay and oxyhydroxide content, such as in
fluvisols, may retain higher F than sandy soils [79]. Additionally, pH between 6.0–6.5 is
suitable for F mobility in fine-grained soils [80,81]. “CEC” (topsoil) has the least importance
among the predictor variables. Finally, the “geotectonics” of the region has been found to
have strong control over the groundwater F prediction. CGC a part of the Craton shield
(Figure S4) is abundant with F-bearing minerals [21,22], the weathering and dissolution of
which may lead to groundwater F enrichment [23,82]. CGC, mainly composed of granitic-
gneissic rocks, has also the highest normalized unsaturated zone F inventory (Table 2).
Addison et al. [83] show >60% statistical likelihood of elevated groundwater F occurrence
in rocks of alkaline igneous composition. Similarly, Ling et al. [77] also indicate lithology as
an important predictor for groundwater F.
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Table 2. Comparison of unsaturated zone F and groundwater F concentration in the three drilling
sites; letters in the parenthesis under Site ID denote G—Grasslands, A—Agricultural lands, and
F—Forests; Ø denotes mean.

Area Site ID
D

ep
th

(m
)

M
ea

n
Se

di
m

en
tF

(m
g/

kg
)

W
C

1
(g

/g
)

M
ea

n
Se

di
m

en
tF

(m
g/

L)

N
or

m
al

iz
ed

F
In

ve
nt

or
y

(k
g/

ha
/m

)

(Data from
Malakar et al. [84])

Recharge Rate (mm/year)

Mean Groundwater F
(mg/L)

CMB 2 WTF 3 CGWB
(Max)

This
Study
(Max)

PL
EI

ST
O

C
EN

E
A

LL
U

V
IU

M

PA1(G) 7.9 1.1 0.01 137 148
PA2(F) 6.1 2.1 0.03 179 212
PA3(A) 7.9 1.1 0.03 38 149

PA1-1(G) 6.7 0.1 0.05 1.2 6
PA1-2(A) 7.3 0.0 0.06 0.4 3
PA1-3(F) 6.1 1.7 168
PA2-1(G) 7.3 0.3 35
PA2-2(F) 6.1 0.4 35
PA2-3(A) 7.3 0.2 28
PA3-1(F) 7.3 0.6 68
PA3-2(A) 7.3 0.4 42
PA3-3(G) 7.3 0.3 41

Agricultural Ø 7.5 0.4 0.05 19 56 132
Forest Ø 6.4 1.2 0.03 179 121 20

Grasslands Ø 7.3 0.5 0.03 69 58 74
Mean 7.1 0.7 0.04 71 78 44 49 0.6(4.3) 0.3(0.6)

CGC CGC1 7.3 2.2 261 22 30 0.3(0.5) 0.4(0.6)

R
ES

ID
U

A
L

SO
IL

S

RS1(A) 6.1 0.4 0.02 24 43
RS2(G) 7.3 0.6 0.01 64 73
RS3(F) 7.9 0.3 0.02 19 38

RS1-1(A) 7.9 2.0 0.01 189 267
RS1-2(G) 8.5 0.6 0.01 68 80
RS1-3(F) 9.1 1.0 0.01 169 144
RS2-1(G) 9.1 1.5 0.01 294 225
RS2-2(F) 8.5 2.3 0.01 523 325
RS2-3(A) 8.5 2.0 0.01 417 277
RS3-1(G) 7.3 4.4 0.02 198 535
RS3-2(A) 7.9 2.2 0.03 85 286
RS3-3(F) 7.3 2.5 0.02 128 300

Agricultural Ø 7.6 1.7 0.02 179 218 132
Forest Ø 8.2 1.5 0.01 210 202 20

Grasslands Ø 8.1 1.8 0.01 156 228 74
Mean 8.0 1.7 0.01 182 216 47 53 0.2(1.6) 0.2(0.4)

Notes: 1 WC = gravimetric water content; 2 CMB = chloride mass balance method; 3 WTF = water table fluctua-
tion method.

An analysis of the importance of predictor variables shows that the highest probability
of elevated groundwater F can be expected in areas with geological formations abun-
dant with F-bearing rocks in arid to semi-arid regions. However, increased groundwater
abstraction for irrigation may aggravate groundwater F enrichment.

4.3. Fate of F and Impact of Unsaturated Zone Matrix

A comparison of F concentrations in the unsaturated zone and groundwater reveals
that although Pleistocene Alluviums have the lowest sediment F inventories among the
three geological terrains, it has relatively higher groundwater F concentrations. In contrast,
Residual Soils, which have a higher sediment F inventory compared to Pleistocene Allu-
viums, have low groundwater F (Table 2). XRD analysis suggests the presence of micas,
feldspars, pyroxenes, F-rich minerals (fluorite, sellaite, elpasolite, Laurelite), and minor
clay and olivine in the sediments of Pleistocene Alluviums; quartz, feldspars, and F-rich
minerals in CGC sites; and quartz, pyroxenes, F-rich minerals, calcite, apatite, garnets, clay
minerals, and Fe, Al hydroxides in the sediments of Residual Soils terrain. The XRD and
XRF analysis results are shown in Figure 11 and Table S3, respectively.
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The lithology of the area plays a dominant role in the F distribution in the sediments.
Sub-surface in Puruliya formed from the weathering of intrusive granites, granite gneiss,
migmatites, and mica schists, which generally have a higher concentration of F in them.
The major minerals found in the unsaturated zone of the study area are quartz, muscovite,
feldspars, pyroxenes, calcite, clay, and F-rich minerals, as evident from XRD and XRF
analysis. The subsurface beneath Residual Soils terrain is underlain by granites, phyllites,
sand, silt, and clay impregnated with caliche nodules. In contrast, the subsurface of Bankura
drilling sites is mainly composed of sand and silts of Older Alluvium. Calcrete is expected
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in the weathered zones of granitic/gneissic rocks. The mobility of unsaturated zone F is
strongly dependent on the sorption capacity of the sediments, which changes with pH,
sorbent types, and soil salinity [85]. Caliche nodules precipitated from calcite-rich rocks
can have F concentrations ranging from 510 to 9000 ppm [23]. The formation of CaF2
and Ca5F(PO4)3 is the primary process of F retention in calcareous soils [81,86]. F can
be removed from the solution during calcite precipitation, where F gets adsorbed on the
surface of calcite [87], along with the precipitation of fluorite at step edges and kinks [88].
Clay minerals offer surface sites for F adsorption, having adsorption capacities ranging
from 69.4–93.5 mg/kg [89]. Montmorillonite at pH~6 attracts negatively charged F ions
by its positively charged surface [90]. Diop et al. [91] have demonstrated that synthetic
clay minerals can be used for F removal under near-neutral to acidic conditions. Freshly
precipitated Fe and Al hydroxides can adsorb much more F than clays and Fe, Al oxides [81].
Laboratory leaching experiments indicate that soil column containing primarily sand, in the
absence of clays, can flush out up to 50% of F in it [92]. The observed conditions (Table 2)
suggest that the unsaturated zone beneath Residual Soils, rich in clays, calcite precipitates,
and Al, Fe hydroxides, retain significant dissolved F from solution, while the subsurface
beneath Pleistocene Alluviums, mostly sand and silts, cannot prevent F from leaching out,
thus facilitating high F groundwater.

4.4. Land-Use Patterns and F Distribution

Land-use patterns can significantly affect the infiltration of recharging rainwater and
thus may control the leaching of soluble ions in the subsurface. The recharge rate was
highest in agricultural land (132 mm/year), followed by grasslands (74 mm/year) and
forest land (20 mm/year) in the study area (Table 2) [92]. Higher recharge rates, such
as in agricultural and grassland land, can facilitate the leaching of soluble ions in the
subsurface. In comparison, lower recharge rates under the forest covers could prevent
ions such as F from leaching into the groundwater. This is quite evident in Pleistocene
Alluviums, where agricultural and grasslands have been significantly flushed out of F
compared to forest lands. The normalized unsaturated zone F inventory in the forest land
of Pleistocene Alluviums is 121 kg/ha/m, while that of agricultural and grasslands lands
is 56 and 58 kg/ha/m, respectively (Table 2). Sand and silty soil beneath the sub-surface
may facilitate the mobilization of F with increased infiltration (Table 2). The absence of clay
fractions and calcretes in the sub-surface of Pleistocene Alluviums allows the leaching of F
by the infiltrating water. However, Scanlon et al. [41] have demonstrated that increased
recharge through land-use changes has little effect on F mobilization in the subsurface
of semi-arid regions. In contrast, the same regions show increased mobility of Cl with
increasing recharge. F has also been found to be less sensitive to variation in infiltration rate
in irrigated lands [93]. Beneath Residual Soils, the different land-use patterns do not show
any marked variation in their normalized unsaturated zone F inventories (agricultural
land = 218 kg/ha/m, forest land = 202 kg/ha/m, and grasslands = 228 kg/ha/m), although
they show variations in their recharge rates (Table 2). Lesser leaching beneath Residual
Soils could be attributed to the presence of clay minerals, Fe, Al hydroxides, and secondary
precipitates of calcites. The low F content in the unsaturated zone at <1 m depth within the
soil root zone in all the sites could be ascribed to the water and nutrient uptake process by
the roots of plants where they absorb F from the soil, and also subsequently, under certain
conditions, get desorbed by water and inert salt solutions [94]. Our model predictions
suggest land-use patterns to have less significance in the prediction of F distribution in the
study area.

4.5. Implications for Groundwater F Pollution

Evidence suggests that a moderate level of F intake can prevent dental caries and also
promote the development of strong bones, under certain conditions [3,95,96]. An estimated
about 0.4 million people in the study area within Bankura, Puruliya, and P. Medinipur in
West Bengal could be exposed to groundwater F (>1.0 mg/L), where F intake is primarily
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through drinking water. Such exposures can lead to the development of dental as well as
skeletal fluorosis, especially in children, particularly Bankura district with elevated ground-
water F. Elevated groundwater F regions, where heavy abstraction of groundwater is used
for irrigation, could also be at additional risk from bioaccumulation of F in the agricul-
tural produce. High abstraction of groundwater may lead to pumping-induced increased
groundwater recharge [33]. With enhanced recharge, water-soluble ions and contaminants
from the land surface and unsaturated zone gets mobilized into the groundwater [45,97]
Defluoridation measures using activated alumina [98], and lime [99] which can effectively
remove F from drinking water supplies, can be used in elevated groundwater F areas;
whereas, in regions with low groundwater F, fluoridation of water supply can ensure an
optimal (0.7 mg/L) F level [66] in the drinking water. Activated alumina, alum, lime, and
clays can remove F from drinking water with up to 90 % efficiency based on adsorption
and precipitation processes, which is also quite evident in the subsurface of the study area.
AI-based algorithms such as random forest, used in this study, can predict the occurrence
of the groundwater F distribution with reasonable accuracy and also can be used to predict
the occurrence of other groundwater pollutants. Models derived from studies like this can
help identify areas exposed to groundwater pollutants and help drillers and authorities
explore safe drinking water resources.

5. Conclusions

Unsaturated zone F is relatively immobile in the presence of clay-rich fractions, calcite,
Fe, and Al hydroxides as they bind F to their structure very strongly and need suitable
pH and thermodynamics in order to become flushed to deeper levels. In the absence of
these F sinks within the unsaturated zone, an increase in recharge rates through a change
in land-use patterns can significantly mobilize F, such as in the agricultural and grasslands
of Pleistocene Alluviums. CGC has the highest unsaturated zone F content, followed by
Residual Soils, and Pleistocene Alluviums. However, elevated unsaturated zone F does
not necessarily conform to elevated groundwater F as in the case of Residual Soils terrain
and Pleistocene Alluviums. The sub-surface retention capacity, the formation of secondary
calcite precipitates, and the presence of clay minerals, Fe, and Al hydroxides significantly
influence F mobility. We suspect groundwater interaction with the unsaturated zone during
water table fluctuations to have significant control on unsaturated zone F mobilization.
Rock weathering followed by a reverse ion exchange process along with the dissolution of
fluorite and F-rich minerals are the primary processes for forming elevated groundwater
F in the study area. Occurrences of groundwater pollutants such as F can be predicted
with reasonably high accuracy using AI-based algorithms such as the random forest model,
where prediction models can identify safe drinking water resources. Further, the processes
resulting in the retention of F in the unsaturated zone of the study area are corroborated by
the use of materials such as alum, lime, and clays in F removal techniques from drinking
water supplies.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/w14203220/s1, Text S1. Details of Predictors used for groundwater
fluoride model. Table S1. List of variables selected for possible influence on groundwater Fluoride,
their sources and relation with Fluoride based on previous literature. Table S2. Details of the Random
forest model performance. Table S3: Details of groundwater F measurements (n = 205) from CGWB
database and RF predicted area with elevated (>1.0 mg/L) groundwater F and estimated population
exposed to elevated groundwater F for the 3 studied districts of WB. Table S4. Elemental oxide
weight % of soil sediments derived from XRF analysis. Figure S1. Correlation among the continuous
predictor variables used in the Random forest model. Figure S2. (a) Sensitivity vs. specificity of the
Random forest model and selected cutoff for the test data, (b) Area under the curve (AUC) value
determined from the Receiver operating characteristic (ROC) curve of the Random forest model for
the test data. Figure S3. (a) Sensitivity vs. specificity of the Random forest model and selected cutoff
for the overall data, (b) Area under the curve (AUC) value determined from the Receiver operating
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characteristic (ROC) curve of the Random forest model for the entire data. Figure S4. Maps of the
predictor variables used in the Random forest model. [3,16,33,76,78,83,100–116].
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