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Abstract: The chemical characteristics of Ordovician formation water and its relationship with
hydrocarbons in the Halahatang depression (Tabei Uplift, Tarim Basin, NW China) were analyzed
on the basis of the detailed formation water test data. The formation water in the Halahatang
depression can be characterized as CaCl2 type with high total dissolved solids (TDS) generally.
The TDS concentration has a weak negative relationship with the depth, and is above 200 g/L in
the North Region (north of the pinch-out line), then gradually decreases to the south, but is still
greater than 50 g/L. The ion-proportionality coefficients of formation water, including the sodium-
chlorine coefficient, desulfurization coefficient and metamorphic coefficient, reflect that the present
strata are well sealed and had once experienced strong water-rock interactions. Furthermore, the
source and evolution of the formation water presents a closed relationship with the hydrocarbon
accumulation. The meteoric source of the formation water indicates the denuding by the Ordovician
formation and the damage from the previous oil and gas reservoirs. The reservoir quality was
also improved due to the strong karstification during the denudation, which was beneficial for
hydrocarbon accumulation. The distribution of the TDS concentration is controlled by the caprock
(Sangtamu Formation) and the high salinity fluids from overlying strata and adjacent regions. A
geological model was established, the high salinity fluids penetrated the Ordovician strata resulting
in the TDS increases in the northern part. Whereas, the South Region (south of the pinch-out line)
was less affected due to the shielding layer of the O3s. The favorable preservation conditions reflected
by the high TDS and ion-proportionality coefficients correspond to the stable subsidence of strata
since the Triassic era, the oil and gas reservoirs formed in the Himalayan can be preserved.

Keywords: Halahatang depression; formation water; salinity; petroleum entrapment; Tarim Basin

1. Introduction

As a result of the evaporation concentration, water-rock interactions and fluids flowing
and mixing, the chemical characteristics of formation water can indicate the hydrogeochem-
ical environment and the activities of the fluids of the basin [1,2]. In common practice, the
TDS, water types, ion-proportionality coefficients and stable isotopes of formation water
are used as indicators of the degree of water-rock interactions, the sealing condition of
strata and the migration, accumulation and preservation of oil and gas [3–6].

Carbonate reservoir generated from paleo-karstification has a close relation with the
hydrogeological process of the basin [7,8]. Meanwhile, the chemical and isotopic compo-
nents of formation water is influenced by the water-rock interactions and the charging of hy-
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drocarbons [9,10]. Thus, studying the chemical characteristics of formation water is of great
significance to reveal the carbonate reservoirs’ alteration and hydrocarbon accumulation.

Tarim Basin is the major marine sedimentary basin in China and the carbonate reser-
voir of Palaeozoic is the main petroleum production layer. In recent years, carbonate oil
and gas pools have been discovered successively in the Tabei Uplift of the basin, such
as Tahe Oilfield and Lunnan Oilfield. Studies have been completed, including the ele-
ment and isotopic compositions, the spatial distribution characteristics and the source
of formation water [11–17], the influence of formation water on the reservoir’s physical
properties and the relationship between the hydrochemical characteristics and hydrocarbon
accumulation [11,18–21].

However, these investigations in the Halahatang depression are scarce. This paper
analyzed the chemical characteristics and established the source and evolution model
of Ordovician formation water in the Halahatang depression. The paper discusses the
indicative significance of the hydrochemical characteristics to oil and gas accumulation.
These results can provide references for the further study of oil and gas exploration and
development in the study area.

2. Geological Setting

The Tarim Basin, in NW China (Figure 1a), is a large superimposed composite basin
composed of the Paleozoic marine craton sedimentary and the Mesozoic-Cenozoic con-
tinental sedimentary. The basin has undergone a complex structural evolution process,
formed the present tectonic framework, include the Kuqa Depression, Tabei Uplift, North-
ern Depression, Central Uplift, Southwest Depression, Southeast Uplift and Southeast
Depression (Figure 1b) [22–24]. The Tabei Uplift, located in the north of Tarim Basin (Fig-
ure 1b, yellow area), is a long-term inherited paleo-uplift developed on the pre-Sinian
metamorphic basement. The evolution of the Tabei Uplift can be summarized as the base-
ment formation stage in pre-Sinian, the paleo-uplift formation stage between Sinian and
Devonian, faults and fault-blocks mainly formed from Carboniferous to Triassic, followed
by continuous subsidence ranging from the Jurassic to Paleogene periods and thereafter
the rapid subsidence stage from the Neogene to Quaternary periods [25,26].

Halahatang depression is located in the central part of the Tabei Uplift, surrounded
by the Yingmaili low uplift, the Manjiaer depression, the Lunnan low uplift and the
Luntai uplift (Figure 1c). The whole exploration area is about 4369 km2 [27]. As the
target area for oil and gas migration, a large volume of petroleum has been found in
the Halahatang depression.

Detailed geological characteristics of the Halahatang depression had been summarized
in numerous publications [25,28,29]. In brief, the lower Paleozoic in the study area consists
of the Silurian, Ordovician and Cambrian strata. The Silurian mainly consists of sandstone
and mudstone. The Sangtamu formation (O3s) of the Upper Ordovician is primarily
composed of mudstone, lime mudstone and muddy limestone, which can be regarded as
caprock for the carbonate reservoirs. Bioclastic limestone and arenaceous limestone are the
main compositions of the Middle Ordovician Yijianfang formation (O2yj). The Yingshan
formation (O1−2y) mainly contains micritic limestone, arenaceous limestone, and partly
dolomite. Both the Yijianfang and Yingshan formations are the major karst reservoirs. The
petroleum produced in these layers includes condensate oils, light oils, normal oils, heavy
oils and ultra-heavy oils.
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Figure 1. Structure schematic map of the study area; (a) the location of Tarim Basin in NW China;
(b) tectonic units of Tarim Basin, including the Kuqa Depression, Tabei Uplift, Northern Depression,
Central Uplift, Southwest Depression, Southeast Uplift and Southeast Depression, yellow area means
Tabei Uplift; (c) tectonic units of Tabei Uplift and location of Halahatang depression, two regions are
divided by the pinch-out line of O3s in Halahatang depression, “North Region” and “South Region”
means “north of the pinch-out line of O3s” and” south of the pinch-out line of O3s”, respectively. The
same as below. Pink area means Tahe area which is mentioned in chapter 4.1; (d) cross-well section
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from Well YJ2 to Well QG3 (section line see (c)). S1t: Tataaiertage formation of Silurian; S1k: Keping-
tage formation of Silurian; O3s: Sangtamu formation of Ordovician; O3l: Lianglitage formation
of Ordovician; O3t: Tumuxiuke formation of Ordovician; O2yj: Yijianfang formation of Ordovi-
cian; O1−2y: Yingshan formation of Ordovician. Detailed geological background and formation
development characteristics of study area can be learnt from [25,28,29].

Under the complicated tectonic events from the Caledonian to the Himalayas’ orogeny,
the upper Ordovician eroded and pinched out successively from the north to south, gen-
erating the angular unconformities and parallel unconformities among the Silurian and
Ordovician strata (Figure 1d). The most intense uplift and denudation occurred after the
deposition of the Sangtamu formation. In addition, the early-middle Caledonian tectonic
movements formed a series of large strike-slip faults, showing an “X” type combination in
the plane [30], and continued to be active until the Triassic period. These unconformities
and strike-slip faults play an important role in the evolution of formation water and the
accumulation of hydrocarbon, for providing conditions for the geofluids activities.

The Cambrian–Ordovician in the Tabei Uplift experienced three stages of oil and gas
charging: Oil charging in the Late Caledonian–Early Hercynian; Oil charging in the Late
Hercynian–Indosinian; Oil and gas charging in the Himalayan [29,31–34]. Oil reservoirs
formed in the Late Caledonian–Early Hercynian were destroyed by multi-stage tectonic
movements, part of the paleo-oil reservoir was preserved, but the oil was degraded into
heavy oil. Late Hercynian–Indosinian was the major stage of the oil reservoirs’ generation.
A large quantity of hydrocarbons generated in the Cambrian source rocks then migrated
through the faults into the Ordovician fractured-vuggy reservoirs, forming large-scale
accumulations. Due to the varying degree of the tectonic movements, oil reservoirs in north
of the Tabei uplift were degraded into heavy oil while they remained well preserved in the
south and mainly contained medium oil. Light oil and dry gas generated in the Himalayan,
mainly charging from south to north and well preserved.

3. Materials and Methods

A total of 200 items of formation water analysis data from 92 wells were selected after
data screening. The chemical characteristics of formation water might be influenced by the
acidizing fluids and fracturing fluids during the development and production process of
oil and gas. This type of formation water cannot truly reflect the hydrological environment
of the strata. A series of feasible test data screening schemes for formation water have
been established in different regions [35]. In this paper, the test data of formation water of
Ordovician in the Halahatang depression are screened in combination with the previous
screening schemes and the development and production process of oil and gas. The criteria
for screening data include: (1) The imbalance between cations and anions; (2) Too low or
too high TDS concentration; (3) Too high or too low pH; (4) The content of K+ is higher
than that of Na+.

The chemical characteristics of formation water can be described by water type, pH,
the TDS concentration, chemical compositions and ion-proportionality coefficients. The wa-
ter type and the TDS can indicate the hydrogeological environment and sealing condition
of the strata to a certain extent [1,3]. The major chemical compositions consist of (Na+ + K+),
Ca2+, Mg2+, HCO3

−, SO4
2− and Cl−. The ion-proportionality coefficients include sodium-

chlorine coefficient (γ Na+/γ Cl−), desulfurization coefficient (γ SO4
2− × 100/γ Cl−) and

metamorphic coefficient [(γ Cl−−γ Na+)/γ Mg2+] [6,36,37]. These types’ parameters can
further reflect the hydrogeological environment, water-rock interactions and the preserva-
tion conditions of hydrocarbon.

4. Results and Discussion
4.1. Chemical Characteristics of Formation Water
4.1.1. Chemical Compositions

The TDS of Ordovician formation water in the Halahatang depression ranges from
59.7 g/L to 270.6 g/L, with an average of 178.5 g/L, which can be defined as brine
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(TDS > 35 g/L) according to the salinity classification [10]. The (Na+ + K+), Ca2+, Mg2+,
HCO3

−, SO4
2− and Cl− are the major ions in the formation water. The (Na+ + K+) is

dominated by cations, but in some samples, Ca2+ can account for more than 50% of the
cations, the Mg2+ content being the lowest. Cl− is the major anion (accounting for 98%) of
the anion components, controlling the TDS of the formation water, followed by SO4

2− and
HCO3

−. The pH of the formation water ranges from 4.2 to 7.9 (Avg: 6.2). The formation
water is of a CaCl2 type on the whole.

The TDS of the formation water in the Halahatang depression has a weak negative
correlation with depth (Depth above 6500 m: depth = −5.16 TDS + 6999.30 R2 = 0.49; Depth
below 6500 m: depth = −2.08 TDS + 7234.50 R2 = 0.34) (Figure 2). Besides, the TDS of
Ordovician formation water in Halahatang depression is higher in the North Region but
lower in the South Region (Figure 3). North of the pinch-out line of O3s in the study area,
the TDS is mostly higher than 200 g/L and gradually decreases to the south, but is still
greater than 50 g/L.

Figure 2. The ion concertation distribution of Ordovician formation water in the Halahatang depres-
sion with depth (The raw data sourced from Tarim Oil Field Company). A weak negative correlation
between the depth and TDS. (Depth above 6500 m: depth = −5.16 TDS + 6999.30 R2 = 0.49; Depth
below 6500 m: depth = −2.08 TDS + 7234.50 R2 = 0.34).

4.1.2. Ion-Proportionality Coefficients

The ion-proportionality coefficients, including sodium-chlorine coefficient
(γ Na+/γ Cl−), desulfurization coefficient (γ SO4

2− × 100/γ Cl−) and metamorphic coef-
ficient [(γ Cl− − γ Na+)/γ Mg2+], are mainly used to reveal the underground hydrological
environment and the intensity of water-rock interactions [6,36,37]. The sodium-chlorine
coefficient can reflect the sealing property of the formation and the degree of water-rock
interactions (bounded by 0.85) [38]. The value less than 0.85 indicates that the strata have
good sealing performance and experienced strong water-rock interactions. The desulfu-
rization coefficient can indicate the degree of desulfurization, which in turn reflects the
formation environment [11]. It is generally very low in the sealed environment, and greater
than three while the formation has a certain degree of open or totally open condition. The
metamorphic coefficient can also demonstrate the intensity of water-rock interactions [36].
The higher the metamorphism coefficient is, the stronger the water-rock interactions are.

In the Halahatang depression, the O2yj and O1−2y samples in both the North and South
Regions have a sodium-chloride coefficient between 0.144–0.873 and 0.211–0.782, respec-
tively. The desulfurization coefficient ranges from 0.011 to 1.248 and 0.135 to 0.866, respec-
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tively. The metamorphism coefficient distributes between 5.655–60.329 and 5.143–36.404,
respectively. The average sodium-chloride coefficient, desulfurization coefficient and meta-
morphism coefficient are all less than 0.85, 1 and greater than 10, respectively (Table 1).
These results reveal that the Ordovician strata have good preservation conditions. Despite
being influenced by the meteoric water in early stage, the formation water still experienced
strong water-rock interactions in the process of deep burying.

Figure 3. The distribution of TDS of Ordovician formation water in the Halahatang depression. The
TDS is higher (basically above 200 g/L) in the North Region and gradually decreases to the south,
but still greater than 50 g/L.

Table 1. Ion-proportionality coefficients of Ordovician formation water in the Halahatang depression.
The ion-proportionality coefficients of Ordovician formation water in the Halahatang depression
show similar characteristics in both the North region and South Region.

Formation γNa+/γCl− γSO42− × 100/γCl− (γCl−−γNa+)/γMg2+

North of the O3s
pinch-out line

O2yj 0.255–0.881
0.734

0.024–0.699
0.140

8.125–60.329
17.724

O1−2y 0.211–0.772
0.672

0.155–0.866
0.304

5.134–36.404
16.381

South of the O3s
pinch-out line

O2yj 0.144–0.873
0.759

0.011–1.248
0.285

5.388–29.407
14.400

O1−2y 0.645–0.782
0.743

0.135–0.214
0.165

10.497–15.666
13.019

Note: Min–Max
Avg .

4.2. Source and Evolution of the Ordovician Formation Water

Formation water in sedimentary basins generally originates from meteoric water, river
water or seawater, and would be influenced by the evaporation concentration, mixing of
different water and water-rock interactions in the evolution of the strata [1,17].

4.2.1. The Source of Formation Water

The evolution process of the Halahatang depression is similar to those of the Lunnan
buried hill anticline: both had experienced multiple periods of tectonic movements. In the
Early Hercynian, Halahatang was part of the western slope of the Lunnan large anticline.
The lower structural layer of Cambrian-Ordovician has similar tectonic features to the
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Lunnan low-uplift. In the Late Paleozoic-Mesozoic, the Halahatang area gradually evolved
into a structural depression [25]. The previous works from the Tahe area, which is located
on the slope from the Halahatang depression to the Lunnan uplift (see Figure 1c) can
provide references to this study.

By collecting 258 calcite samples from the karst fracture-cavity in the Ordovician
carbonate rocks in the Tahe area [14,16,18,39,40] and 107 calcite samples from the karst
fracture-cavity in the Ordovician carbonate rocks in the Halahatang area [41–43], the distri-
bution of δ13C and δ18O are similar. The δ13C and the δ18O mainly range from −13.74‰
to 9.06‰ (Avg: −10.17‰) and from−17.54‰ to −3.05‰ (Avg: −10.34‰), respectively
(Figure 4). The positive correlation between the δ13C and the δ18O and the value of the sta-
ble isotopes that are widely distributed reflect the complicated diagenesis in the Halahatang
depression. Compared with the carbonate background values of δ13C (−1.58–0.12‰) and
δ18O (−6.01–−6.52‰) in the Halahatang area [42], there is an obvious negative shift in
most of the data. The value of δ13C and δ18O in a meteoric water environment generally
show a strong negative and a shift to positive when it was related to seawater [44,45]. When
these two fluids were mixed, the δ13C and δ18O distribute between the value of meteoric
water and seawater. In the buried diagenetic environment, the value of δ13C is stable or
shifts to positive and the δ18O shifts to strong negative [46]. Furthermore, influenced by
the hydrothermal fluids show a more substantial negative of δ18O [43]. Therefore, it can be
concluded that the genesis of calcite in the Halahatang depression was mainly related to
the influence of paleo-meteoric water, partly due to the influence of seawater, mixed fluids
and the burial environment, and the hydrothermal fluid also had a certain degree of effect
on the diagenesis process (Figure 4).

Figure 4. Distribution of δ13C and δ18O of calcite in the Tahe and Halahatang areas. The genesis of
calcite in the Halahatang depression was mainly influenced by paleo-meteoric water referred to in
the previous studies [14,15,18,38,39,41–45].
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In addition, the strontium isotopes in the Tahe area have the characteristic of a
crust source [39]. Moreover, the fit line of hydrogen and oxygen isotopes of formation
water in the Tahe and Lunnan areas intersect with the global precipitation line, after
extension [13,14,21]. These results further proved that the primary source of formation
water is paleo-meteoric water.

4.2.2. Water–Rock Interactions

The Piper diagram mainly uses the relative equivalent concentration percentage of the
major cations and anions to represent the properties of formation water [47], which can
reveal the sources of the dissolved constituents in waters without artificial influence.

The Ordovician formation water in the Halahatang depression can be divided into two
types (Figure 5). The type I includes Cl-Na type and Cl-Na·Ca type, which are dominant
in water samples. Type II contains Cl-Ca·Na type and Cl-Ca type. These two types of
water are typical of brines from deep reservoirs in sedimentary basins [10], distributed in
both the North and South Regions (Figure 5). This indicates that the present formation
water experienced strong water-rock interactions in the Halahatang depression, which
corresponds to the ion-proportionality coefficients.

Figure 5. Piper diagram of Ordovician formation water in the Halahatang depression. I: Cl-Na type
and Cl-Na·Ca type; II: Cl-Ca·Na type; and Cl-Ca type. These two types of water are distributed
in both North Region and South Region, indicating that the formation water experienced strong
water-rock interactions in the Halahatang depression.

4.3. Relation between Formation Water and Oil and Gas

Formation water has both modified and destructive effects on oil and gas reservoirs.
The solution pores formed under the dissolution of carbonate rock by formation water,
which was conducive to generate oil and gas reservoirs [48,49]. However, meteoric water
entering the formation will damage the oil and gas reservoir [50]. In addition, the hy-
drochemical parameters, such as the TDS and ion-proportionality coefficients, can reflect
the hydrogeological environment to a certain extent [51]. Thus, we can further determine
whether it is conducive to the accumulation and preservation of hydrocarbons.
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4.3.1. Effect of Formation Water on Oil and Gas Accumulation

The orogenic movements in the Caledonian and Hercynian periods played an essential
role in the generation and improvement of reservoirs. Because of the denudation of strata
and the dissolution of carbonate reservoirs by meteoric water, the Ordovician strata in the
Halahatang depression mainly developed quasi-syngenetic karst, weathering crust karst
and buried karstification [28,52]. These karstification processes made the Ordovician car-
bonate strata become favorable reservoirs. The strike-slip faults major formed in the Middle
Caledonian period provided the migration channel of fluids, which further promotes the
karstification. Besides, the acid water migrated with petroleum and hydrothermal fluid
were also suggested as a source of improved reservoir quality.

However, the tectonic uplift also has a significantly destructive effect on oil and gas
reservoirs. Because of the Caledonian and Hercynian tectonic uplift, a mass of microorgan-
isms and sufficient oxygen carried by meteoric water entered the oil and gas reservoirs. This
denudation promoted biodegradation together with water washing of crude oil, causing
further damage in the pools. The widespread presence of heavy oil and asphalt in the North
Region demonstrated this destructive effect. Although the biodegradation usually masks
the development of water washing [53], the tectonic evolution and the source of formation
water in Halahatang depression were sufficient to prove the effect of water washing on
crude oil.

Due to the different intensities of tectonic evolution in the North and South Regions,
the degree of destruction of oil and gas reservoirs is also different (Figure 6). The strata
in the North Region were subjected to more intense uplift and denudation. Oil and gas
reservoirs formed in the early stage were basically destroyed in the process of tectonic
evolution and the crude oil degraded into heavy oil and asphalt. However, the strata in the
South Region were less affected and the paleo-reservoirs partly preserved. Since the Triassic
period, the strata subsided stably and were less influenced by destructive structures. Oil
and gas generated in the later stage entered the reservoir and mixed with the pre-existing
oils, forming the present oil and gas reservoir [29,32,33].

Figure 6. A sketch showing the hydrocarbon accumulation events and factors in the Halahatang
depression. I: oil and gas accumulation; II: oil and gas reservoirs destroyed extensively; III: oil and
gas reservoirs destroyed slightly. The leaching period mainly developed in the Caledonian and
Hercynian periods. Reservoirs formed in the Late Caledonian-Early Hercynian periods were basically
destroyed in both North Region and South Region. Reservoirs formed in the Late Hercynian period
experienced weaker destruction in South Region than those in North Region.

4.3.2. Indication of Hydrochemistry Characteristics to Oil and Gas

The TDS has a certain indication to the migration of oil and gas. In many basins, the
increasing TDS corresponded to the direction of hydrocarbon migration [54–57]. However,
this is not applicable in all regions. In addition, the ion-proportionality coefficients of
formation water can reflect the hydrological environment of underground strata, which can
determine whether the strata are conducive to oil and gas accumulation and preservation.
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The geochemical characteristics of crude oil in the Halahatang depression show that
oil and gas migrated from south to north and northeast [25,32,58,59], which is consistent
with the increasing direction of the TDS. However, the distribution of the TDS of formation
water in Halahatang depression is mainly controlled by the caprock (Sangtamu Formation)
and the high salinity fluids from overlying strata and adjacent regions.

The influence of halite dissolution on brine salinity of formation water in sedimentary
basin has been discussed [60,61]. Previous works on the Tarim basin also have concluded
that the formation water in the Lunnan low uplift and the Tahe area was influenced by the
dissolution of halite in the overlying strata [11,17,20,21,62,63]. Gypsum-salt is distributed
widely in the Carboniferous strata in the Halahatang depression (Figure 7), which is
an effective source of halite. It can be seen that the Carboniferous (gypsum-salt layer)
formation water has high TDS (area III) but the TDS of the Ordovician formation water in
the South Region is relatively low (area I) (Figure 8). However, the TDS data of the North
Region Ordovician formation water (area II) are close to those of Carboniferous, indicating
a certain correlation (Figure 8).

The fluids that had leached the halite from the overlying strata entered the Ordovician
strata along the unconformities and strike-slip faults. When mixed with connate water it
resulted in the salinity increase of formation water in the Ordovician (Figure 9). However,
due to the existence of the mudstone shielding layer of O3s, the high salinity fluids cannot
enter the Ordovician strata directly. The diffusion of the solute from the high salinity fluids
gradually weaken to the south, causing the TDS to be lower than that in the North Region
(Figure 9).

Figure 7. The thickness distribution of the gypsum-salt layer of the Carboniferous strata in Halahatang
depression. The gypsum-salt layer distributes in Carboniferous strata.
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Figure 8. TDS of formation waters in different strata in Halahatang depression. Area I: The major
part of the TDS data of Ordovician formation water in South Region; Area II: The major part of the
TDS data of Ordovician formation water in North Region; Area III: The major part of the TDS data of
Carboniferous formation water. The Carboniferous formation water has high TDS than Ordovician
formation water in South Region.

Figure 9. Migration direction pattern of high salinity fluids and hydrocarbon in the Halahatang
depression 1: pinch-out line; 2: faults; 3: mudstone; 4: limestone; 5: muddy limestone; 6: hydrocarbon
reservoir; 7: karst fracture-cavity; 8: high salinity fluids entered the Ordovician strata. The TDS in
the Ordovician is controlled by the caprock and the high salinity fluids from overlying strata and
adjacent regions.
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Nonetheless, the CaCl2 type formation water with high TDS and reductive ion-
proportionality coefficients on the whole reflect the good preservation conditions of the
Ordovician strata. After the Caledonian-Hercynian tectonic uplift, the overlying strata
settled steadily onto the Ordovician strata, leading to the gradual improvement of preserva-
tion conditions. The Ordovician strata altered by karstification can be regarded as favorable
reservoirs and the strike-slip faults provided the migration pathway for hydrocarbon. Oil
formed in the Himalayan entered the reservoir and mixing with heavy oils that had been
destroyed earlier, forming the present oil and gas reservoirs.

5. Conclusions

(1) The formation water in the Halahatang depression is CaCl2 type with high salinity
and the TDS decreases with the depth. High salinity fluids entered the Ordovician
strata and the distribution of mudstone barrier layer of O3s accounted for the TDS
distribution. The ion-proportionality coefficients show that the present Ordovician
strata are well sealed and had experienced strong water-rock interactions;

(2) The formation water mainly originated from paleo-meteoric water, mixed or re-placed
with seawater and was affected by hydrothermal activities to a certain extent. With the
stable sedimentation of overlaying strata, the sealing conditions and the water-rock
interactions became stronger. Reflected in the Piper diagram, the formation water
of the Ordovician strata in the Halahatang depression is typical of brine from deep
reservoirs in sedimentary basins that experienced strong water-rock interactions;

(3) Formation water has both positive and destructive effects on oil and gas reservoirs.
The increasing direction of the TDS is consistent with the direction of hydrocar-
bon migration, but the caprock and high salinity fluids from overlying strata and
adjacent regions controlled the TDS distribution. The high TDS and reductive ion-
proportionality coefficients reveal that the sealing condition of the Ordovician strata
in the Halahatang depression is beneficial to the accumulation and preservation of oil
and gas reservoirs.
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