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Abstract: Research on the vibration response prediction and safety early warning is of great signifi-
cance to the operation and management of pumping station engineering. In the current research, a
hybrid prediction method was proposed to predict vibration responses of the pumping station based
on a single model of autoregressive integrated moving average (ARIMA), a combined model of the
adaptive network-based fuzzy inference system (ANFIS) and whale optimization algorithm (WOA).
The performance of the developed models was studied based on the effective stress vibration data of
the blades in a shaft tubular pumping station. Then, the D-S evidence theory was adopted to perform
safety early warning of the operation state by integrating the displacement, velocity, acceleration and
stress indicators of the vibration responses of the pumping station. The research results show that the
proposed prediction model ARIMA–ANFIS–WOA exhibited better accuracy in obtaining both linear
and nonlinear characteristics of vibration data than the single prediction model and hybrid model
with different optimization algorithms. The D-S evidence fusion results quantitatively demonstrate
the safe operation state of the pumping station. This research could provide a scientific basis for the
real-time analysis and processing of data in pumping station operation and maintenance systems.

Keywords: hybrid prediction model; vibration; pumping station; ARIMA–ANFIS–WOA

1. Introduction

As turbulent water flows into the flow channel of a pumping station, the unit and the
concrete house will generate long-term continuous vibrations. These vibrations may cause
severe damage to the unit instruments and pump house structure, as well as adversely
affecting the health of the staff. Moreover, the relatively strong vibrations can pose a
threat to the overall safety and functionality of the pumping station project. Therefore,
research on the evaluation and prediction of these vibrations is crucial in aiding managers’
decision-making process, minimizing potential damage and ensuring the safe operation of
the pumping station. For this purpose, it is vital to select suitable methods for establishing
a vibration prediction model and a safety early warning model for the pumping station.

There are numerous models available for predicting structural vibrations. Forsat [1]
proposed a higher-order shear deformation beam theory to predict the vibrations of hyper-
elastic beams. Mirjavadi [2] employed the Timoshenko beam theory to predict the thermal
vibrational behavior of 2D functionally graded porous microbeams. Due to their complex
construction, pumping stations may not be suitable for the application of the mathematical
model. Methods based on an artificial neural network (ANN) and its intelligent opti-
mization are in full swing in predicting the structural behavior of pumping houses and
hydropower houses. In 2007, Lian et al. [3] utilized the back-propagation (BP) neural
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network method to predict the vibration displacement amplitude of the Three Gorges
Hydropower Station, and the predictions were compared with the measured data. Miao
et al. [4] used a radial basis function (RBF) neural network to predict the vibration accel-
eration amplitude of a pier. Since 2014, scholars have conducted a series of studies on
predicting the vibration responses of powerhouses. Xu et al. [5] combined the general-
ized regression neural network (GRNN) and the fruit fly optimization algorithm (FOA)
to predict the radial displacement amplitude of the flood discharge surface hole cover
plate under various working conditions. The results confirmed the superior prediction
ability and learning speed of the FOA–GRNN method compared to BP and ELMAN neural
networks. Xu et al. [6] used the survival-of-the-fittest and step-by-step selection particle
swarm optimization algorithm (SSPSO) to optimize the smoothing parameter P of GRNN,
and they carried out prediction research on vibration problems of hydropower stations
under various load conditions. Their results demonstrate that SSPSO-GRNN outperforms
PSO–GRNN, self-competitive PSO–GRNN and GA–PSO–GRNN in terms of prediction
accuracy, convergence performance and generalization ability. Wang et al. [7] established
a model based on relevant vector machine (RVM) regression to predict the vertical dis-
placement standard deviation of a large underground hydropower station under different
loads. The results indicate that the RVM model has higher prediction accuracy than the
support vector machine (SVM) model. Based on the vibration response data of the same
powerhouse, Liu and Du [8] confirmed that the vibration prediction model based on an
RBF neural network and improved bat algorithm (IBA) is superior to the RVM model in
terms of prediction accuracy and generalization ability. Song et al. [9] utilized the improved
firefly algorithm (IFA) and BP neural network to predict the amplitude of hydropower
house vibrations. The results demonstrate that the prediction accuracy and convergence
speed of the IFA–BP model are significantly improved compared to the BP and FA–BP
models. All of the proposed prediction methods and results are highly significant for the
advancement of vibration research in pumping station engineering. However, current
research on predicting vibrations in pumping houses and hydropower houses mainly
focuses on the vibration amplitude under specific working conditions, with fewer studies
addressing the prediction of time trend responses of structural vibrations.

Vibration trend prediction can accurately depict the operational behavior of a unit
through a time series of vibration responses, surpassing the limited scope of vibration
amplitude analysis for specific working conditions. In the field of vibration trend prediction
research, the autoregressive integrated moving average (ARIMA) has gained widespread
adoption as a statistical method for accurate time-series prediction. ARIMA effectively han-
dles non-stationary time series by employing lag value regression of the dependent variable
and the present value of the random error term, thereby harnessing trend characteristics,
dynamic information and series persistence to forecast future trends [10,11]. The adaptive
network-based fuzzy inference system (ANFIS) represents an intelligent prediction model
that combines the principles of fuzzy inference and artificial neural networks (ANNs).
ANFIS incorporates fuzzy rules into its inference system to handle uncertainty related to
influencing factors and utilizes ANN for simulation and prediction tasks. Compared with
the single prediction model, ANFIS offers distinct advantages, such as simplicity in express-
ing fuzzy logic and the capability for self-learning in a neural network. These merits have
contributed to the successful utilization of ANFIS across various domains. Milan et al. [12]
employed ANFIS and optimized ANFIS methods to predict the optimal exploitation of
groundwater resources. Tran et al. [13] developed an ANFIS-based prediction model for
assessing the processing performance of the thrust and surface roughness in biological com-
posites. Sharifi et al. [14] used the ANFIS method to evaluate the intelligent performance
of the agricultural surface water distribution system, yielding superior prediction results
when compared to ANN and FIS methods.

Single prediction algorithms are usually simple in principle and easy to implement,
and they can provide the time-varying characteristics of the prediction object from different
angles, but they have limitations, such as incomplete information reflection and limited
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scope of application. To overcome these limitations, hybrid models combine the strengths
of multiple models to compensate for the shortcomings of a single model. The research of
Armstrong [15] confirmed that the hybrid prediction model presents greater advantages in
solving short-term prediction problems. In the specific context of dam monitoring [16–18],
hydrological forecasting [19–22] and other hydraulic engineering fields, several hybrid
prediction models have been proposed and have achieved higher precision results. For
example, in a study by Luo et al. [23], a constrained PSO-SVR model was developed
for centrifugal pumps. The research results demonstrated well-predicted performance
under multiple operating conditions, compared to experimental results. Similarly, Huang
et al. [24] proposed a hybrid neural network model that incorporates multiple geometrical
parameters and operation conditions to predict the energy performance of centrifugal
pumps. These hybrid prediction models show promising results in the field of pump energy
performance prediction and can contribute to better decision making and optimization for
pump operations in various industries and applications.

The pumping station is a complex system with different types of components and
sources of vibration. Therefore, it is essential to assess the safety level using predicted
vibration data. Safety early warning is a comprehensive research subject that involves
multiple projects and levels and provides a higher level of safety prediction.

Compared with other engineering production fields, research on safety early warning
in the field of hydraulic engineering had a later start. This delay can be attributed to the
challenges in using analytical relations or mathematical models to describe the strong
nonlinearity, fuzziness and complexity of the hydraulic system. In the early 1980s, the
United States made a preliminary attempt to introduce risk analysis technology into the
safe operation and maintenance of dams, which was achieved through the introduction
of risk early warning theory. In 1984, the international dam conference further promoted
the application of risk theory in dam management. Concurrently, the United States and
Western Europe, together with other countries, improved the risk early warning technology
and developed diverse safety early warning theories [25]. The research on safety early
warning of hydraulic projects has been conducted using the risk early warning theory. Sang
et al. [26] proposed an extended cloud model (ECM) combined with the extended analytic
hierarchy process (EAHP) to assess the overall safety trend of dams and select a safety trend
warning indicator. He et al. [27] proposed an integrated variable fuzzy evaluation model to
evaluate the social and environmental impact of dam breaks. Yang et al. [28] presented a
systematic approach for analyzing the law and early warning of vertical displacements in
sluice clusters located in coastal soft soil.

Intelligent safety management technology is increasingly being applied to practical
projects, and the concept of risk early warning has gained widespread recognition and
attention. Previous safety early warning studies focused on reservoirs, dams and sluices in
hydraulic projects, primarily from a risk analysis perspective, and they yielded favorable
outcomes. Unfortunately, there has been a lack of attention paid to safety early warning
systems for pumping stations and hydropower houses, resulting in a dearth of research
in this area. Therefore, addressing these gaps in research is essential to guarantee the safe
operation and improve the productivity of pumping stations and hydropower houses. The
D-S evidence theory is a commonly used information fusion technology. D-S evidence
theory introduces the probability distribution function, confidence function and likelihood
function, lessening the reliance on traditional probability theory’s prerequisites of prior
probabilities, conditional probability and unified identification framework. The D-S evi-
dence theory has wide application in fault detection [29] as well as in safety evaluation
for the ocean environment [30] and the cloud platform [31]. In the field of hydraulic engi-
neering, Chen et al. [32] enhanced the evidence distance measure method in D-S evidence
theory by utilizing the belief Wasserstein-1 distance (BWD) and applied it to dam health
diagnosis. Their findings indicate that the proposed method achieves significantly higher
accuracy when compared to existing approaches. Xu et al. [33] proposed a D-S evidence
theory based on neural networks for turbine fault diagnosis. They utilized the BP and



Water 2023, 15, 2656 4 of 25

RBF networks to form the initial diagnosis layer and observed that the proposed method
yields superior diagnostic results compared to single diagnosis methods. Recently, the D-S
evidence method has been sparsely employed in the field of pumping stations.

In light of the demand for real-time data processing and analysis in the management
system of pumping stations, this study aims to evaluate the level of vibration in the
pumping station by developing a system for predicting vibrations and providing early
warnings for safety purposes. To achieve this goal, a hybrid model is proposed, which
combines the ARIMA single model, the ANFIS model and the whale optimization algorithm
(WOA) to predict vibration responses. Furthermore, the D-S evidence theory is used to
conduct safety early warning research. The prediction of the vibration trend of the effective
stress on the blades is compared with that of a single prediction model and other models
that employ different optimization algorithms. The vibration data collected will also serve
as a source of data for the safety early warning system. In the early warning model,
the fusion indicators for analyzing the vibration data are chosen to be the displacement,
velocity, acceleration and stress of the vibration. The probability of each safety level is
then quantitatively calculated and evaluated. This research could provide guidance for
vibration control and attention of the pumping station project.

2. Calculation Method and Procedure
2.1. Autoregressive Integrated Moving Average Algorithm

The ARIMA model, proposed by Box and Jenkins [34], is a time-series analysis method
commonly known as the Box–Jenkins model. The ARIMA model utilizes the historical
information of a time series and employs a linear combination of predictions from multiple
white noise processes. It can be applied to both stationary and non-stationary time series
after differencing to achieve stability. The mathematical expression of the ARIMA model is
as follows.

yt = µ +
p

∑
i=1

γiyt−i + εt +
q

∑
i=1

θiεt−i (1)

where µ is a constant, εt is the white noise sequence, θi is the moving average coefficient, p
is the order of autoregression and q is the order of moving average.

The ARIMA model is established for predicting the vibration response of pumping
stations. The procedure is performed as follows.

(1) The time-series data of vibration response are obtained and preprocessed. This may
involve removing any outliers or missing data points, as well as normalizing the data.

(2) The stationarity test is conducted after the data preprocessing step. If the test fails,
differential processing shall be carried out until it passes the stationarity test.

The ADF-KPSS joint test is a statistical test commonly used to assess both stationarity
and long memory in a time series. The ADF test controls for high-order sequence correlation
by including lagged difference terms of the dependent variable in the regression equation.
This test is used to determine if the time-series data exhibit a unit root, which implies
non-stationarity. Assuming that the vibration response yt follows an AR(p) process, the
model used for the unit root test can be represented by Equations (2)–(4).

∆yt = ρyt−1 +
p

∑
i=1

θi∆yt−1 + et (2)

∆yt = µ + ρyt−1 +
p

∑
i=1

θi∆yt−1 + et (3)

∆yt = µ + βt + ρyt−1 +
p

∑
i=1

θi∆yt−1 + et (4)
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where µ is the drift term and t is the time trend term. In the testing process, the test model
is selected based on the characteristics of the sequence. If ρ = 0 in Equations (2)–(4), then
the null hypothesis of a unit root exists; if ρ is significantly less than 0, the null hypothesis
of a unit root in the test sequence is rejected.

The KPSS test, on the other hand, examines whether the data have a trend or exhibit
long memory behavior. The null hypothesis of the KPSS test is that the sequence {yt} is
stationary, and the alternative hypothesis is that the sequence {yt} is non-stationary. The
principle is to remove the intercept term and trend term from the residual estimate sequence
{êr} and construct the LM statistic. The basis for the existence of a unit root in the original
sequence is whether there is a unit root in the test {êr}.

S(t) =
t

∑
r=1

êr (5)

The construction of the KPSS statistic LM is as follows:

LM = ∑ S(t)2/(T2 f0) (6)

where f 0 is the residual spectral density when f = 0, and S(t)2 is a consistent estimate of the
residual variance. The stationarity of the sequence can be determined by comparing with
the critical value.

If the sequence rejects the ADF test but accepts the KPSS null hypothesis, the sequence
is stationary. If the sequence simultaneously rejects the ADF and KPSS null hypotheses, the
sequence may exhibit long memory and further testing is required.

(3) The autocorrelation and partial correlation coefficients of the series are calculated to
determine the order of the ARIMA model. Information criteria, including Akaike’s
Information Criterion (AIC) and Bayesian Information Criterion (BIC), are adopted to
select the optimal ARIMA model.

AIC = −2 log(L) + 2K (7)

BIC = −2 log(L) + K log(T) (8)

where L is the likelihood of time series, K is the number of estimated parameters
and T is the size of the time series. The model with the least AIC is the best model.
BIC criterion penalizes the number of parameters more than AIC. The best model is
selected similar to the AIC criterion by choosing the model with the lowest BIC value.

(4) A residual sequence independence test is conducted. The Durin–Watson test, also
known as DW test, is used to test for first-order autocorrelation of residuals in regres-
sion analysis, especially in the case of time series. Assuming the residual is e, the
equation for the autocorrelation of each residual is et = ρet−1 + Vt. The null hypothesis
for the test is ρ = 0, and the alternative hypothesis is ρ 6= 0. The test statistic d is shown
in Equation (9).

d =

T
∑

t=2
(et − et−1)

2

T
∑

t=1
e2

t

(9)

Since d is approximately equal to 2(1 − p), the closer the value of this statistic is to 2,
the better. If it is less than 1, it indicates the presence of autocorrelation in the residuals.

2.2. Adaptive Network-Based Fuzzy Inference System

ANFIS is a combined prediction model, which was proposed by Jang [35]. Combining
fuzzy logic and the neural network organically, ANFIS has the decision-making judgment
ability of a fuzzy system and the self-learning ability of a neural network. It automatically
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generates if–then rules, learns from sample data and adapts the parameters of the neural
network model. The front parameters are adjusted using the BP algorithm in the reverse
transmission of ANFIS. The rear parameters are adjusted using the Least Square Method
(LSM) in the forward transmission. The combined algorithm based on the BP algorithm
and LSM improves the calculation efficiency and prediction accuracy of the ANFIS model.

Based on the Takagi–Sugeno model [36], the structure of two input–single output
ANFIS is shown in Figure 1. Corresponding if–then rules are expressed as follows.

(1) If x1 is A1 and x2 is B1, then y = p1x1 + q1x2 + r1;
(2) If x1 is A2 and x2 is B2, then y = p2x1 + q2x2 + r2.
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The ANFIS network consists of the following layers: fuzzification layer, rule inference
layer, normalization layer, defuzzification layer and output layer. The fuzzification layer
transforms each precise input into several fuzzy subsets, each represented by a membership
function indicating the degree of belonging. The nodes in the fuzzification layer are
adaptive nodes, and their calculation formula is described in Equation (10).

O(1)
i =


µAi (x1) =

[
1 +

(
x1−c1i

δ1i

)2b1i
]−1

= e
−0.5(x1−c1i)

2

δ2
1i

µBi (x2) =

[
1 +

(
x2−c2i

δ2i

)2b2i
]−1

= e
−0.5(x2−c2i)

2

δ2
2i

i = 1, 2 (10)

where O(1)
i is the node output of the first fuzzification layer. xi (i = 1, 2) is the precise input

of node i. Ai (or Bi) is the fuzzy subset corresponding to xi. µAi and µBi are the membership
functions of Ai and Bi, respectively. {δi, bi, ci} are antecedent parameters, whose values are
related to the shape of the membership function.

The rule inference layer multiplies the output of the membership function signals by
the fuzzification layer to obtain the excitation intensity value of the if–then fuzzy rules. The
node output O(2)

i is expressed in Equation (11).

O(2)
i = ωi =

2

∏
i=1

O(1)
i = µAi (x1)µBi (x2) i = 1, 2 (11)

The normalization layer is responsible for normalizing the excitation intensity value
output by the rule-reasoning layer. Specifically, the percentage of the excitation intensity
of the corresponding node is calculated, as well as the sum of all the excitation intensities.
The output O(3)

i of the third normalization layer is described in Equation (12).

O(3)
i = ω1 = ωi/

2

∑
i=1

ωii = 1, 2 (12)

The nodes of the defuzzification layer and the fuzzification layer are adaptive nodes.
The role of the defuzzification layer is to convert fuzzy variables into precise variables.
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Based on if–then fuzzy rules, the normalized parameters are weighted and summed to
obtain accurate output O(4)

i .

O(4)
i = ωl fi = ωl(pix1 + qix2 + ri) (13)

where {pi, qi, ri} are the subsequent parameters, which will be constantly adjusted during
the training process.

The output layer is used to sum all input signals, represented by fixed nodes marked
with ‘Σ’. The output O(5)

i is shown in Equation (14).

O(5)
i =

i=1

∑
2

ωi fi (14)

In ANFIS, the generation of fuzzy variables usually adopts the unsupervised learning
clustering analysis method. The samples are divided into different types of subspaces
according to the similarity. There are generally three methods of generating fuzzy variables
in ANFIS, namely, grid partition (GP), subtractive clustering (SC) and fuzzy C-means
clustering (FCM).

(1) Grid partition algorithm

The GP algorithm is a clustering method that transforms data samples into grid
cells. The data sample is divided into grid cells using parallel lines along the membership
function axis. The correlation of each grid cell is then calculated and compared to the
threshold of the data cluster to determine whether to merge it with the surrounding grid
and form a data cluster, thus achieving the purpose of classification.

The GP clustering algorithm overcomes the limitations of other clustering algorithms
that are sensitive to the shape and size of the cluster. It reduces model training time by
connecting the subspaces divided based on the data dimension in a grid-based manner.
However, GP clustering has poor scalability, and the accuracy of the GP algorithm is easily
influenced by noisy sample data, resulting in relatively rough results.

(2) Subtractive clustering algorithm

The SC algorithm is a density-based clustering algorithm that was proposed by S.
Chiu [37] in 1994. The SC algorithm assumes that any data point may be the cluster center.
The probability of the data point as the cluster center is evaluated based on the data point
density near each point. The data point with the highest density is selected as the cluster
center, while data points with lower density are excluded. After the first cluster center is
selected, the next cluster center is selected from the remaining data points using the same
method. This process continues until the density near the data points is lower than the
defined threshold.

Generally, it is assumed that all data points are located in a hypercube with a unit of 1,
meaning that each one-dimensional coordinate of the data point is between 0 and 1. The
density Di of the data point xi is defined as [38]:

Di =
n

∑
j=1

exp

(
xi − xj( ra

2
)2

)
(15)

where ra represents the influence radius of the data point density range. Obviously, the
more data points within the influence radius, the greater the density Di, and the greater the
probability that the data point will become the cluster center.
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After calculating and comparing the density of all data points, the highest density of
data points is selected as the first cluster center Xi, and its density is defined as DXi. The
density of the remaining data points is then adjusted based on DXi as follows.

Di = Di − DXi

n

∑
j=1

exp

(
−

xi − xj( rb
2
)2

)
(16)

where rb is constant, which is defined as rb = ηra. The inhibition factor η should be greater
than 1 to prevent the distance between different cluster centers from being too close.

It is more suitable to use the SC algorithm to divide the input space when the number
of input variables is greater than three. This approach results in fewer fuzzy rules compared
to the adaptive grid method. It also provides a more reasonable division of the input space
with reduced training time. Moreover, the fuzzy rules could be increased one by one, which
prevents gaining over-fitting results, improves the generalization and accuracy ability of
the model.

(3) Fuzzy C-means algorithm

The FCM clustering algorithm, originally proposed by J. C. Dunn [39] in 1974 and
improved by J. Bezdek [40] in 1981, has established itself as a highly accurate and widely
applicable method in many clustering algorithms [41,42]. The core of the FCM algorithm is
to perform iterative calculations and update the cluster center point based on the minimum
cost function.

FCM decomposes the sample data {x1, x2, . . ., xn} into k fuzzy groups and determines
the cluster center {c1, c2, . . ., ck} for each fuzzy group based on the minimum cost function.
The membership value of the jth data point xj to the ith cluster center ci is denoted as
uij, and it ranges from 0 to 1. The sum of the entire membership matrix is 1 after data
normalization, namely:

k

∑
i=1

uij = 1 j = 1, 2, · · · , n (17)

The cost function of FCM is typically represented by Equation (18).

J(U, c1, · · · , ck) =
k

∑
i=1

Ji =
k

∑
i=1

n

∑
j=1

um
ij d2

ij (18)

where U is the membership matrix, ci is the ith cluster center point, dij is the Euclidean
distance from the jth data point xj to the ith cluster center ci and m is the weighted index
and ranges in [1, +∞).

Lagrange multiplier λj (j = 1, 2, . . ., n) is brought into Equation (18) to solve the
necessary conditions for J to reach the minimum value.

J(U, c1, . . . , ck, λ1, . . . , λn) =
k

∑
i=1

n

∑
j=1

um
ij d2

ij +
n

∑
j=1

λj

(
1−

k

∑
i=1

uij

)
(19)

The expression for the cluster center ci (Equation (20)) and membership degree uij
(Equation (21)) is obtained by taking the derivative of cost function J with respect to ci and
uij, respectively. The FCM clustering algorithm iteratively solves the problem. The cost
function J stops when it becomes less than the threshold or reaches the maximum number
of iterations, resulting in the determination of the final clustering center c and membership
matrix U.

ci =

n
∑

j=1
um

ij xj

n
∑

j=1
um

ij

(20)
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uij =
1

k
∑

z=1

( dij
dzj

) 2
m−1

(21)

2.3. Optimization Algorithms

WOA, proposed by S. Mirjalili and A. Lewis [43], is a metaheuristic optimization
algorithm based on humpback whale hunting behavior. Humpback whales like to prey on
fish and shrimps near the water surface in the form of circular contraction and spiral rise,
as shown in Figure 2. In contrast to other traditional single algorithms, WOA offers several
advantages, including a simple structure, easy implementation and high convergence
accuracy. Despite being a relatively new optimization algorithm introduced in recent years,
WOA has been widely applied in fault diagnosis [44,45] and other fields, with successful
prediction outcomes.
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Figure 2. Schematic diagram of hunting behavior of humpback whales.

A mathematical model is established to describe the predatory behavior of whales.
Assuming that the current optimal candidate solution is target prey, the search agent will
update the current position towards the target prey. The whale’s prey encirclement behavior
is expressed in Equations (22) and (23).

D = |C ·X∗(t)−X(t)| (22)

X(t + 1) = X∗(t)−A · D (23)

where D represents the distance between the search agent and the target prey. X and X* are
the current position and optimal position vector of the whale, respectively. t is the number
of iterations. A and C are vector factors and are expressed as follows.

A = 2a · ra − a (24)

C = 2 · rc (25)

where a decreases linearly from 2 to 0 during iteration, and ra and rc are random vectors
between 0 and 1.

Humpback whales surround their prey along the spiral path and emit bubbles. The
whale’s bubble net hunting strategy is shown as follows.

X(t + 1) = D′ · ebl · cos(2πl) + X∗(t) (26)

where D′ = |X∗(t)−X(t)| is the line length from whale to prey, b is the shape parameter
of the logarithmic spiral and l is a random number between −1 and 1.
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Assuming that the probability of humpback whales using the ring contraction and
spiral rise mechanisms to update the position is 50%, respectively, then:

X(t + 1) =
{

X∗(t)−A · D if p < 0.5
D′ · ebl · cos(2πl) + X∗(t) if p ≥ 0.5

(27)

where p is the random number of selection probability in [0, 1].
Random prey search is required to update the position of the Humpback whales, as

shown in Equations (28) and (29).

D = |C ·Xrand (t)−X(t)| (28)

X(t + 1) = Xrand (t)−A · D (29)

where Xrand(t) is a randomly selected search agent position vector.
Two additional algorithms are adopted to optimize the weight coefficients in the

hybrid models, which are Genetic Algorithm (GA) and Particle Swarm Optimization
(PSO). GA is an intelligent optimization algorithm proposed based on evolutionary theory
and genetic principles. It simulates the principles of survival of the fittest and natural
selection by designing a specific population to survive in a particular environment, using
three operations, selection, crossover and mutation, to obtain the optimal individual and,
ultimately, the optimal solution to a problem. Selection, crossover and mutation are the
core operations of genetic algorithms.

The PSO algorithm originated from the study of bird flock predation behavior. It is a
global optimization algorithm that utilizes cooperation and information sharing among
individuals in a population to find the optimal solution with good global search ability.
The updating formulas for the velocity and position of the particles in the population are
given by:

Vk+1
id = ωVk

id + c1r1

(
pbestk

id − Xk
id

)
+ c2r2

(
gbestk

id − Xk
id

)
(30)

Xk+1
id = Xk

id + Vk+1
id (31)

where Vk
id and Xk

id represent the current velocity and position of particle i, pbestk
id and gbestk

id
represent the individual best and global best, Vk+1

id and Xk+1
id represent the newly updated

velocity and position of the particle, ω is the inertia weight, c1 and c2 are non-negative
constant learning factors and r1 and r2 are random numbers between 0 and 1.

2.4. Calculation Procedure of ARIMA–ANFIS–WOA Hybrid Model and Evaluation Criterion

There are certain limitations in the traditional single-time series prediction model
in terms of prediction accuracy. Based on the ARIMA single prediction model, ANFIS
combined prediction model and WOA, the ARIMA–ANFIS–WOA hybrid prediction model
is proposed and applied to predict the vibration response of the pumping station.

The hybrid prediction theory allocates appropriate weight coefficients to different
prediction methods for the same prediction problem. The final prediction results of the
hybrid model are achieved by superimposing the results of the single prediction model.
For the ARIMA–ANFIS–WOA hybrid prediction model, Yt = {yt} is assumed as the actual
time-series data. Ŷt is the final prediction result of the hybrid prediction model. Ŷt is
expressed as follows.

Ŷt = w1 f1t + w2 f2t t = 1, 2 , · · · , m (32)

w1 + w2 = 1 (33)
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where f 1t and f 2t represent the prediction results of the first and second prediction model
at time t, respectively. m is the maximum prediction time. w1 and w2 are the weight
coefficients of the first and second prediction results, respectively.

The calculation process of the ARIMA–ANFIS–WOA hybrid prediction model is
shown in Figure 3. The specific implementation steps are described as follows.
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Step 1: Select and normalize the time series of the vibration response of the pumping
station. Since the time history response of the effective stress of the blades exhibits both
linear and nonlinear characteristics, we choose the effective stress curve calculated from
numerical simulation for the prediction study. The dataset is divided into training set and
test set.

Step 2: Train and predict the time series at each time point using the ANFIS model and
the ARIMA model, respectively. The prediction results at this step serve as intermediate
results during the prediction process of the hybrid model. In the prediction study based
on the ANFIS model, we employ three different algorithms, namely GP, SC and FCM,
to generate the fuzzy structure, and we compare the prediction results to determine the
optimal ANFIS results.

Step 3: WOA is used to obtain the weight coefficients of intermediate results. Firstly,
WOA is initialized to calculate the individual fitness of whales. The optimal position is
recorded, and parameters a, A and C are updated. Then, the probability p value discrim-
ination is conducted. If p ≥ 0.5, spiral motion will be performed according to Equation
(26). Otherwise, if |A| > 1, random search will be performed according to Equations (28)
and (29). If |A| ≤ 1, prey surrounding will be conducted according to Equations (22) and
(23). Next, the fitness f is calculated and compared with the optimal fitness fbest. If f < fbest,
the position is updated, and the next iteration is proceeded until the optimal solution is
achieved. Otherwise, the next iteration proceeds without updating the position.
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Step 4: Combine the intermediate prediction results of the ANFIS model and ARIMA
model with the optimal weight coefficient obtained from the WOA algorithm to establish
the ANFIS-ARIMA-WOA hybrid prediction model for predicting the vibration response of
the pumping station.

Step 5: Verify the prediction accuracy of the hybrid model. If the prediction results of
the ARIMA-ANFIS-WOA model satisfy the accuracy requirements, the final prediction re-
sults are generated, and a corresponding performance evaluation is conducted. Otherwise,
return to step 3 to optimize the weight coefficient until the desired prediction accuracy
is attained.

The model’s prediction accuracy is evaluated using root mean square error (RMSE),
mean absolute error (MAE), standard deviation (SD) and correlation coefficient (R). The
calculation formula is provided in Equations (34)–(37) [46–48]. RMSE and SD assess the
accuracy and stability of the model, respectively. Consequently, smaller values of MAE,
RMSE and SD indicate better prediction results, while a larger R value signifies greater
predictive ability.

RMSE =

√√√√√ N
∑

k=1
(yk − ŷk)

2

N
(34)

MAE =
1
N

N

∑
k=1
|yk − ŷk| (35)

SD =

√√√√ 1
N

N

∑
k=1

(yk − µ)2 (36)

R =
cov(yt, yt)√
V(yt)

√
V(yt)

(37)

where N is the number of sample data, yk is the predicted value of the model, ŷk is the mean
value of the predicted value and µ is the mean value of the sample data.

2.5. D-S Evidence Theory

The D-S evidence theory, proposed by A.P. Dempster and G. Shafer, is a decision-
making method used to address uncertain problems. This theory has found widespread
application in various fields, such as data fusion, risk assessment and modern decision
making, where a rigorous reasoning process and robust fusion of multiple sources of
information are required. In essence, the D-S evidence theory involves establishing an
identification framework that represents all possible outcomes of a decision problem.
Subsequently, subsets within this framework are evaluated, generating a trust function.
The trust function assigns a truth value to propositions recognized by the framework. In
cases where multiple subsets exist, the trust functions obtained from each subset can be
combined using Dempster’s composition rule, thereby yielding the evidence synthesis
result for each subset.

The accuracy of fusion results relies heavily on the basic probability distribution
function of the evidence. Since evidence exhibits characteristics of discrete probability
distribution, the basic probability value for small probability events is set at 5%. The
solution of the basic probability value mi(Aj) of the evidence mi for the proposition Aj could
be referred to Equation (38).

mi
(

Aj
)
=


0.05, xi < aij1, xi > aij2[
xi −

(
aij1 − uij

)]
/
(
2uij

)
, aij1 ≤ xi ≤ uij(

aij2 + uij − xi
)
/
(
2uij

)
, uij < xi ≤ aij2

(38)
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where xi represents the monitoring value of the evidence mi. aij1 and aij2 denote the lower
and upper limits of the range for proposition Aj, respectively. These limits are determined
based on threshold parameter results. The average value of the range of proposition Aj is
represented by uij, as shown in Equation (39).

uij =
(
aij1 + aij2

)
/2 (39)

Normalization is performed for mi(Aj) obtained from Equation (38).

mi
′(Aj

)
=

1− 0.05z
n
∑

j=1
mi
(

Aj
)mi

(
Aj
)
, n = 1, 2, . . . , s, u (40)

where z is the number of small probability propositions in the evidence. mi
′(Aj) is the

normalized probability distribution value.
Figure 4 illustrates the safety warning process for the vibration response of the pump-

ing station based on the D-S evidence theory. The process begins by defining evaluation
indexes and criteria, establishing an evaluation system for the vibration response of the
pumping station. Specifically, displacement, velocity, acceleration and stress are employed
as evaluation indexes. Subsequently, a D-S evidence set is constructed using vibration
response prediction data for the pumping station. The threshold value for the vibration
response is determined based on the vibration control standard of the pumping station.
Basic probability distribution is then conducted on the evidence set to create an early safety
warning identification framework for vibration. Finally, the identification results of each
piece of evidence are integrated and reasoned using the D-S evidence theory. This involves
assessing basic probability, trust measure, likelihood measure and other indicators. The
evidence fusion results of the operation state of the pumping station units are evaluated.
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Figure 4. Flow chart of pumping station vibration response safety early warning based on D-S
evidence theory.

3. Prediction Results of the Vibration Responses and Evaluation
3.1. Data Source and Collection

The data for the prediction study are derived from the numerical simulation results of
the pumping station. As shown in Figure 5, a large-shaft tubular pumping station model is
established, including the pump unit, the concrete structure and the fluid inside the flow
channel. A two-way iterative FSI method is employed to explore the vibration features
and provide a data source for prediction study. The parameters of the pump are as follows:
impeller diameter D2 = 3.25m, single unit design flow Q = 30m3/s, lift H = 0.96m, rated
speed n = 105rpm and total installed capacity 6250 kW.

Compared with the time series of other variables, including displacement and accel-
eration, the time series of the effective stress express both linear and nonlinear features.
Therefore, the effective stress results are chosen as the data source. The span of the data is
from 6.0 to 10.0 s with a total sample of 800. Thus, 640 sets of data ranging from 6.0 to 9.2 s
are taken as training samples, which accounts for 80% of the total sample. The remaining
datasets ranging from 9.2 to 10.0 s are taken as test samples, accounting for 20% of the
total sample.
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Figure 5. Numerical model of the pumping station. (a) Structure grid; (b) fluid grid.

3.2. Prediction Results of ARIMA Model

The ARIMA prediction model is established for vibration response prediction of the
pumping station. The ADF and KPSS tests are carried out, and the results show that
the significance test level p value is 0.0614, greater than the confidence level value 0.05,
which indicates that the sequence is unstable and fails to pass the significance test. The
first-order difference operation is carried out and p = 0.001 is obtained, which passes the
significance test.

The ARMA (p, q) model can be identified by observing the autocorrelation function
(ACF) and partial autocorrelation function (PACF) diagram of the sequence, though it is not
the final basis for order determination. The ACF and PACF after the first-order difference
are shown in Figure 6. The red dots are the values of ACF and PACF, and the area between
blue lines corresponds to 95% confidence interval. It shows that ACF and PACF gradually
tend to zero after the lag of zero order, presenting tailing feature.
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In order to determine the order of the ARIMA model more accurately, AIC and BIC
criteria are adopted to select the order violently. In this research, the minimum sum of AIC
and BIC information is used as the criterion to determine the model order. The effective
stress prediction model is finally determined as ARMA (7, 4). The residual sequence is
basically a standard normal distribution. The DW coefficient is 1.9959, very close to 2,
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which indicates no first-order correlation in the residual sequence. Therefore, the residual
sequence is considered as a white noise sequence and passes the residual test. The effective
stress prediction curve based on the ARIMA model is shown in Figure 7, where E is the
absolute error between the original value and the prediction. The effective stress curve
suddenly changes at t = 9.590s and t = 9.675s, and the prediction error becomes relatively
large. Since the ARIMA principle is based on moving averages and autoregression, the
predicted results are generally close to the historical average. Therefore, the prediction
accuracy is not good for data points with significant fluctuations. The prediction value fits
well at other time points with good prediction effects.
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3.3. Prediction Results of ANFIS Model

The configuration of parameters in the prediction model can significantly impact the
prediction results. For the GP–ANFIS model, the key parameters are the time lag, the
number and type of membership functions. There is no standardized time lag for input
variables. In this research, the time lag value τ is set within a range of 1∆t~6∆t; specifically,
the vibration response sequences of t − 1∆t, t − 2∆t, t − 3∆t, t − 4∆t, t − 5∆t and t − 6∆t
periods are taken as input. The vibration response of the prediction period 1∆t is taken as
the output. The number of membership functions is set to 2, 3, 4, 5 and 6. Membership
function types include Triangular, Bell, Trapezoid and Gaussian. In the SC–ANFIS model,
the influence radius (IR) is an important parameter, and its value is set within a range of
0.20~0.90 in the current research. In the FCM–ANFIS model, the weighted exponent m
ranging from 1 to 9 is significant for the prediction results.

GA is employed to optimize the key parameters for predicting the effective stress
vibration trend. Preset amounts of parameters play a crucial role in determining the
behavior and performance of the GA, which typically include parameters, such as the
iteration number, population size, crossover rate and mutation rate. In the current research,
each parameter is tested with three different values to find the optimal value. The grid
search method is employed to determine the optimal value. The parameters in GA are
set as follows: 100 iterations, an initial population of 200, crossover probability of 0.90
and mutation probability of 0.01. The parameter optimization process curve of the ANFIS
model based on GA is shown in Figure 8. As the number of iterations increases, RMSE
gradually decreases and stabilizes at 55 iterations. The convergence curve of the GP–
ANFIS model has a larger slope compared to the SC–ANFIS model. The FCM–ANFIS
model exhibits fast convergence speed, high accuracy and good prediction performance.
FCM is an unsupervised fuzzy clustering method that integrates the essence of fuzzy
theory. Compared to the poor clustering scalability of GP and inflexibility of SC, the FCM
algorithm provides more flexible clustering results without human intervention in the
implementation process. Therefore, for nonlinear vibration data with irregular effective
stresses, FCM-ANFIS achieves high prediction accuracy and efficiency.



Water 2023, 15, 2656 16 of 25Water 2023, 15, x FOR PEER REVIEW 16 of 25 
 

 

 
Figure 8. Parameter optimization process curve of ANFIS model based on different fuzzy structures. 

The optimal parameter settings for the prediction models, namely GP-ANFIS, SC-
ANFIS and FCM-ANFIS, are provided in Table 1. For the blade effective stress prediction, 
the optimal input variable parameter settings for the GP-ANFIS model consist of a 4Δt 
time lag and two Gaussian membership functions (refer to Figure 9). In the case of the SC-
ANFIS model, the optimal influence radius (IR) value is determined to be 0.23. As for the 
FCM-ANFIS model, the optimal weighted exponent is set to m = 3.83. The correlation co-
efficient (R) fitting result is depicted in Figure 10, demonstrating a good overall fitting 
effect. Notably, the FCM-ANFIS model achieves a maximum R value of 0.9896. Likewise, 
Figure 11 presents the prediction results of the effective stress for different fuzzy struc-
tures of the ANFIS model. By considering the obtained RMSE values during the parameter 
optimization process (shown in Figure 8), it is evident that the FCM-ANFIS model out-
performs the GP-ANFIS and SC-ANFIS prediction models in terms of prediction accuracy. 

Table 1. Parameter setting of ANFIS model based on different fuzzy structures. 

Prediction Model Parameter Optimization Interval Optimal Parameter Set-
ting 

GP–ANFIS model 
Time lag τ {1Δt, 2Δt, 3Δt, 4Δt, 5Δt, 6Δt } 4Δt 

Membership function number {2, 3, 4, 5, 6} 2 
Membership function type {Triangular, Bell, Trapezoid, Gaussian} Gaussian 

SC–ANFIS model Influence radius IR [0.20, 0.90] 0.2272 
FCM–ANFIS model Weighted exponent m [1, 9] 3.8268 

 
Figure 9. Gaussian membership function of GP–ANFIS model with optimal parameter setting. 

Figure 8. Parameter optimization process curve of ANFIS model based on different fuzzy structures.

The optimal parameter settings for the prediction models, namely GP-ANFIS, SC-
ANFIS and FCM-ANFIS, are provided in Table 1. For the blade effective stress prediction,
the optimal input variable parameter settings for the GP-ANFIS model consist of a 4∆t time
lag and two Gaussian membership functions (refer to Figure 9). In the case of the SC-ANFIS
model, the optimal influence radius (IR) value is determined to be 0.23. As for the FCM-
ANFIS model, the optimal weighted exponent is set to m = 3.83. The correlation coefficient
(R) fitting result is depicted in Figure 10, demonstrating a good overall fitting effect. Notably,
the FCM-ANFIS model achieves a maximum R value of 0.9896. Likewise, Figure 11 presents
the prediction results of the effective stress for different fuzzy structures of the ANFIS
model. By considering the obtained RMSE values during the parameter optimization
process (shown in Figure 8), it is evident that the FCM-ANFIS model outperforms the
GP-ANFIS and SC-ANFIS prediction models in terms of prediction accuracy.

Table 1. Parameter setting of ANFIS model based on different fuzzy structures.

Prediction Model Parameter Optimization Interval Optimal Parameter Setting

GP–ANFIS model
Time lag τ {1∆t, 2∆t, 3∆t, 4∆t, 5∆t, 6∆t } 4∆t

Membership function number {2, 3, 4, 5, 6} 2

Membership function type {Triangular, Bell, Trapezoid,
Gaussian} Gaussian

SC–ANFIS model Influence radius IR [0.20, 0.90] 0.2272
FCM–ANFIS model Weighted exponent m [1, 9] 3.8268
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3.4. Prediction Results of ARIMA–FCM–ANFIS–WOA Hybrid Model

The FCM clustering method is adopted to generate the fuzzy structure in the ANFIS
model. Table 2 shows the parameter settings in the FCM–ANFIS model and ARIMA–
FCM–ANFIS–WOA model. The input membership function of the FCM–ANFIS model is
Gaussian, the output membership function is linear, the fuzzy structure is Takagi–Sugeno,
the number of fuzzy rules is 10, the maximum number of iterations is 1000, the initial
time step is 0.01 and the time decline rate and growth rate are 0.9 and 1.1, respectively.
In the ARIMA–FCM–ANFIS–WOA hybrid model, WOA is set to have 100 iterations and
100 whales.
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Table 2. Parameter settings for prediction models.

Prediction Model Parameter Value

FCM–ANFIS Input membership function type Gaussian
Output membership function type Linear

Fuzzy structure Takagi-Sugeno
Fuzzy rule number 10

Maximum number of epochs 1000
Initial time step 0.01

Time step reduction rate/growth rate 0.9/1.1

ARIMA–FCM–ANFIS–WOA Number of iterations 100
Number of whales 100

Figure 12 shows the effective stress prediction curve based on the ARIMA–FCM–
ANFIS–WOA model. The overall fitting degree of the hybrid model is relatively high. The
hybrid model improved the prediction performance near the curve mutation, reducing
the maximum absolute error to less than 0.5 MPa. The hybrid model reduces the risk
of misjudgment from a single prediction model and yields more accurate and reliable
evaluation results by combining the predictions from multiple time-series models using
weight coefficients. The ARIMA-ANFIS hybrid model can handle different types of data
as it leverages the linear data processing capability of ARIMA and the nonlinear data
processing capability of ANFIS. The weight coefficient of the ARIMA-ANFIS method is
optimized using the metaheuristic optimization algorithm, WOA, during the parameter
optimization process. The proposed ARIMA-ANFIS hybrid method can capture both linear
and nonlinear features of time series, overcoming the limitations of a single method that
cannot capture all information of time series.
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3.5. Prediction Evaluation of Different Models

Two commonly used optimization algorithms, namely GA and PSO, are employed to
optimize the weight coefficients in the hybrid model. Table 3 shows the prediction results
obtained from different prediction models, including ARIMA, GP–ANFIS, SC–ANFIS,
FCM–ANFIS, ARIMA–FCM–ANFIS–GA, ARIMA–FCM–ANFIS–PSO and ARIMA–FCM–
ANFIS–WOA. The prediction results of the test set show that the ARIMA–FCM–ANFIS–
WOA model exhibits relatively smaller values for RMSE, MAE and SD compared with the
combined ANFIS model. Furthermore, the correlation coefficient R reaches an impressive
value of 0.9915. The precision achieved by the hybrid model surpasses that of both the
single ARIMA model and the combined ANFIS model, which shows that the hybrid model
performs more effectively in reducing the probability of miscalculation and bias risk of
a single model. Additionally, the calculation results derived from GA, PSO and WOA in
the hybrid model are similar. Overall, the ARIMA–ANFIS–WOA model demonstrates
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a higher prediction accuracy in comparison to the hybrid model that integrates GA and
PSO algorithms.

Table 3. Prediction results of the effective stress of the blades using different prediction models.

Model
Training Set Test Set

RMSE (MPa) MAE (MPa) SD (MPa) R RMSE (MPa) MAE (MPa) SD (MPa) R

ARIMA 0.1465 0.0215 0.1465 0.9263 0.0850 0.0072 0.0852 0.9831
GP–ANFIS 0.0900 0.0081 0.0901 0.9816 0.0709 0.0049 0.0714 0.9841
SC–ANFIS 0.1015 0.0103 0.1015 0.9748 0.0729 0.0055 0.0727 0.9870

FCM–ANFIS 0.0880 0.0077 0.0881 0.9811 0.0707 0.0047 0.0708 0.9896
ARIMA–FCM–ANFIS–GA 0.1017 0.0103 0.1017 0.9766 0.0666 0.0044 0.0668 0.9914
ARIMA–FCM–ANFIS–PSO 0.1018 0.0104 0.1019 0.9761 0.0698 0.0049 0.0699 0.9898

ARIMA–FCM–ANFIS–WOA 0.1021 0.0104 0.1022 0.9765 0.0665 0.0044 0.0667 0.9915

3.6. Vibration Prediction Results Based on ARIMA-FCM-ANFIS-WOA Hybrid Model

In order to comprehensively understand the operational status of the pumping station
and provide a data source for the safety warning study, predictive research on the vibration
responses of the station is conducted. The ARIMA-FCM-ANFIS-WOA hybrid prediction
model is utilized to predict the vibration trends of displacement, velocity, acceleration and
the first principal stress of the extreme point of the concrete structure in the pumping house.
Figure 13 displays the original, training and predicted values of the corresponding vibration
responses of the concrete structure, where E represents the absolute error between the
original value and the fitted or predicted value. For the training phase, 640 datasets between
6.0 and 9.2 s are selected, accounting for 80% of the total samples. Additionally, 160 datasets
between 9.2 and 10.0 s are chosen as test samples. The results indicate that the hybrid
model, incorporating WOA, exhibits excellent prediction performance in vibration curves
characterized by strong stationarity and regularity. These vibration prediction results serve
as the foundational data for the safety evaluation study in the subsequent section.
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Figure 13. Prediction results of the concrete structure of pumping station (ARIMA–FCM–ANFIS–
WOA model). (a) Displacement; (b) velocity; (c) acceleration; (d) the first principal stress.
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4. The Safety Early warning Study of the Pumping Station Based on the D-S
Evidence Theory

Structural safety prediction is based on the variation pattern of vibration response. It
estimates the changing trends of historical monitoring data, providing reasonable references
for pumping station vibration response status and future trends to maintenance personnel.
However, it usually cannot evaluate the goodness or badness of these variable changes in
terms of value significance. On the other hand, warning utilizes useful information from
the abundant data in pumping station operation to define safety warning indicators and
evaluation criteria. It constructs a safety warning system for the pumping station, evaluates
the predictive values from a value perspective and provides an interval for objective safety
judgment and decision making by decision makers. Therefore, safety prediction provides a
data foundation for safety warning, while safety warning represents a higher-level safety
prediction that can support decision making and operations.

Considering the pumping station’s complex structural components, multiple vibration
sources and uncertainty of measured data, this study proposes a safety early warning model
based on D-S evidence theory for the pumping station. The evidence set is established
based on the vibration response prediction results of the pumping station, specifically
focusing on the responses of the extreme points. The vibration data are analyzed using the
D-S information fusion method, with vibration displacement, velocity, acceleration and
stress being chosen as the fusion indicators. The operational status of the pumping station
is evaluated, and early warnings are issued accordingly.

4.1. Evaluation Criteria for Vibration Response of the Pumping Station

According to the vibration control standard of the pumping station, the maximum
permissible vibration displacement for concrete is 0.20 mm, the maximum permissible
vibration velocity is 5.0 mm/s and the maximum permissible vibration acceleration is
1.0 m/s2. The stress control value for the concrete structure is 17.5 MPa, and for the
metal structure, it is 175 MPa. Based on relevant literature [49], the criteria for evaluating
the vibration response of pumping stations using D-S evidence theory are defined and
presented in Table 4. The limit values for extremely unsafe level IV, unsafe level III,
relatively safe level II and safe level I are 90%, 80~90%, 70~80% and 70% of the allowable
value, respectively.

Table 4. Evaluation criterion of the vibration responses of pumping station based on D-S
evidence theory.

Level Displacement (µm) Velocity (mm/s) Acceleration (m/s2)
Stress (MPa)

Concrete Structure Metal Structure

Level I <140 <3.5 <0.7 <12.3 <122.5
Level II 140~160 3.5~4.0 0.7~0.8 12.3~14.0 122.5~140.0
Level III 160~180 4.0~4.5 0.8~0.9 14.0~15.8 140.0~157.5
Level IV >180 >4.5 0.9 15.8 157.5

4.2. Identification Framework for Vibration Safety Warning of Pumping Station

The D-S evidence theory combines multiple pieces of evidence to reduce system
uncertainty and determines to which subset of Θ an event belongs. Its essence lies in
synthesizing the basic probability distribution function for multiple pieces of evidence. In
this research, the identification framework for vibration safety includes the subsets A1, A2,
A3, A4, As and Au within the set Θ. The evidence set Θ consists of L1, L2, L3, L4 and L5,
which correspond to extreme response point data for displacement, velocity, acceleration,
first principal stress and effective stress, respectively. The basic probability distribution
function, m1, m2, m3, m4 and m5, represents the supporting probability set for each level
within Θ. Figure 14 depicts the D-S evidence theory matrix, where each line represents
the support probability of the corresponding evidence for different operation levels of the
pumping station, with a sum value of 1. Column j indicates the support probability for a
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specific level of pumping station operation. A high value indicates a high probability for
this level.
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As depicted in Figure 13, the maximum vibration amplitudes of displacement, velocity,
acceleration and the first principal stress of the concrete structure in the pumping station
are 1.75 µm, 0.04 mm/s, 4.15 mm/s2 and 0.13 MPa, respectively. The effective stress of the
blade is 24.80 MPa. The basic probability distribution value of each piece of evidence is
calculated and normalized according to Equations (38) and (40), as shown in Table 5.

Table 5. Basic probability table showing data fusion of monitoring points in the pumping station.

m A1 A2 A3 A4 As Au

m1 0.40 0.05 0.05 0.05 0.40 0.05
m2 0.40 0.05 0.05 0.05 0.40 0.05
m3 0.40 0.05 0.05 0.05 0.40 0.05
m41 0.40 0.05 0.05 0.05 0.40 0.05
m42 0.41 0.05 0.05 0.05 0.39 0.05

4.3. Multi-Source Information Fusion Results

Information fusion research is conducted to determine the operational status of the
pumping station. This process involves two levels of fusion: data-level fusion and decision-
level fusion. In data-level fusion, each evaluation index datum represents evidence of the
pumping station’s safety. By fusing the evaluation index data of the same type, comprehen-
sive evidence for that type can be obtained. In decision-level fusion, the fusion results from
data-level fusion, which are obtained from different types of evaluation indicators, serve
as evidence for the overall safety of the pumping station. This evidence is further fused
to obtain the final results, which represent the comprehensive evaluation of the pumping
station’s safety.

The fused basic probability distribution after the fusion of m41 and m42 is
m4{A1, A2, A3, A4, As, Au} = {0.6919, 0.0600, 0.0107, 0.0107, 0.2230, 0.0036}. The vibra-
tion data of measurement points L1, L2, and L3, as well as the stress data after the first-level
fusion, were then subjected to second-level fusion. The final result of the information
fusion is M{A1, A2, A3, A4, As, Au} = {0.9462, 0.0240, 0.0000, 0.0000, 0.0297, 0.0000}, the belief
measure Bel{A1, A2, A3, A4, As, Au} = {0.9462, 0.0240, 0.0000, 0.0000, 1.0000, 0.0000} and
the plausibility measure Pl{A1, A2, A3, A4, As, Au} = {0.9759, 0.0537, 0.0000, 0.0000, 1.0000,
0.0000}. They are listed in Table 6 and Figure 15.
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Table 6. Basic probability calculation table of monitoring data after D-S evidence fusion.

Proposition A1 A2 A3 A4 As Au

Basic probability M 0.9462 0.0240 0.0000 0.0000 0.0298 0.0000
Belief measure Bel 0.9462 0.0240 0.0000 0.0000 1.0000 0.0000

Plausibility measure Pl 0.9759 0.0537 0.0000 0.0000 1.0000 0.0000
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Bel(A) represents the degree of trust in the proposition A being true, while Pl(A)
represents the degree of not opposing the proposition A. Table 6 shows that Bel(A1) = 0.9462,
indicating that the trust interval for the safe operation status of the pumping station is
[0.9462, 1.0000]. It demonstrates that the pumping station’s safety status under design
operating conditions is very good. Based on the upper and lower limits of the trust interval,
the uncertainty interval is only 0.0538, indirectly proving the high reliability of the D-S
evidence theory for the evaluation of the pumping station’s safety status. Bel(As) = Pl(As) = 1,
meaning that the supporting evidence interval for the pumping station’s safety warning
model reaches 1, indicating that the pumping station’s operating status is safe. Considering
the complexity and fuzziness of the safety influencing factors of the pumping station,
the D-S evidence method integrates different types of evidence information, including
the displacement, velocity, acceleration and stress indicators, of the pumping station’s
vibration response. It quantitatively displays the probabilities and degrees of trust of each
proposition, providing reliable references for the evaluation and decision making of the
pumping station’s operation status.

5. Conclusions

This research focuses on methods of prediction and safety early warning for vibration
responses of the pumping station. Due to the limitations of single model prediction,
this research proposes a hybrid prediction method based on ARIMA–ANFIS–WOA for
predicting vibration responses in pumping stations. The performance of the developed
models was studied based on the effective stress vibration data of the blades. The D-S
evidence theory was employed to establish an early warning model for the vibration
response of the pumping station, allowing for quantitative evaluation of its operation
status. The main conclusions are as follows:

(1) Vibration prediction research was performed using the ARIMA model. The model
order was determined based on the minimum sum of AIC and BIC information.
The prediction results for effective stress indicate a good fit for most time points,
but there are cases where the curve abruptly changes, leading to relatively large
prediction errors.

(2) The prediction study involved using various fuzzy structures for the combined ANFIS
prediction model. GA was employed to optimize the important model parameters,
including the time lag, the number and type of the membership function in the
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GP–ANFIS model, the influence radius in the SC–ANFIS model and the weighted
exponent in the FCM–ANFIS model. The prediction results demonstrate that the
FCM–ANFIS model has better accuracy and efficiency compared to the GP–ANFIS
model and SC–ANFIS model.

(3) In the research on vibration prediction using the hybrid model, the weight coeffi-
cients were derived to integrate intermediate results using the WOA algorithm. The
research findings indicate that the ARIMA–FCM–ANFIS–WOA model has higher
prediction accuracy compared to the hybrid model using GA and PSO algorithms.
The hybrid model exhibits higher accuracy than the single model ARIMA and the
combined model ANFIS. The vibration responses of the concrete structure and metal
unit comply with the vibration standard and do not exceed the specified amplitude in
the vibration specifications.

(4) A safety early warning model was developed using the D-S evidence theory to assess
the safety of the pumping station. Displacement, velocity, acceleration and stress
indicators were selected as the fusion indicators for analyzing the vibration data.
The results indicate a confidence interval of [0.9462, 1.0000], suggesting excellent
pump operation status in the design condition. The D-S evidence method provides a
quantitative display of the probability and confidence of each proposition, making it
highly credible for evaluating and making decisions regarding the operating state of
the pumping station.

(5) The proposed framework for predicting and providing warning for the vibration
responses can be applied to the real-time operation and management of pumping
stations. The prediction model exhibits strong generalizability and computational
efficiency. However, there is room for improvement in predictive performance, partic-
ularly in areas with significant data fluctuations. Comparing the proposed models
with existing benchmark datasets or alternative methods will also be considered in our
future research to support the validity and significance of the predictions. In addition,
the safe operation of pumping stations is influenced by numerous factors that interact
in a complex manner. The models developed for pumping station safety warnings in
this research do not account for all these factors and are relatively simplistic. Further
research should be conducted to incorporate multiple factors and develop pumping
station safety warning models that rely on more accurate predictions.
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