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Abstract: Early identification of anomalies (such as leakages or sensor failures) in urban water
distribution systems is critical to mitigating water scarcity in cities and is a challenge in water
resource management. Several data-driven methods based on machine learning algorithms have
been proposed in the literature for leakage detection in urban water distribution systems. Still, most
of them are challenging to implement due to their complexity and requirements of vast amounts of
reliable data for proper model generation. In addition, the required infrastructure and instrumentation
to collect the data needed to train the models could be unaffordable. This paper presents the use and
comparison of Autoregressive Integrated Moving Average models and Transfer Function models
generated via the Box–Jenkins approach to modeling the water flow in water distribution systems for
anomaly detection. The models were fit using water flow data from tanks operating in a branch of the
water distribution system of Mexico City. The results showed that both methods helped select the best
model type for each variable in the analyzed water branch, with Seasonal ARIMA models achieving
a lower mean absolute percentage error than the fitted Transfer Function models. Furthermore, this
methodology can be adjusted to different time windows to generate alerts at different rates and
does not require a large sample size. The generated anomaly detection models could improve the
efficiency of the water distribution system by detecting anomalies such as wrong measurements and
water leakages.

Keywords: anomaly detection; ARIMA; transfer function model; urban water branch; leakage detection

1. Introduction

The growing worldwide population, the increasing living standards, the altered water
consumption habits, and the spread of irrigated agriculture are the primary causes of the
rising global demand for water. Water scarcity has become a danger to the sustainable de-
velopment of human society [1]. According to the World Urbanization Prospects published
by the United Nations in 2018, almost 90% of Mexico’s population is projected to reside
in urban areas [2]. Nevertheless, 20 million people in Mexico suffer from severe water
scarcity [1]. Even though there is sufficient infrastructure in Mexico, water management
could be improved, and the system needs to be appropriately maintained. According to the
estimates, the distribution networks lose 40% of their water due to aging pipelines, lengthy
periods without sufficient maintenance, poor building and management techniques, and
ongoing land subsidence in metropolitan areas [3].

Managing water resources and preventing, identifying, and fixing leaks are essential
to reduce city water scarcity. However, this requires an information system. Therefore,
real-time monitoring and data collection are crucial to creating trustworthy and practical
information systems. Additionally, the data must be accurate and thorough to draw
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reliable conclusions and models [4]. Nevertheless, data collection is hampered by several
structural and physical restrictions, environmental factors, and human errors. Moreover,
the complexity and breadth of the modern city’s water system necessitate a significant
infrastructure investment for communications, location, and data processing [5]. The
above has motivated the development of solutions that help to monitor water distribution
networks. Several studies and technologies have been developed for leakage detection
in water distribution systems, which can be classified into hardware- and software-based
methods. Acoustic monitoring, gas injection, thermography, ground-penetrating radar, and
free swimming systems are examples of hardware-based techniques. However, employing
these techniques in broad regions can be time-consuming, expensive, and inappropriate for
automation or long-term monitoring [6].

Software-based leakage detection techniques can be categorized into model-based and
data-driven approaches. Model-based approaches define the link between the variables of
the water distribution network in a mathematical model of the water distribution network
while considering the network’s physical properties [7]. Model-based leak identification
techniques do not require previous network data; instead, the leak diagnosis is performed
by comparing the model outputs to the measured variables. Its development, however,
could be challenging, confined by the accuracy of the mathematical models, and dependent
on accurate model calibration [8].

On the other hand, data-driven approaches create data analysis plans using the net-
work’s historical data as a resource. In contrast to model-based approaches, data-driven
methodologies need to know the network’s structural characteristics and historical data.
Recently, there has been an interest in employing machine-learning methods because of
the robust capacities for pattern recognition and feature identification and the rising de-
velopment and accessibility of data-collecting technology [8]. For instance, multilayer
perceptrons, support vector machines, clustering algorithms, or deep learning algorithms
have been proven efficient for solving leak localization problems, as discussed in [6,8].

In this regard, water leakage detection based on machine learning algorithms has
been proposed to use different data modalities to train the detection models. These data
modalities include flow sensor data, pressure data, vibration data, vibro-acoustic data,
acoustic emission data, and satellite data [9–14]. However, satellite and acoustic emission
data collection may be unaffordable [15]. Besides, using flow sensors and vibration data for
water leakage detection requires the installation of several sensors across the water pipeline
or its junctions, which limits their use on large water distribution networks. In addition,
some studies that have developed water leakage detection systems have used simulation or
laboratory tests under controlled conditions without considering the uncertainty to which
data may be susceptible in real scenarios [16–19].

Moreover, the key challenge with applying machine learning techniques is choosing
the suitable algorithm, building appropriate feature extractors to learn complicated features,
accessing a large amount of data for training the models, and needing efficient signal
processing tools [6]. In addition, the black-box nature of deep learning algorithms makes
them less interpretable by humans and necessitates specialized computer hardware for
their training (e.g., Graphics Processing Units) [20].

Most of the studies that have proposed water leakage detection systems based on
data-driven methods either use machine learning techniques (i.e., random forest, support
vector machines, Adaboost, XGBoost) or deep learning algorithms (i.e., convolutional
neural networks (CNNs)), which often requires high-quality data to train them. However,
gathering enough data could be expensive, time-consuming, and unrealistic. Furthermore,
black-box classification techniques such as CNNs, random forests, multilayer perceptrons,
or XGBoost have many parameters to be adjusted, which limits their interpretability and
makes them prone to overfitting [21]. On the other hand, one of the crucial characteristics
of Autoregressive Integrated Moving Average (ARIMA) and Transfer Function (TF) models
is that they provide a linear estimate of the system to be modeled. Besides, the number of
parameters of ARIMA and TF models tends to be lower [22], which is a strong simplification
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compared to the large number of parameters that non-linear machine learning and deep
learning approaches often require [23].

This study presents a methodology for anomaly detection in water distribution systems
by employing water flow data and two classical time series modeling techniques, the
ARIMA and TF models, which were fit following the Box–Jenkins methodology [24]. This
study modeled water flow data from tanks in a primary network branch of the water
distribution system in Mexico City. This branch carries a significant volume of water
through tanks and supplies the secondary network. Analyzing this branch is crucial due to
the substantial water flows and pipeline sizes involved. A leakage occurring in this system
would result in more-significant water losses than other public water network systems of
Mexico City.

As previously stated, the studies in the literature have performed simulations, labora-
tory tests, or placed sensors (e.g., flow and vibrations sensors) across the water pipelines
to collect the necessary data to develop water-leakage-detection models [10,25–28]. On
the contrary, this study focused on analyzing a branch of the water distribution system of
Mexico City, which supplies water to the water pipes, instead of analyzing the water pipes
directly through flow or vibration sensors. The above was performed to detect anomalies
in the water flow behavior that could indicate the presence of sensor malfunction or water
leakages along the analyzed water branch. Thus, the data on the inlet and outlet water flow
of the tanks that comprise the analyzed water branch were used to develop the ARIMA
and TF models proposed in this work. Such a study has not yet been performed to the
authors’ knowledge.

The principal contribution of this work was the use and comparison of the TF and
ARIMA models generated through the Box–Jenkins methodology applied for anomaly
detection in water flow variables of a water branch of the Mexico City water distribution
system, which allowed us to:

• Adjust the models and forecasts to different time windows of the water flow consump-
tion in Mexico City.

• Generate anomaly-detection models with incomplete and small datasets by employing
the water flow data of a branch of the water distribution system of Mexico City.

• Generate interpretable and sparse models of water flow for anomaly detection in a
branch of the water distribution system of Mexico City.

• Perform a comparison of the ARIMA and TF models for modeling the water flow
behavior of a branch of the water distribution system of Mexico City.

The rest of this paper is structured as follows. Section 2 presents the literature review
on water leakage detection based on machine learning algorithms and an analysis of the
state-of-the-art. Section 3 presents the case study and describes the data collection process
of the flow data of the water distribution branch analyzed in this work. Moreover, the
overall methodology is explained, including the theoretical background of the ARIMA and
TF models and the model-generating process. In addition, the proposed anomaly-detection
methodology for the analyzed water branch, which integrates the best models of both
methods, is explained. Section 4 presents the results of the present study, while Section 5
presents the analysis and discussion of the results. Section 6 shows the main limitations
and areas of opportunity of this work. Finally, Section 7 presents the conclusions and
future work.

2. Literature Review

This section presents an overview of the studies that have proposed methods for water
leakage detection based on machine learning. In addition, an analysis and discussion of the
gaps in the current state-of-the-art is shown. Table 1 summarizes the literature on recent
approaches towards leakage detection in water distribution systems that used machine
learning techniques.

Recent studies have suggested using data-driven methodologies to detect water leak-
age, primarily relying on machine learning algorithms. Islam et al. [29] presented and
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discussed this trend of using machine learning for water leakage detection. For instance,
the study of Moulik et al. [17] proposed to detect water leakages and blockages in water
pipelines by processing the vibrations of PCV pipes. Moulik’s study employed three-axis
accelerometers to measure the vibration on the PCV pipes produced by water leakages;
then, the vibration data were utilized as the input into a k-means clustering technique
to perform the detection. Similarly, Choi et al. [30] utilized sound vibration data from
water pipes to detect water leakages by employing the magnitude spectra of the sound
vibration data to train a 2D CNN. Likewise, Yu et al. [10] employed vibration data collected
from piezoelectric accelerometers placed in the water distribution networks of several
cities in China for water leakage detection. Yu’s study tested different machine learning
algorithms such as support vector machines, decision trees, the SqueezeNet CNN, and
K-nearest neighbor, with the SqueezeNet achieving a higher performance when trained
with the spectrograms of the Short-Time Fourier Transform of the vibration data.

Fereidooni et al. [9] installed flow sensors in the pipeline network junction to detect
water leakages. The flow sensor data were processed using hydraulic equations to generate
velocity and head loss features. The trained algorithms were a decision tree, a K-nearest
neighbor, a random forest, and a Bayesian network. Satellite data have also been used for
water leakage detection. An example of this was presented by Chen et al. [11], who utilized
augmented satellite images to detect water leakages in the canal systems in Arizona. The
authors employed Landsat 8 satellite images to train a CNN, used as the water-leakage-
detection algorithm. Sousa et al. [12] proposed to analyze pressure data measured from
pumps in district-metered areas of Stockholm, Sweden. The analyzed area corresponded
to a residential area with no water tanks or reservoirs. The detection algorithms involved
a comparison of unsupervised learning algorithms, such as k-means clustering, and su-
pervised learning algorithms, such as learning vector quantization algorithms. In [31], it
was proposed to detect water leakages by processing acoustic emission signals collected
from the water distribution networks of Jiangsu, Zhejiang, and Shanghai. The acoustic
emission signals were characterized by computing the main frequency, the spectral roll-off
rate, the spectral flatness, and the Mel frequency cepstrum coefficients. Then, the authors
trained tree-based algorithms such as decision trees, Adaboost, and random forests, with
Adaboost achieving the highest performance. Likewise, Fares et al. [13] utilized acoustic
emission signals to detect water leakages in water distribution networks. Fares’ study
utilized time and frequency domain features to represent the acoustic emission signals and
used them as the input to train a support vector machine, an artificial neural network, and
deep learning algorithms.

Furthermore, Xue et al. [18] introduced a leakage-fault-detection approach using a hy-
draulic simulation model encompassing all potential leakage faults. Subsequently, XGBoost
was trained, and an alert-triggering algorithm generated a leakage signal associated with
the specific pipe’s name. Cody and Narasimhan [32] proposed a linear prediction model,
specifically an autoregressive moving average model in conjunction with a multivariate
Gaussian mixture model to perform semi-supervised leakage detection. This method
utilizes data collected with hydrophone sensors and simulated leakages within a water
distribution network. Additionally, the authors suggested a coarse-resolution leakage loca-
tion using the average baseline root mean square of the collected data and a fine location
estimation utilizing cross-correlation based on the time series data from linear prediction
filter sensors. Taghlabi et al. [19] conducted experiments employing two methods for water
leakage detection. Firstly, they simulated artificial leaks using the EPANET code on the
MATLAB platform to establish a database of pressure values that describe the network’s
behavior when leaks are present. Subsequently, these data were utilized to train a random
forest algorithm, enabling it to forecast the rate and location of leaks within the network.
Secondly, they simulated artificial leaks by manipulating hydrants in different locations,
considering two distinct leak sizes, and comparing results.

Similarly, Pérez-Pérez et al. [16] proposed using artificial neural network (ANN) tech-
niques and online measurements of pressure and flow rate to detect and locate water leaks
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in pipelines. The friction factor of the pipe was estimated and utilized as an input for
computing the leak position. Fabbiano et al. [33] considered that the energy variation trans-
mitted to the pipe walls by the radial component of vibrations induced by fluid turbulence
might be related to the flow leak. Hence, Fabbiano measured the radial vibrational status of
specific pipes in the network. Finally, Tornyeviadzi et al. [34] proposed a one-dimensional
CNN deep autoencoder trained to locate and identify water leaks. This technique uses
multivariate time series data to lessen the adverse effects of random noise. The proposed
autoencoder’s input data involved flow, pressure, and tank-level data.

Table 1. Recent data-driven approaches for water-leakage-detection technologies.

Project Year Country Methodology Results

Leakage detection in water
distribution systems based on
time–frequency convolutional

neural network [15]

2021 China

A leakage spectrogram was
employed to capture the

characteristics of leakage signals,
and a time–frequency

convolutional neural network
(TFCNN) model was compared
with other classification models

across various signal-to-noise ratio
(SNR) conditions.

The TFCNN model
demonstrated superior

performance with a mean
accuracy of 98% across different

SNR conditions. Even at a
challenging −10 dB SNR, the

mean detection accuracy
remained high at 90%.

Water Leakage Detection in Hilly
Region PVC Pipes using Wireless

Sensors and Machine Learning [17]
2020 Taiwan

Wireless sensors were utilized to
capture vibrations in PVC pipes

during water flow. Machine
learning algorithms were applied

to these vibration records to
identify any disruptions in the
regular water flow caused by

leakage or blockage.

Analysis of vibration records
with the help of K-means

algorithm to
determine the water level and

the leakages, if any.

Application of CNN Models to
Detect and Classify Leakages in

Water Pipelines Using Magnitude
Spectra of Vibration Sound [30]

2023 Korea

CNN model for water leakage
detection and classification using

sound vibration data from sensors
in water pipes.

The proposed CNN model
achieved an F1-score of 94.82%

and a Matthew’s correlation
coefficient of 94.47%.

Leak detection in water distribution
systems by classifying
vibration signals [10]

2023 China

Support vector machine (SVM),
decision tree (DT), and K-nearest

neighbor (KNN) for leak detection
models using signal data from
piezoelectric accelerometers in

Chinese water distribution
systems (WDSs).

SqueezeNet performed best with
95.15% accuracy in leak

identification, while KNN
excelled among the three
classifiers with superior

sensitivity and 88.17% accuracy.

A hybrid model-based method for
leak detection in large scale water

distribution networks [9]
2021Netherlands

Influential leak detection features
using hydraulic equations

(Hazen–Williams,
Darcy–Weisbach, and pressure
drop) and decision tree, KNN,
random forest, and Bayesian

network used to locate leaks and
determine their pressure based on

pipeline topology.

Of the models, 80.5%
consistently achieved results

above 92% in all scenarios. The
Naïve Bayesian Model

performed the best overall, with
a top result of 85.81%.

Augmenting a deep-learning
algorithm with canal inspection

knowledge for reliable water leak
detection from multispectral

satellite images [11]

2020 USA

A deep learning approach,
combined with canal inspection
knowledge, enabled automated
and reliable water leak detection
of canal sections using Landsat 8

satellite images.

The proposed approach can
achieve recall at 86%, precision

at 86%, and accuracy at 85%.
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Table 1. Cont.

Project Year Country Methodology Results

Leakage detection in water
distribution networks using

machine-learning strategies [12]
2023 Sweden

Analyzed pressure measurements from
pumps in district-metered areas

(DMAs) using unsupervised learning
(K-means and cluster validation

techniques) and supervised learning
(learning vector quantization

algorithms).

The proposed learning strategies
are able to obtain correct

classification rates up to 93.98%.

A Tree-Based Machine Learning
Method for Pipeline

Leakage Detection [31]
2022 China

Distinctive features such as main
frequency, spectral roll-off rate,

spectral flatness, and 1D Mel frequency
cepstrum coefficient (MFCC) using

random forest and Adaboost models.

The Adaboost model had the
lowest false positive rate of

7.35%. The recall rates of the
random forest and Adaboost

models were 100% and 99.52%.

Leak detection in real water
distribution networks based on

acoustic emission and
machine learning [13]

2022 China

Acoustic signals in time and frequency
domains were used to develop

leak-detection models, employing
SVM, ANN, and deep learning

(DL) techniques.

Demonstrated a largely stable
performance and a high

accuracy, particularly for new
unlabeled cases.

Machine learning-based leakage
fault detection for district

heating networks [18]
2020 China Hydraulic simulation model and an

XGBoost-based model 85.85% of mean accuracy.

Field implementation of linear
prediction for leak-monitoring in
water distribution networks [32]

2020 Canada Linear prediction model for
semi-supervised leak detection.

A detection accuracy in most
cases of over 70%.

Prelocalization and leak detection in
drinking water distribution

networks using
modeling-based algorithms [19]

2021 Morocco
A simulation of artificial leaks and a

random forest machine
learning algorithm

Leak position identified within a
100 m radius.

Leak diagnosis in pipelines using a
combined artificial neural

network approach [16]
2021 Mexico

ANN techniques and online
measurements of pressure and flow

rate measurements

An average error of 0.629% for
leak location.

Smart water grid: A smart
methodology to detect leaks in water

distribution networks [33]
2020 Italy Measuring the radial vibrational status

of opportune pipes of the network

Radial vibration signals are
linearly dependent only on the

flow rate variations due to
the leakages.

Leakage detection in water
distribution networks via 1D CNN
deep autoencoder for multivariate

SCADA data [34]

2023 Norway
A one-dimensional convolutional

neural network deep autoencoder (AE)
using multivariate time series data

Identified 16 of the 19 leaks in 2019.

From this literature review, it is possible to observe that machine learning techniques
have already been used extensively to perform water leakage detection. To a lesser extent,
satellite data have been employed. Nevertheless, satellite data could be difficult to collect
and label and may not be useful for detecting leakages inside the water pipelines. On
the other hand, sound vibration data may be unaffordable due to the need for specific
hardware to sample the vibro-acoustic signals. In the case of vibration data collected from
accelerometers, it is necessary to install multiple sensors across the water pipelines, which
can be costly and require extensive maintenance. Hence, analyzing the flow behavior of
the water network can be considered a cost-effective solution since flow data are frequently
monitored in water distribution systems. Nevertheless, similar to using accelerometers
placed along the water pipeline to measure the pipe vibration, it is necessary to install
multiple flow sensors along the water pipeline.

Moreover, in some of the reviewed works, the leakage-detection algorithm was devel-
oped in laboratory conditions, such as the studies of Pérez-Pérez et al. [16],
Moulik et al. [17], and Taghlabi et al. [19]. Nevertheless, as mentioned by Shen et al. [31],
on-site leakage signals have greater interference and randomness than leakage signals in a
laboratory. Hence, there is an opportunity to analyze flow sensor data sampled from real
water distribution systems and develop algorithms that can tackle the uncertainty to which



Water 2023, 15, 2792 7 of 32

the data are susceptible when developing models for water leakage detection. Furthermore,
most of the related works focused on detecting water leakages by directly measuring the
vibration or flow sensor data from the water pipeline. Nevertheless, analyzing the sensor
data along the complex water pipelines could be inefficient and costly.

In the case of the machine learning techniques that have been used to develop the
leakage detection models, it can be appreciated that deep neural networks have been exten-
sively used, mainly variants of CNNs [15,30]. Even so, CNNs required a sizable sample
size to avoid overfitting and a lack of interpretability due to the complexity that this type
of technique often requires. Other techniques frequently used in water leakage detection
are non-linear classification techniques such as decision trees, random forests, support
vector machines, Adaboost, and XGBoost [35]. However, these non-linear classification
techniques, similar to CNNs, require a large sample size to avoid overfitting and are less
interpretable than linear machine learning techniques [36].

Considering the above, there is an opportunity to develop techniques for detecting
water leakage from other locations besides measuring water flow data directly from the
water pipelines. Furthermore, the gathering of data and required flow sensors could be
reduced if the water branch that delivers water to the water pipelines is analyzed, rather
than directly measuring the flow or vibration in the water distribution pipelines. Finally,
linear machine learning techniques such as the TF and ARIMA models could be tested to
avoid using non-linear classification techniques, frequently employed in the literature, as
presented in Table 1.

3. Materials and Methods
3.1. Case Study and Dataset

The case study examined in this work consisted of six tanks from the Mexico City
water distribution system situated in the Álvaro Obregón delegation and connected by 48
in-diameter pipelines. Figure 1 shows a general schematic of the primary water distribution
network in Mexico City, where the main two sources of water (Cutzamala System and
Lerma System) feed several branches interconnected in cascade and fed by gravity. This
study analyzed the data from Branch C of Figure 1. The branch presented in Figure 1 is
instrumented to measure the water flow that is input and output to each water tank. The
sensors used to sample the data were ISOMAG electromagnetic flow meters. Moreover, it is
essential to highlight that the water distribution system of Mexico City is not instrumented
in the sub-branch of the water pipelines that serve to supply water to the users. Due to the
above, the case study was limited to analyzing the input and output of each water tank of
the analyzed branch to detect anomalies and their behavior that could indicate the presence
of leakages or measurement errors in the flow sensors.

The tanks are fed by gravity and connected by a leading pipeline, which separates
them by 0.5 to 2 km. The tanks are located in Álvaro Obregón delegation in Mexico City,
and each tank also supplies water to the local surrounding areas. Between Tank 1 and Tank
5 exists a difference of 200 m of elevation. Figure 2 shows the geographic location of the
water branch analyzed in this study. The blue squares represent the tanks of Branch C
presented in Figure 1. The blue line in Figure 2 indicates the connection between the tanks
across Mexico City.

The water flow rate of six tanks was measured. A total of 11 water flow variables
related to each tank’s input and output flow with their corresponding timestamp were
recorded every 15 min (i.e., the water flow measurements had a sampling rate of 15 min).
The data utilized in this study were collected during the final two weeks of August 2020.
The first week was the sampling period, during which the model was developed using
the available data. The second week was then designated as the forecasting period, where
the model’s performance was evaluated by generating forecasts based on the learned
patterns from the previous week. Each tank within the system is equipped with flow rate
measurements from electromagnetic flowmeters at its entry and one or two of its exits,
allowing for monitoring flow distribution within the main pipeline in liters per second (lps).
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Furthermore, it is important to note that certain flow rates designated for local consumption
or exit flows of the tank are unavailable due to a lack of instrumentation.
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Figure 1. A schematic representation of a section of the primary water distribution system of Mexico
City analyzed in this study. Filled orange squares represent trifurcations, while cyan squares represent
tanks of various capacities. The blue lines represent pipelines with a diameter exceeding 126 inches,
while the blue dotted lines indicate pipelines with a diameter of 48 inches.

A schematic representation of the water distribution branch analyzed in this work
is presented in Figure 3, where the blue lines represent the main pipeline and connection
with the next tank, and the gray lines correspond to the exit to the local network of the
region. Furthermore, Figure 3 shows an example of the average water consumed in a week
in percentage; therefore, for the first tank, all the input water corresponds to 100%, while in
Tank 5, the water to the next stage of the network corresponds to 32%; this means that the
region of this system consumed 68% of the total input water during the analyzed period.

Table 2 shows the variables and summary statistics from the period of water flow
analyzed in this study for the tanks shown in Figures 1–3. The summary statistics are
minimum, maximum, and mean flow rate presented in lps and the percentage of not
available (NA) or empty observations, taking as the total the entire period of each variable
every 15 min. The analysis and models presented in this study were implemented in
RStudio Version 2022.02.3 + 492 using R Version 4.2.0 on a 64 bit Windows 7 PC with 12 GB
of RAM and an AMD A10-5800K processor.

The first step involved identifying missing values in the raw time series flow sensor
data, as seen in Figure 4. This process was repeated for each water tank variable presented
in Table 2. Figure 4 illustrates the Tank 4 Inflow variable time series. The second step
consisted of filling in the original raw time series data missing values, as seen in Figure 5.
The average of the neighborhood values around the missing data points in the time series
was computed to fill in the missing values, using observations from an equal number of
data points on both sides of a central missing value. The process presented in Figure 5 was
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repeated for each water tank variable in Table 2; the same Figure illustrates the filling of
missing values for the Tank 4 Inflow variable.

Water 2023, 15, x FOR PEER REVIEW 9 of 34 
 

 

 
Figure 2. Geographic locations and connections of the water tanks of the water distribution branch 
of Mexico City analyzed in this study. The blue squares represent the locations of the tanks along 
the city. The lines on the map represent the connections between the tanks across Mexico City. The 
blue line represents a pipeline of 48 in in diameter, and the cyan line represents a pipeline of 20 in 
in diameter. 

The water flow rate of six tanks was measured. A total of 11 water flow variables 
related to each tank’s input and output flow with their corresponding timestamp were 
recorded every 15 min (i.e., the water flow measurements had a sampling rate of 15 min). 
The data utilized in this study were collected during the final two weeks of August 2020. 
The first week was the sampling period, during which the model was developed using 
the available data. The second week was then designated as the forecasting period, where 
the model’s performance was evaluated by generating forecasts based on the learned pat-
terns from the previous week. Each tank within the system is equipped with flow rate 
measurements from electromagnetic flowmeters at its entry and one or two of its exits, 
allowing for monitoring flow distribution within the main pipeline in liters per second 
(lps). Furthermore, it is important to note that certain flow rates designated for local con-
sumption or exit flows of the tank are unavailable due to a lack of instrumentation. 

A schematic representation of the water distribution branch analyzed in this work is 
presented in Figure 3, where the blue lines represent the main pipeline and connection 
with the next tank, and the gray lines correspond to the exit to the local network of the 
region. Furthermore, Figure 3 shows an example of the average water consumed in a week 
in percentage; therefore, for the first tank, all the input water corresponds to 100%, while 
in Tank 5, the water to the next stage of the network corresponds to 32%; this means that 
the region of this system consumed 68% of the total input water during the analyzed pe-
riod.  

Figure 2. Geographic locations and connections of the water tanks of the water distribution branch
of Mexico City analyzed in this study. The blue squares represent the locations of the tanks along
the city. The lines on the map represent the connections between the tanks across Mexico City. The
blue line represents a pipeline of 48 in in diameter, and the cyan line represents a pipeline of 20 in
in diameter.

Table 2. Characteristics of water flow variables in the sampling period for the six tanks of the
analyzed water distribution branch. The variable number corresponds to the ones shown in Figure 3.

Variable
Number Variable Minimum (lps) Maximum (lps) Mean (lps) NA (%)

1 Tank 1 Inflow 0 2587 1837 0%
2 Tank 1 Outflow 0 92.73 65.3 0%
3 Tank 2 Inflow 0 2430 1843 0%
4 Tank 2 Outflow 0 401.4 280.9 0%
5 Tank 3 Inflow −1.86 2220.15 1554.58 0%
6 Tank 4 Inflow 0 2489.2 994.8 14%
7 Tank 4 Outflow −107.01 117.41 6.334 8%
8 Tank 5 Inflow 0 2465.8 1088.3 5%
9 Tank 5 Outflow A −352.5 2912 819.3 5%

10 Tank 5 Outflow B 0 530.3 412.9 0%
11 Tank 6 Inflow 0 101.5 67.167 0%
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Figure 3. Schematic representation of the water distribution branch analyzed in this study. The case
study comprised six tanks connected by gravity. The average water mass of one week is presented
as a percentage. The measured variables are indicated with a symbol, and the variable numbers
correspond with those shown in Table 2 for each water flow sensor. The orange dots indicate the
positions of the water flow sensors along the water distribution branch that were measured.
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Figure 4. Example of identifying missing values in the raw time series flow sensor raw data for
Tank 4 Inflow variable during one week. The dotted blue line represents the observations of the
Tank 4 Inflow variable. The red line represents the missing values in the Tank 4 Inflow variable.
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Figure 5. Example of filling the missing values for Tank 4 Inflow variable corresponding to one week.
The dotted blue line represents the observations of the Tank 4 Inflow variable. The dotted red line
represents the imputed values in the Tank 4 Inflow variable.

3.2. Autoregressive Integrated Moving Average and Seasonal Autoregressive Integrated
Moving Average

The overall methods used to model the water flow variables of the water distribution
branch analyzed in this study are illustrated in Figure 6. Initially, measurements of each
water tank were collected, and then, the data were pre-processed to prepare them for
modeling. The best model for each variable was used to forecast over two different periods:
one day and one week. In the case of the TF models, time-ahead data were also included as
an input variable for estimating the forecasts. Further details on this process are explained
in subsequent sections of this research work. The theoretical background of the ARIMA
models is described below.
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Figure 6. The methodology flowchart utilized to fit the ARIMA and TF models based on the water
flow data.

ARIMA models are composed of a dependent variable Yt, which depends on past
values Y and an error term et. Besides, these models are characterized by three elements: a
moving average component, an autoregressive component, and a differencing (integration)
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component. The autoregressive component indicates that Yt depends on one or multiple
lagged values of Yt. The moving average component shows that Yt depends on one or
multiple lagged values of the error et. Finally, the integration or differencing component in-
dicates that the series should be stationary; computing the difference between neighboring
observations in the time series accomplishes the above [37].

The notation ARIMA(p,d,q) represents the order of the ARIMA models, where p is
the order of the autoregressive component, d is the order of the differencing (integration)
component, and q is the order of the moving-average process [38]. The backshift operator
(B) can be used to define an ARIMA model as follows:

φp(B)(1− B)dYt = θq(B)et (1)

where Yt is the value of the series observed at time t; B is the backshift operator; φ are the
autoregressive polynomials; θ is the moving average polynomial; et are the error terms of
the model. The error terms were assumed to be independent and identically distributed
with a normal distribution and zero mean [24].

However, the Seasonal Autoregressive Integrated Moving Average was considered
to model the seasonal component of the time series. In this regard, Seasonal ARIMA
models were selected since, as shown in Figures 4 and 5, the water flow time series have a
seasonal component (i.e., the series exhibits a regular fluctuation), which appears every
96 observations, corresponding to a day of water flow measurements. This seasonal
term makes the water flow time series nonstationary; therefore, to consider the seasonal
component of the time series and to fit an ARIMA model, the seasonal component needs to
be considered for the models [24].

Seasonality implies that Yt depends on lagged values of Yt at a regular interval s.
Seasonal ARIMA models consider the non-Seasonal ARIMA(p,d,q) and three additional
parameters labeled as (P, D, Q)m to account for the seasonality presented in a time series.
The m term refers to the number of time steps corresponding to a single seasonal period. On
the other hand, the term P represents the order of the seasonal autoregressive component;
the term Q refers to the seasonal moving average component; the term D represents the
seasonal differencing component [38]. The mathematical representation of the Seasonal
ARIMA models is shown in the next expression:

ΦP(Bm)ΦP(B)(1− Bm)D(1− B)dYt = ΘQ(Bm)θq(B)wt (2)

where Yt is a seasonal time series; wt is the Gaussian white noise process; ΦP(B) is the non-
seasonal autoregressive polynomials; θq(B) represents the non-seasonal moving average
polynomial. d is the non-seasonal differencing term. D is the seasonal differencing term.
One key aspect is that, when D = 1, this is sufficient to ensure stationarity in the time series.
ΦP(Bm) represents a seasonal autoregressive polynomial; the term ΘQ(Bm) is a seasonal
moving average polynomial. Finally, B is the backshift operator [38].

In general, the optimal ARIMA model parameters are determined by considering three
criteria: (a) using Akaike’s information criterion (AIC); (b) examining the auto-correlation
function (ACF) to determine the q parameter of the ARIMA model and the number of
moving average (MA) coefficients and computing the partial auto-correlation function
(PACF) of the residuals to determine the p parameter for the number of autoregressive
coefficients; (c) by plotting the series residuals to confirm that the error term is equivalent
to white noise. The following sections describe the definitions and procedures to compute
the ACF, PACF, and AIC in more detail.

3.3. Auto-Correlation Function and Partial Auto-Correlation Function

Auto-correlation can be defined as the degree of similarity of a time series with a
lagged version of itself. Furthermore, the plot of a time series’ auto-correlations against lags
is known as the auto-correlation plot. Thus, the so-called ACF shows the linear relationship
between the observation yt at time t and the observation at a previous time (yt−k) that
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is separated by k lags at time [38]. Taking the above into account, the mathematical
representation of the ACF for a time series yt is shown in the expression below:

ACF(yt, yt−k) =
Covariance(yt, yt−k)

variance(yt)
(3)

where k is the lag, and it is defined as the difference in time between the observation yt
and the observation yt−k. The term ACF(yt, yt−k) denotes the correlation between the
observations yt and yt−k that are separated by k periods. The ACF serves to know the order
of the moving average component of an ARIMA model. Moreover, the ACF also allows
analyzing the periodicity and detecting recurrence in a time series [24].

On the other hand, the so-called partial auto-correlation or conditional correlation
removes the intermediate observations when computing the correlation between two
observations at different lags. In this case, the PACF is conditional on the intermediate
observation of the time series, since they are taken out from the covariance computation.
For instance, consider the PACF of two observations yt and yt−k (i.e., k = 2) [38]. The above
can be expressed as shown below:

PACF(yt, yt−2) =
covariance(yt, yt−2|yt−1)√

variance(yt|yt−1)
√

variance(yt−2|yt−1)
(4)

where the term PACF(yt, yt−2) is the PACF between the observations yt and yy−2. Notice
that the covariance between yt and yy−2 and the variance of yt and yy−2 are conditional
on the intermediate observation yt−1 since the PACF removes the effect of the interme-
diate observations [38]. The computation of the PACF serves to know the order of the
autoregressive component of an ARIMA model.

Figure 7 illustrates the Tank 4 Inflow ACF and PACF, from which it can be inferred that
the series is not stationary. It is important to mention that the auto-correlation and partial
auto-correlation functions are dimensionless; the above implies that they are independent
of the scale of measurement of the analyzed time series [24].
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Figure 7. ACF (left) and PACF (right) plot of Tank 4 Inflow original time series.

Given that the observations were taken every 15 min and matched up with the earlier
visual inspection of the residuals, it was determined that the series becomes stationary
by differencing at a lag of 96. This corresponds to the 96 observations in a single day.
Therefore, according to the ACF and residuals of the ARIMA(1,0,0)(1,1,1)(96) model of
Tank 4 Inflow presented in Figure 8, the model is adequate, since the residuals follow a
normal distribution. Similarly, the remaining water flow variables of the system depicted
in Table 2 were processed, and the ACF, PACF, and residual analyses were repeated.
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Figure 8. ACF (left) and residuals (right) of the ARIMA(1,0,0)(1,1,1)(96) model of Tank 4 Inflow.

As previously stated, the ACF and PACF correlogram analysis is required to de-
termine the components of an ARIMA model. If the time series is stationary or not, it
can be determined by looking at the residual plots. After a few auto-correlations, the
ACF for a stationary time series will zero out. However, the ACF for nonstationary time
series will decline slowly or increase positively [24]. Following multiple iterations and
the initial analysis, some models were suggested as the best. After identifying the best
ARIMA models for the series, the best model was chosen by comparing its residuals and
information criteria.

The AIC, mean absolute percentage error (MAPE), and root-mean-squared error
(RMSE) criteria were used to measure the performance of each model. The residuals were
then examined for the model’s diagnosis, and if the model was satisfactory, it could be
used to forecast; otherwise, additional models must be tested [24]. Figure 9 shows the
methodology to generate an ARIMA model via the Box–Jenkins approach. The following
section describes the metrics utilized in this study in further detail.
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3.4. Evaluation Metrics

The fitting procedure of the resulting ARIMA models was assessed with the aid of
the AIC, as shown in Figure 9. The information criterion measures the model’s ability
to explain the relationship between the variables. A common criterion is to compute
the AIC, which is an information criterion that enables the assessment of the quality of
the models by rewarding those with minor errors while penalizing those with too many
parameters [38]. Thus, this criterion allows the selection of sparse models [39]. The
mathematical representation of the AIC is shown in the following expression:

AIC = −2logL
(
θ̂
)
+ 2K (5)
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where logL
(
θ̂
)

represents the likelihood function and K is the total number of parameters
of the model. A lower value of the AIC represents a better model with a higher likelihood
value. Compared to other metrics, such as the Bayesian information criterion, the AIC
value provides a greater penalty on the number of parameters.

On the other hand, for this work, the MAPE and RMSE were used to measure the
error and to have a numerical comparison of the effectiveness of the proposed models
after selecting the best through the AIC. The RMSE and MAPE were used to compare the
accuracy of the model’s forecast to the actual values, with a lower value indicating a better
fit [24,38,40]. The equations of these indicators are shown as follows:

MAPE =
1

N f

N f

∑
i=1

|yi − ŷi|
yi

× 100% (6)

RMSE =

√√√√ 1
N f

N f

∑
i=1

(yi − ŷi)
2 (7)

where yi is the observed value and ŷi the predicted value at time i; N f is the number of
forecast time steps.

A week was chosen to evaluate the Seasonal ARIMA models. The models were tested
within different time frames and assessed on various dates. Two data transformations
were considered to transform a nonstationary time series into a stationary series and
use the Box–Jenkins methodology: first, differencing, and second, differencing with a
transformation using the natural logarithm. By calculating the difference between two
consecutive observations, differencing makes a nonstationary time series stationary. The
time series’ variance can be stabilized using the natural logarithm. Some preliminary
models that follow the patterns and methodology of Box–Jenkins can be provided after
comparing and analyzing the resulting ACF and PACF of the water flow time series. The
AIC was calculated for each fitted model to choose the optimal [41].

Moreover, to evaluate the forecast of each model, one day (equivalent to 96 observa-
tions) and one week (corresponding to 672 observations) were examined, with a confidence
interval of 95%. Figure 10 shows an example of the forecast of one week in the future for
the Seasonal ARIMA models for the Tank 4 Inflow time series. The forecast’s confidence
interval was calculated at 95% by obtaining the standard errors of the estimates as described
in the Box–Jenkins methodology [24].
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3.5. Transfer Function Models

This section presents the theoretical background and methodology for developing TF
models based on the Box–Jenkins approach. TFs are models that combine a causal approach
and a time series approach. The time series Xt affects the time series Yt through a TF, which
spreads the impact Xt via some period in the future. The resultant TF model connects the
output series (Yt), the input series (Xt), and a noise term (Nt). The addition of a noise term
is considered since, in practice, the response of a system could be affected by disturbances
and noise induced by the environment, which corrupts the system’s output by an amount
Nt. Hence, a TF is equivalent to a response function. The mathematical representation of TF
models can be written in terms of the backward operator B, as shown in Equation (8) [24].

Yt = δ−1(B) ω(B)BbXt + Nt (8)

where Yt is the output of the system at time t; Xt is the input of the system at time t; B is
the backshift operator; ω(B) is an sth-order polynomial operator; δ−1(B) is an rth-order
polynomial operator; Bb is a bth order dead time operator, which indicates the number
of periods before any effect is discernible; finally, Nt is the amount of noise to which the
system is susceptible. The terms (b, s, r) are integers greater than or equal to zero. The
term ω(B) controls the effect of current and previous input values in the system’s response.
On the other hand, the term δ−1(B) controls the effect of previous output values in the
system’s response [42].

A TF estimation of the system based on the Box–Jenkins methodology was devel-
oped, and it was motivated by the correlation between the system variables displayed in
Figure 3, specifically the input and output flow of each water tank. Figure 11 illustrates
the overall procedure for predicting using TFs, based on the Box–Jenkins approach for
fitting, and validating TF models. The definition of the input and output ARIMA models
that were used, the prewhitening of both series (i.e., the method of removing the impact
of serial correlation on trend analysis), and the calculation of cross-correlation for the
identification of the pre-estimates and final parameters of the model or tentative models
are the key steps in this process. The models’ diagnostics were then determined, and if the
model was sufficient, it could be utilized for the forecast; if not, a different model should
be suggested [24].
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The dependent (output) and independent (input) variables were modeled via ARIMA
models. The ARIMA models used for the TF were the same as those developed for
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each water flow variable, as explained in Section 3.2. Then, the input and output series
generated by the fitted ARIMA models were prewhitened. Consequently, the series were
cross-correlated to find the relationship between the lags, or the effect of Xt over Yt. The
cross-correlation function is represented as shown in Equation (9) [24].

ρxy(k) =
γxy(k)
σxσy

(9)

where ρxy(k) is the cross-correlation function of a stationary bivariate process; γxy(k) is
the cross-covariance coefficients between the series xt and yt at lags k = ±0,±1,±2, . . .; σx
is the standard deviation of the x series; σy is the standard deviation of the y series. The
cross-covariance function γxy(k) of a stationary bivariate process is defined as shown in
Equation (10) for lags k = ±0,±1,±2, . . ..

γxy(k) = E
[
(xt−k − µx)

(
yt − µy

)
]= E[

(
yt − µy

)
[ (xt−k − µx)] = γyx(−k) (10)

The importance of the cross-correlation function of the prewhitening input and output
series is that it provides an estimate of the impulse response of the system. This impulse
response estimate serves to know the order of the s and r polynomials, as well as the order
of the dead time operator (Bb) that should be used to fit the TF model. Similar to other
areas such as signal processing and system analysis, the impulse response is used for the
graphical or mathematical representation of the output of a system or a model in response
to a brief input signal or impulse. The impulse response provides valuable insights into the
system’s behavior, including its frequency response, stability, and the effect of the input
signal on the output [43].

The plot pattern of the cross-correlation function determines the values of b, r, and s,
which, according to the Box and Jenkins [24] notation, are the parameters for a TF (b, s, r)
model. The parameters b and s determine the number of lagged terms of x that entered
into the TF. The value of b is determined by the first lag significantly different from zero in
the cross-correlation plot. The s term is established by how long x influences y after the
first significant lag. The r value represents how long the output series (yt) is connected
with the prior value of the output series. The value of r can be set by analyzing the plot of
auto-correlation or determined by the plot pattern of lag (b + s); if it has an exponential
decay, then r = 1 could provide an appropriate approximation of the TF, and if it has a sine
wave plot pattern, then r = 2 could provide an approximation of the TF [24].

The input Tank 1 Inflow and the Tank 2 Inflow series are cross-correlated in Figure 12,
demonstrating that the fifth lag is the most-significant. Nevertheless, Lag 0 is the first
latency that deviates sufficiently from zero. It is also clear that the fifth lag (from Lag 0
to Lag 5) is the number of delays between the previous significant lag and the current
lag. Finally, the plot development appears to follow a sine wave. Consequently, a TF with
parameters (2,3,0) could be a first model proposal.

The fourth step used the fitted TF models to forecast one day and week in the future.
The forecast’s confidence interval was also calculated, as can be seen in Figure 13.



Water 2023, 15, 2792 18 of 32

Water 2023, 15, x FOR PEER REVIEW 19 of 34 
 

 

connected with the prior value of the output series. The value of 𝑟𝑟 can be set by analyzing 
the plot of auto-correlation or determined by the plot pattern of lag (𝑏𝑏 + 𝑠𝑠); if it has an 
exponential decay, then 𝑟𝑟 = 1  could provide an appropriate approximation of the TF, 
and if it has a sine wave plot pattern, then 𝑟𝑟 = 2 could provide an approximation of the 
TF [24].  

The input Tank 1 Inflow and the Tank 2 Inflow series are cross-correlated in Figure 
12, demonstrating that the fifth lag is the most-significant. Nevertheless, Lag 0 is the first 
latency that deviates sufficiently from zero. It is also clear that the fifth lag (from Lag 0 to 
Lag 5) is the number of delays between the previous significant lag and the current lag. 
Finally, the plot development appears to follow a sine wave. Consequently, a TF with pa-
rameters (2,3,0) could be a first model proposal.  

 
Figure 12. Cross-correlation of prewhitened input and output for Tank 2. 

The fourth step used the fitted TF models to forecast one day and week in the future. 
The forecast’s confidence interval was also calculated, as can be seen in Figure 13. 

  

Figure 12. Cross-correlation of prewhitened input and output for Tank 2.

Water 2023, 15, x FOR PEER REVIEW 20 of 34 
 

 

 
Figure 13. Forecasts of 1 week of the model TFM(0,1,0) of Tank 4 Inflow taking into consideration 
Tank 3 Inflow data as input data of the model. The orange line represents the TF model forecast; the 
blue line represents the actual observations; the gray area represents the 95% confidence interval of 
the fitted TF model. 

3.6. Anomaly Detection in Water Distribution Branches Methodology  
After generating and using the models for forecasting, the anomaly detection proce-

dure involved comparing the observed values with the 95% confidence interval of the 
model’s forecast. This work assumed that an anomaly presented in the measured water 
flow’s water branch is outside the model forecast’s confidence interval. Figure 14 shows 
the general methodology for the data evaluation for anomaly detection in water distribu-
tion branches.  

 
Figure 14. Data evaluation flowchart to detect the anomalies in the water tanks of the analyzed water 
distribution branch by employing the fitted Seasonal ARIMA and TF models’ 95% confidence inter-
vals. 

The forecast values, the confidence interval, and the following day and week obser-
vations are needed by the methodology shown in Figure 14 before any other feedback 

Figure 13. Forecasts of 1 week of the model TFM(0,1,0) of Tank 4 Inflow taking into consideration
Tank 3 Inflow data as input data of the model. The orange line represents the TF model forecast; the
blue line represents the actual observations; the gray area represents the 95% confidence interval of
the fitted TF model.

3.6. Anomaly Detection in Water Distribution Branches Methodology

After generating and using the models for forecasting, the anomaly detection pro-
cedure involved comparing the observed values with the 95% confidence interval of the
model’s forecast. This work assumed that an anomaly presented in the measured wa-
ter flow’s water branch is outside the model forecast’s confidence interval. Figure 14
shows the general methodology for the data evaluation for anomaly detection in water
distribution branches.
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Figure 14. Data evaluation flowchart to detect the anomalies in the water tanks of the ana-
lyzed water distribution branch by employing the fitted Seasonal ARIMA and TF models’ 95%
confidence intervals.

The forecast values, the confidence interval, and the following day and week obser-
vations are needed by the methodology shown in Figure 14 before any other feedback
processes can begin. First, it determines whether the observed values for each model are
within the confidence interval of the forecast; if they are, it goes back to the forecast stage
and compares the subsequent observations with the subsequent prediction. In cases with
missing data points, it is plausible that they are due to various factors, such as interrup-
tions in sensing or communication caused by issues with the energy supply at the station,
sensor malfunctions, intermittent data transmission problems, or failures in the database.
When these data points are missing, the corresponding alert is labeled as “not available” to
indicate the absence of data.

On the other hand, if an observation exists and falls outside the confidence interval, it
can indicate two main possibilities. Firstly, it could suggest a potential measurement error
where the sensor may have malfunctioned and provided an incorrect reading. Alternatively,
it may indicate a genuine change in the water system’s behavior, potentially caused by
external factors such as water leakages, variations in water demand, hydraulic system
issues, water availability, or operational actions. This methodology suggests two key alerts:
potential measurement error and potential water leakage to facilitate the detecting and
understanding of different types of anomalies. When new observations significantly exceed
the confidence interval’s upper limit, it indicates a potential measurement error, which is
more likely than a possible water leakage, since having a higher water flow rate than what
the source can supply is not feasible. However, it is also possible that the sensor briefly
malfunctioned if the alarm is not persistent. Conversely, suppose the new observation of
water inflow falls below the confidence interval’s lower limit. In that case, it suggests a
potential water loss, indicating the possibility of leaks occurring between the water tanks.
This inference is drawn from the observed water inflow being below the expected range,
but a misread by the sensor cannot be completely ruled out as a possibility. Incorporating
these alerts into the methodology makes identifying and categorizing anomalies easier,
leading to improved system operation and early detection of potential issues.

The appearance of the warnings is next examined; if they are persistent and invalidated
by the user or another qualified individual, the model must be redesigned because the
old model does not account for the new observations. Additionally, the distribution of the
series could have been altered, necessitating a return to the model-generation stage.
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4. Results

The errors from the Seasonal ARIMA models were calculated to select the best model
for each variable. On average, it required 8 to 12 iterations to generate different models
and compare the AICs between them to find the best fitted model for each water flow
variable. A Seasonal ARIMA model was generated for each water tank’s input and outflows.
Table 3 shows the Seasonal ARIMA models selected for each water tank in Figure 2 and the
resulting AIC, RMSE, and MAPE.

Table 3. Seasonal ARIMA models’ AIC, MAPE, and RMSEs from each water flow variable. The
variable number corresponds to the ones shown in Figure 3 and Table 2.

Variable Number Variable Model Notation AIC RMSE MAPE

1 Tank 1 Inflow ARIMA(2,0,1)(0,1,1)(96) 6011.62 34.87778 1.412087
2 Tank 1 Outflow ARIMA(0,1,1)(0,1,1)(96) 1882.58 1.045328 1.112624
3 Tank 2 Inflow ARIMA(2,0,1)(0,1,1)(96) 5998.8 34.47143 1.378066
4 Tank 2 Outflow ARIMA(0,1,0)(0,1,1)(96) 3322.98 3.854425 1.069508
5 Tank 3 Inflow ARIMA(2,0,0)(0,1,1) (96) 5744.72 29.29716 1.069776
6 Tank 4 Inflow ARIMA(1,0,0)(1,1,1)(96) 6727.91 75.56354 5.415305
7 Tank 4 Outflow ARIMA(1,0,1)(0,1,1)(96) 4901.18 16.79202 33.91554
8 Tank 5 Inflow ARIMA(1,1,2)(0,1,1)(96) 7497.96 135.589 5.748487
9 Tank 5 Outflow A ARIMA(1,0,0)(0,1,1)(96) 7435.93 155.8952 22.79048

10 Tank 5 Outflow B ARIMA(1,1,0)(0,1,1)(96) 3129.15 2.869073 0.3859113
11 Tank 6 Inflow ARIMA(0,1,1)(0,1,1)(96) 1296.07 0.5830809 0.3625255

Then the models were utilized to forecast one day and one week ahead, and the
obtained forecasts were compared with the actual observations to calculate the forecasting
MAPE and RMSE. The obtained RMSEs and MAPEs that each model obtained for one-day
and one-week forecasts are presented in Table 4.

Table 4. Seasonal ARIMA models’ MAPEs and RMSEs from each model forecast for one day and one
week in the future. The variable number corresponds to the ones shown in Figure 3 and Table 2.

Variable Number Variable Model Notation
1-Day Forecast 1-Week Forecast

RMSE MAPE RMSE MAPE

1 Tank 1 Inflow ARIMA(2,0,1)(0,1,1)(96) 70.33606 3.221687 156.852 6.182667
2 Tank 1 Outflow ARIMA(0,1,1)(0,1,1)(96) 5.972818 7.192756 6.454227 8.924136
3 Tank 2 Inflow ARIMA(2,0,1)(0,1,1)(96) 83.17052 3.757622 142.41759 5.610582
4 Tank 2 Outflow ARIMA(0,1,0)(0,1,1)(96) 14.04879 4.574004 28.658838 8.957665
5 Tank 3 Inflow ARIMA(2,0,0)(0,1,1)(96) 86.98132 4.963585 169.63034 8.577175
6 Tank 4 Inflow ARIMA(1,0,0)(1,1,1)(96) 221.12301 11.697919 272.26303 14.447808
7 Tank 4 Outflow ARIMA(1,0,1)(0,1,1)(96) 18.52472 352.6942 17.1954 77.69167
8 Tank 5 Inflow ARIMA(1,1,2)(0,1,1)(96) 303.4553 23.445315 384.0901 23.786044
9 Tank 5 Outflow A ARIMA(1,0,0)(0,1,1)(96) 367.1641 - 556.4129 -
10 Tank 5 Outflow B ARIMA(1,1,0)(0,1,1)(96) 15.568536 3.3782927 28.982522 5.397012
11 Tank 6 Inflow ARIMA(0,1,1)(0,1,1)(96) 0.6684805 0.5289368 1.5103029 1.220953

On the other hand, Table 5 presents the AICs, MAPEs, and RMSEs of the best fitted TF
models for each variable. Only the possible and correlated water flow variables were used
to generate the TF models based on the system presented in Figure 3. In addition, Table 5
shows the order of the TF models’ polynomials and dead time operator of the obtained TF
models with the corresponding RMSE and MAPE values computed with the data interval
used for generating each model.
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Table 5. Input and output variables were determined for the Transfer Function model and AIC,
MAPE, and RMSE of each of the best-selected models for each water flow variable. The variable
number corresponds to the ones shown in Figure 3 and Table 2.

Input Variable Output Variable TF Model(b,s,r) AIC RMSE MAPE

Tank 1 Inflow
(Variable 1)

Tank 2 Inflow
(Variable 3) TFM(4,2,3) 6815.29 38.47823 1.64836

Tank 2 Inflow
(Variable 3)

Tank 3 Inflow
(Variable 5) TFM(2,4,2) 5536.81 29.46901 0.99219

Tank 1 Inflow
(Variable 1)

Tank 3 Inflow
(Variable 5) TFM(6,1,2) 5548.24 29.76044 0.94921

Tank 3 Inflow
(Variable 5)

Tank 4 Inflow
(Variable 6) TFM(0,1,0) 7755.84 77.31749 5.27644

Tank 4 Inflow
(Variable 6)

Tank 5 Inflow
(Variable 8) TFM(1,3,0) 8598.87 144.66703 4.90388

Tank 4 Inflow
(Variable 6)

Tank 6 Inflow
(Variable 11) TFM(0,2,0) 1227.6 0.69927 0.44741

Tank 1 Inflow
(Variable 1)

Tank 5 Outflow B
(Variable 10) TFM(0,2,2) 3511.45 3.28181 0.47553

Furthermore, Table 6 presents the MAPEs and RMSEs of the one-day and one-week
forecasts of the fitted TF models. The models with the lowest MAPE were chosen and
utilized in the data-evaluation stage. The asterisk indicates the variable and error values
lower than those obtained for the Seasonal ARIMA model.

Table 6. Input variable for Transfer Function model and the best model selected for the variable, AIC,
MAPE, and RMSE of each selected model forecasts one day and one week after. The asterisk denotes
the variable and error values that are lower than those obtained from the Seasonal ARIMA model
corresponding to the same output variable. The variable number corresponds to the ones shown in
Figure 3 and Table 2.

Input Variable Output Variable TF Model
(b,s,r)

1-Day Forecast 1-Week Forecast

RMSE MAPE RMSE MAPE

Tank 1 Inflow
(Variable 1)

Tank 2 Inflow *
(Variable 3) TFM(4,2,3) 43.727 * 1.863451 * 41.114 * 1.806004 *

Tank 2 Inflow
(Variable 3)

Tank 3 Inflow *
(Variable 5) TFM(2,4,2) 61.848 * 3.317456 * 52.368 * 2.8926 *

Tank 1 Inflow
(Variable 1)

Tank 3 Inflow
(Variable 5) TFM(6,1,2) 114.887 6.828815 141.018 7.95437

Tank 3 Inflow
(Variable 5)

Tank 4 Inflow
(Variable 6) TFM(0,1,0) 212.258 18.27315 259.44 21.63761

Tank 4 Inflow
(Variable 6)

Tank 5 Inflow
(Variable 8) TFM(1,3,0) 373.345 47.85059 745.2495 66.45463

Tank 4 Inflow
(Variable 6)

Tank 6 Inflow
(Variable 11) TFM(0,2,0) 2.402 2.195143 2.256 1.982629

Tank 1 Inflow
(Variable 1)

Tank 5 Outflow B
(Variable 10) TFM(0,2,2) 10.218 2.023649 36.372 7.027344

Based on the results presented in Tables 4 and 6, the best models for each water tank
inflow and outflow were selected based on the MAPE values; these models were used to
develop the anomaly-detection methodology presented in Section 3.6. The shorthand nota-
tion for the model and the corresponding mathematical models, including the parameters
and coefficients, are shown in Table 7.
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Table 7. Mathematical models of the best ARIMA(p,d,q)(P,D,Q)(s) and TF(b, s, r) models for each
variable in the analyzed water distribution branch, where: yt is the output variable at time t, xt is the
input variable at time t, B is the backshift operator defined as BjYt = Yt−j, and εt is the error term
at time t, assumed to be normally distributed with mean 0 and constant variance [24]. The variable
number corresponds to the ones shown in Figure 3 and Table 2.

Variable Number Variable Model Notation Written Model Including Parameters

1 Tank 1 Inflow ARIMA(2,0,1)(0,1,1)(96)
(
1− 1.1144B + 0.1173B2)(1− B96)yt
= (1− 0.8911B)

(
1− 0.9995B96)εt

2 Tank 1 Outflow ARIMA(0,1,1)(0,1,1)(96) (1− B)
(
1− B96)yt = (1− 0.2119B)

(
1− 0.8294B96)εt

3 Tank 2 Inflow TFM(4,2,3) yt =
(1+0.39B−2B2+0.68B3)

(1−1.87B+0.88B2)
(1− B)B4xt

4 Tank 2 Outflow ARIMA(0,1,0)(0,1,1)(96) (1− B)
(
1− B96)yt =

(
1− 0.6201B96)εt

5 Tank 3 Inflow TFM(2,4,2) yt =
(1−0.76B−0.94B2)

(1−0.8B−0.34B2−0.81B3+0.98B4)
(1− B)B2xt

6 Tank 4 Inflow ARIMA(1,0,0)(1,1,1)(96) (1− 0.8729B)
(
1− 0.1742B96)(1− B96)yt =

(
1− 0.902B96)εt

7 Tank 4 Outflow ARIMA(1,0,1)(0,1,1)(96) (1 + 0.3205B)
(
1− B96)yt = (1 + 0.5807B)

(
1− 0.9996B96)εt

8 Tank 5 Inflow ARIMA(1,1,2)(0,1,1)(96)
(1− 0.8741B)(1− B)

(
1− B96)yt =(

1− 0.984B− 0.016B2)(1− 0.8242B96)εt

9 Tank 5 Outflow A ARIMA(1,0,0)(0,1,1)(96) (1− 0.8737B)
(
1− B96)yt =

(
1− 0.3874B96)εt

10 Tank 5 Outflow B ARIMA(1,1,0)(0,1,1)(96) (1− 0.2493B)(1− B)
(
1− B96)yt =

(
1− 0.9992B96)εt

11 Tank 6 Inflow ARIMA(0,1,1)(0,1,1)(96) (1− B)
(
1− B96)yt = (1− 0.6446B)

(
1− 0.9999B96)εt

In the last stage, the new data were assessed, and any anomalies were found using
the forecasting values that were produced. First, the top models for each variable were
chosen from the previous step. These models match those displayed in Table 7. Then,
the models were used to forecast over the short and medium term (i.e., one day and one
week). Finally, the limits for assessing whether a new observation was an anomaly were
the models forecast upper and lower 95% confidence intervals. Three categories, possible
leakage, possible measurement mistake, and not available (NA) datapoint, were used to
group the notifications.

Figure 15 presents the forecasting of the fitted models presented in Table 7 for each an-
alyzed water flow variable. The orange line represents the model’s forecast. The blue lines
represent the new observations. The gray zone represents each model’s 95% confidence
interval. Table 8 presents the alerts generated for each variable, providing information on
the final model utilized, the three types of potential alerts, and the total count of alerts. The
results shown in Table 8 are based on the methodology presented in Figure 14.
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Figure 15. Water flow forecasts and alerts of all the selected models. The first row shows the model
for Variables 1 to 3. The second row shows the model for Variables 4 to 6. The third row shows the
models for Variables 7 to 9. The fourth row shows the models for Variables 10 and 11. The orange line
represents the model’s forecast values. The blue line represents the actual or new observations of the
analyzed week. The gray zone represents the 95% confidence interval of each model. The red dots
represent the observations that fall out of each model’s 95% confidence interval gray area. These red
dots are considered anomalies in the water flow behavior of the analyzed water distribution branch
of Mexico City. The variable number corresponds to the ones shown in Figure 3 and Table 2.
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Table 8. The count of three types of alerts and the total amount of alerts generated by each model in
two forecast periods for the whole branch. The variable number corresponds to the ones shown in
Figure 3 and Table 2.

n Variable Model
1 Day (96 Observations) 1 Week (672 Observations)

Possible
Leakage

Possible
Measurement

Error
NA Total

Alerts
Possible
Leakage

Possible
Measurement

Error
NA Total

Alerts

1 Tank 1 Inflow ARIMA(2,0,1)(0,1,1)(96) 0 1 0 1 15 1 0 16
2 Tank 1 Outflow ARIMA(0,1,1)(0,1,1)(96) 0 0 0 0 0 0 0 0
3 Tank 2 Inflow TFM(4,2,3) 3 0 0 3 3 0 0 3
4 Tank 2 Outflow ARIMA(0,1,0)(0,1,1)(96) 0 0 0 0 0 0 0 0
5 Tank 3 Inflow TFM(2,4,2) 0 1 0 1 2 1 0 3
6 Tank 4 Inflow ARIMA(1,0,0)(1,1,1)(96) 0 4 17 21 0 70 69 139
7 Tank 4 Outflow ARIMA(1,0,1)(0,1,1)(96) 0 21 25 46 135 1 190 326
8 Tank 5 Inflow ARIMA(1,1,2)(0,1,1)(96) 0 6 0 6 7 60 2 69
9 Tank 5 Outflow A ARIMA(1,0,0)(0,1,1)(96) 1 26 0 27 3 144 0 147
10 Tank 5 Outflow B ARIMA(1,1,0)(0,1,1)(96) 1 0 0 1 1 0 0 1
11 Tank 6 Inflow ARIMA(0,1,1)(0,1,1)(96) 0 0 0 0 0 0 0 0

Total of the branch 5 59 42 106 166 277 261 704

5. Discussion

The AICs, RMSEs, and MAPEs shown in Table 3 were computed by comparing the
fitted models with the data observations (one week) used to generate the Seasonal ARIMA
models. On the other hand, Table 4 shows the RMSEs and MAPEs obtained by comparing
the fitted model with the observations used for forecasting. By comparing both tables,
it can be appreciated that the errors were lower when comparing the model with the
observations used for generating the models than the error obtained when comparing with
the observations used for forecasting. Despite the above, the difference between the fit and
prediction errors was low for most models. The smaller error obtained with the fit data
compared to the prediction data suggested a slight overfit.

In addition, it can be appreciated that the order of the seasonal components of the
fitted models was the same and that all of them required a first-order seasonal difference
and moving average component. On the other hand, only the Tank 4 Inflow sensor data
modeling required a first-order seasonal autoregressive component. In the case of the non-
seasonal part of the fitted ARIMA models, it can be appreciated that certain heterogeneity
existed in the order and the components that each of the input and output water flow
variables required. The above could be attributed to the difference in the dynamics of the
studied water tanks initially presented in Figure 2.

Moreover, based on the results presented in Table 4, it can be observed that the fitted
Seasonal ARIMA models had a lower MAPE and RMSE for a one-day forecast than a
one-week one. Hence, the models were better for forecasting in short periods. The above
was useful to define the remodeling period and forecast for future use of the methodology.
The only exception in which RMSE and MAPE were lower for the one-week forecast was
the Seasonal ARIMA model fit for the Tank 4 Outflow. The above variable presented for
both forecasts’ periods a greater MAPE and RMSE compared to the rest of the water tanks.
The new observed values for the next day were very extreme and differed from those used
for the model generation. Nevertheless, the new observations were closer to the previous
data during the week. This could mean that the sensor of this variable had issues and, in
some periods, was not working accurately. Furthermore, Tank 5 Outflow did not contain a
MAPE calculation because the nature of the variable data did not allow it; as can be seen in
Table 2, the variable had minimum negative flow and positive maximum values, but some
of the observed values were zero, so the division by zero in Formula (6) gets undefined.

In the case of the fitted TF models shown in Table 5, it can be appreciated that the
order of the polynomials and the dead time operator that provided the lowest AIC value
were different for each tank. Moreover, all TF models were influenced by past input values
since they all had an sth-order polynomial. However, not all models were influenced by
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the past values of the output since the rth-order polynomial equaled zero, as in the models
for Tanks 4 to 6, as shown in Table 5. On the other hand, by comparing the errors of the TF
models presented in Table 5 with the ones shown in Table 6, it can be appreciated that the
errors of Table 5 were lower. The above was expected since the errors presented in Table 5
were computed with the same data used to fit the model. Despite the above, the errors
were similar. Like the Seasonal ARIMA models, the obtained MAPE and RMSE values of
the TF models, when used for forecasting, were generally lower for one-day forecasting
than one-week forecasting, except for the first two models (see Table 6). Furthermore, only
the Tank 3 Inflow TF model obtained an AIC value lower than its corresponding Seasonal
ARIMA models (5536.81 and 5744.72, respectively). The above suggested a lower error
while fitting and generating sparse models. However, even though the AIC values of
the Seasonal ARIMA models were lower than the TF models, the first could provide an
overfitted model when selected through the AIC [44].

Based on the results reported in Table 7, it can be appreciated that the water flow data
can be modeled better by a Seasonal ARIMA according to the reported AIC, RMSE, and
MAPE values. Moreover, as shown in Table 7, the TF models fitted through the Box–Jenkins
methodology were less helpful in modeling the analyzed water branch’s flow than the
ARIMA models. In addition, it can be appreciated that, in general, the generated models
had a low number of coefficients, which could facilitate a physical implementation of the
proposed system since the computation that this type of model requires could be lower
due to their low complexity.

Figure 15 shows the forecasting values of each final model presented in Table 7. The
graphs present a one-week forecast, with the initial portion of the forecast (from Hour 168
to 172) representing the first forecast day, which served as the basis for the results reported
in Table 7. Based on the forecasting values presented in Figure 15, the different dynamical
behaviors of each flow variable of the analyzed branch can be appreciated visually. This
visual representation enhances the understanding of and facilitates the alert process for
users, enabling them to discern patterns and trends more effectively. In addition, it can
be observed that the forecast values and observed values (actual measured water flow)
were similar for most of the models. Furthermore, it is evident that the 95% confidence
interval demonstrated a dynamic behavior across each model and did not remain constant
throughout the analyzed forecasting week. In some cases, the gradual increase in the 95%
confidence interval size could be attributed to either the absence of the moving average
component in the model or the inherent increase in uncertainty as time progressed. These
factors contributed to the widening of the confidence interval, indicating the challenges in
accurately forecasting values over an extended period. In most cases, the selected model
behaved similarly to the actual observations.

Finally, from Table 8, it can be seen that the variables with the worst (bigger) MAPE
and RMSE errors generated the most alerts, as was the case for Tank 4 Outflow, Tank 4
Inflow, and Tank 5 Inflow, whose MAPEs were more prominent (more than 10%) from the
rest of models and Tank 5 Outflow A had the biggest RMSE in both forecast periods (one
day and one week). Tank 1 Inflow alerts could be considered a particular case because there
were no alerts in one day, but there were many possible measurement errors in one week.
The above could be due to the sensor malfunction over a long period or a change in data
behavior, which might require remodeling. Although Figure 15 shows slight anomalies in
the long-term behavior of Tank 3 Inflow, Tank 6 Inflow, and Tank 5 Outflow B, they were
not detected, presented in Table 8, because they still fell within the 95% confidence interval.
Therefore, the detection of alerts depends on the system’s tuning, such as setting a smaller
confidence interval or a shorter forecast period (e.g., 1 d, 12 h, etc.). Additionally, more
potential measurement errors and not available observations were identified than possible
leakages in both forecast periods, indicating the need to verify the calibration and proper
functioning of sensors. This information is valuable in justifying investment in equipment
maintenance and highlighting the affected areas.
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The resulting ARIMA and TF models could be considered less-complex models than
the ones produced by other machine learning algorithms proposed in the literature, such
as XGBoost [18], ANNs [16], and CNNs [34], due to their reliance on a solid mathematical
and statistical background with well-defined interpretations and the lower number of
parameters that they have, as shown in Table 7. In addition, contrary to the studies
presented in Section 2, Table 7 shows the coefficients and the mathematical representations
of the fitted ARIMA and TF models. Moreover, the steps for modeling the ARIMA and
TF models are well-defined and based on the specific assumptions of data stationarity,
linearity, and the independence of residuals, providing a more-transparent framework and
guidance in the modeling process. Finally, the models are suitable for forecasting based
on historical patterns of water flow variables, making them a practical tool for anomaly
detection in water distribution systems.

A comparison of the methodology presented in this study with the related literature
presented initially in Section 2 in terms of the input data, machine learning algorithm, and
analyzed system is presented in Table 9. In this regard, it can be observed that heterogeneity
existed between the related research and the present study. Authors have proposed to
detect leakages from pressure measurements, water flow measurements, acoustic emission,
and vibration data; on the other hand, this study based its analysis exclusively on water
flow data. Another aspect that can be observed is the frequent use of CNNs to perform
leakage detection—other approaches involved tree-based techniques such as decision trees,
random forest, XGBoost, and Adaboost. Otherwise, the present study focused on using
Seasonal ARIMA and TF models that produce less-complex models than CNNs and tree-
based classifiers. Finally, the analyzed systems varied from study to study, with water
distribution networks being frequently analyzed. Public datasets and simulation tests of
water pipelines have also been considered. In the case of the present work, the water flow
data came from a branch of the water distribution system of Mexico City that supplies
water to the sub-branch of water pipelines (see Figures 1 and 2).

Table 9. Comparison of the related research approaches with the methodology presented in
this study.

Author Input Data Machine Learning
Algorithm Analyzed System

Guo et al. [15] Piezoelectric accelerometers Time–frequency CNN Pipe networks from the city of
Cheng Du, China

Moulik et al. [17] 3-axis accelerometer K-means clustering Laboratory pipeline system prototype

Choi et al. [30] Sound vibration data
magnitude spectra CNN

AI Hub dataset composed of water
leakage data from neighborhoods in

Gwangju, Korea

Yu et al. [10] Piezoelectric accelerometer data SqueezeNet CNN
Pipe networks from cities in China
including Shaoxing, Guangzhou,

Sanya, Dalian, and Kunming

Fereidooni et al. [9] Water flow sensor

Comparison between
random forest,
decision tree,

Bayesian network, and
K-nearest neighbor

Vitens company dataset of the water
distribution networks of Leeuwarden

City in Netherland

Chen et al. [11] Landsat 8 satellite images CNN Water canal systems in Arizona

Sousa et al. [12] Pressure measurements
from pumps

K-means clustering and
learning vector quantization

District-metered areas in Stockholm,
Sweden

Shen et al. [31] Acoustic emission signals Adaboost Water distribution networks of
Jiangsu, Zhejiang, and Shanghai

Fares et al. [13] Acoustic emission signals

Comparison between support
vector machine, artificial
neural network, and deep

learning techniques.

Water distribution networks from
Hong Kong
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Table 9. Cont.

Author Input Data Machine Learning
Algorithm Analyzed System

Xue et al. [18] Flowmeters and
pressure sensors XGBoost Hydraulic simulation model

Taghlabi et al. [19] Pressure values Random forest EPANET-Matlab simulation

Pérez-Pérez et al. [16] Flow and
pressure measurements Artificial neural network Laboratory water pipeline

Tornyeviadzi et al. [34] Multivariate time series SCADA
data 1D deep CNN autoencoder L-TOWN water distribution

network dataset

This study Water flow sensor data Modeling of water flow data via
Seasonal ARIMA model

Input and output water flow of a water
distribution branch of

Mexico City

This study Water flow sensor data Modeling of water flow data via
Transfer Function model

Input and output water flow of a water
distribution branch of

Mexico City

Nevertheless, it is difficult to perform a homogenous comparison of the results pre-
sented in this study with the related research. This is because the systems analyzed to
develop the water-leakage-detection algorithms and the data collected varied from study
to study. As previously stated, the authors proposed performing water leakage detection
through simulation, laboratory tests, and data collected from water distribution systems.
Nonetheless, each analyzed system had different data distributions, which impacted the
type of algorithms that best describe the data. Furthermore, most of the works in the
literature presented in Table 9, Section 2, and the Introduction Section employed super-
vised learning techniques to train the detection algorithms. On the other hand, this study
tackled the problem from an unsupervised point of view since access to labeled data that
classify the anomalies in water leakages or measurement errors were not available when
developing this work. However, the above points out an area of opportunity that needs to
be addressed in future work.

6. Limitations of the Study

This work was constrained by the branch’s existing infrastructure and data availability,
limiting it to a single case study focused solely on one operational variable, water flow.
In future work, it is proposed to test the methodology in other cases of study and with
other operational variables such as pressure, tank level, and more flow points. As shown
in Figure 3, some tanks have other water exits, the flow rate of which was not available
in this dataset, but are valuable variables that could help to generate a better model and
understanding of water usage in the system. The use of additional variables could be
performed with the help of multimodal techniques that consider flow time series data
and pressure data measured in each of the tanks of the water branch. The above could be
assessed through multimodal machine learning techniques such as model-agnostic (i.e., the
fusion was carried out before applying the machine learning technique) and model-based
(i.e., the fusion of the modalities was performed while generating the model) methods [45].

Furthermore, the methodology could not be validated with real leakages because
a report of the actual leakages (detected or repaired) was unavailable when the models
and the study were developed. The above implies another limitation, such as the need
to develop a physical implementation of the proposed algorithms to validate anomalies
and select and design an appropriate hardware platform in which the proposed algorithm
can be embedded and executed. In addition, one of the crucial challenges of data-driven
models such as ARIMA models is that, if the dynamics of the system changes, the fitted
ARIMA models may not work as expected since the distribution of the data used for fitting
could have changed. A potential solution to this problem is to fine-tune the models over
time to keep their parameters updated in case of a change in the dynamics of the water
distribution branch analyzed in this study.

Furthermore, due to the limited and incomplete dataset, this study focused on employ-
ing linear models such as the ARIMA and TF models; however, there might be non-linear
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dynamics in the water distribution systems that the proposed methods could not capture.
Hence, deep learning algorithms such as recurrent neural networks or long short-term
memory neural networks could be compared with the proposed ARIMA and TF models in
terms of performance. However, deep learning solutions often require a sizable sample size
to be trained adequately and avoid overfitting problems. The above could be mitigated
using transfer learning techniques in combination with deep learning solutions.

In addition, another potential disadvantage of the fitted ARIMA models is the need to
filter the time series through differentiating; despite being essential to produce a stationary
time series, it can also have certain biases related to the dynamics of the analyzed system
since differentiating acts as a high-pass filter on the time series. The above could be
mitigated with hybrid techniques combining nonstationary time series techniques such as
wavelet analysis and ARIMA models. For instance, Nury et al. [40] proposed a wavelet-
ARIMA model for temperature prediction in Bangladesh to account for the nonstationary
behavior of the analyzed temperature time series data.

Additionally, due to the complexity of the water branch analyzed in this study, eleven
flow measurements (i.e., considering the input and output flows of each tank) led to
adjusting eleven models for the case of the fitted ARIMA models. The above is a potential
drawback of the proposed anomaly detection system since it requires at least two models
to detect anomalies for a single water tank. Thus, validating the proposed models could
be a time-consuming task. Moreover, since the methodology used in this study depends
extensively on data, its implementation is limited to water flow data availability. Hence, the
approach presented in this work could be combined with hardware approaches to reduce
data dependency.

Moreover, another approach that could have been developed is to generate a TF of
the system shown in Figure 2 by considering the water tank’s dynamics, as in the work
of Li et al. [46]. The above could reduce the need for data to generate the TFs. However,
certain variables, such as the height of the fluid present in the tanks, the area of the tanks,
and the pressure, need to be considered to generate an adequate model that represents
the system’s dynamics and, consequently, the water flow behavior. Moreover, dynamical
models based on linear differential equations do not consider the disturbances and noise
the system is susceptible to. Hence, future work could compare estimating a TF based
on the Box–Jenkins methodology and a TF obtained by considering the linear differential
equations that describe the system dynamics.

Another opportunity that could be tackled is the need for developing a publicly
available dataset from which the proposed water leakage detection models can be compared
homogeneously. In the present study, sensor flow data were considered to analyze a water
branch of the water distribution systems of Mexico City. However, other studies described
in Section 2 used other types of data. They analyzed water distribution systems of other
regions whose results cannot be compared to those presented in this work since the data
modalities and distributions are different. The analyzed systems differed even among
works that performed similar research in Mexico, such as Pérez-Pérez et al. [16] and the
present study.

7. Conclusions

This work proposed using Seasonal ARIMA and TF models fit through the Box–Jenkins
approach to model the flow data of a branch of the water distribution system of Mexico
City for anomaly detection in water distribution branches. The results of this study showed
that ARIMA models can describe and forecast the flow variables of the analyzed water
branch with low error in terms of the MAPE. The generated TF models can also explain
the linear branch system’s relationship between tanks according to the reported RMSE and
MAPE values. Still, in most cases, the ARIMA models achieved a higher performance in
terms of the MAPE.

The models proposed in this study have the potential to make significant contributions
to reducing water losses and improving the efficiency of the distribution system. These
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improvements were achieved by utilizing the existing instrumentation and infrastructure
of Mexico City’s water distribution system, along with a clear and understandable method-
ology, visually representing anomalies to aid in the alert process for users. These models
can facilitate early detection and localization of potential issues, enabling prompt actions
and interventions for more-effective water distribution network management. Additionally,
by identifying the specific sensor that triggered the alert, the search for potential issues
can be narrowed down to a specific zone, enabling faster localization of the failure and
more-efficient troubleshooting. The actions for each alert type (leakage or measurement
error) depend on whether the water flow variable type is an inflow or outflow. For example,
if less water than expected is arriving into a tank, it can be assumed that there is a leakage in
the pipeline before the tank’s entry. In such a case, physical inspection would be required.

On the other hand, if more water than expected is arriving, testing the sensor and
verifying its calibration are recommended. In the case of an output water flow variable, if
less water than expected is outgoing from a tank, it is possible that the leakage occurred
inside the tank, such as an overflow or an unauthorized intake. If more water than expected
is outgoing from the tank outflow, it is possible that there is a leakage in the pipe ahead,
which should be verified.

The variables with greater errors were the ones with the most alarms. Therefore,
the corresponding authorities should review and provide maintenance to these variables’
sensors and communications systems. In addition, the generated alerts should be reviewed
and validated by the operators responsible for the system to determine if new modeling is
required or if the alerts are correct.

The current methodology’s future work will improve it into an integrated support
system with close collaboration between water service providers in Mexico City and
action-based research. Implementation requires capable personnel with access to tank
instrumentation to monitor and validate alerts constantly. Optimizing this methodology
involves developing an online monitoring and detection system that reduces false alerts,
detects leaks in real-time, and even remodels the system automatically. The platform
should also provide dynamic data exchange and customer information for building positive
relationships and pro-environmental attitudes.
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Abbreviations

1D CNN One-dimensional convolutional neural network
ACF Auto-correlation function
AE Autoencoder
AIC Akaike’s information criterion
ANN Artificial neural networks
ARIMA Autoregressive Integrated Moving Average
CNN Convolutional neural network
DL Deep learning
DMAs District-metered areas
DT Decision tree
KNN K-nearest neighbor
lps Liters per second
MA Moving average
MAPE Mean absolute percentage error
MFCC Mel frequency cepstrum coefficient
ML Machine learning
NA Not available
PACF Partial auto-correlation function
RMSE Root-mean-squared error
SNR Signal-to-noise ratio
SVM Support vector machine
TF Transfer Function
TFCNN Time–frequency convolutional neural network
WDSs Water distribution systems
XGBoost Extreme gradient boosting
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