
Citation: Si, Y.; Li, Z.; Wang, X.; Liu,

Y.; Jin, J. Lake Ice Simulation and

Evaluation for a Typical Lake on the

Tibetan Plateau. Water 2023, 15, 3088.

https://doi.org/10.3390/w15173088

Academic Editor: Roohollah Noori

Received: 27 July 2023

Revised: 17 August 2023

Accepted: 18 August 2023

Published: 29 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Lake Ice Simulation and Evaluation for a Typical Lake on the
Tibetan Plateau
Yajun Si 1, Zhi Li 2, Xiaocong Wang 3,*, Yimin Liu 3 and Jiming Jin 4,5,*

1 College of Water Resources and Architectural Engineering, Northwest A&F University,
Xianyang 712100, China; yajunsi@nwafu.edu.cn

2 College of Natural Resources and Environment, Northwest A&F University, Xianyang 712100, China;
lizhibox@nwafu.edu.cn

3 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid
Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

4 Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University,
Wuhan 430100, China

5 College of Resources and Environment, Yangtze University, Wuhan 430100, China
* Correspondence: wangxc@lasg.iap.ac.cn (X.W.); jimingjin99@gmail.com (J.J.)

Abstract: This study aims to simulate the lake ice conditions in the Nam Co lake using a lake ice
model, which is a one-dimensional physics-based model that utilizes enthalpy as the predictor
variable. We modified the air density schemes within the model to improve the accuracy of the
lake ice simulation. Additionally, the process of lake ice sublimation was included, and the effect
of lake water salinity on the freezing point was considered. Using the improved lake ice model, we
simulated lake surface water temperature, lake ice thickness, and interannual variations in lake ice
phenology, and we compared these results with observations at Nam Co. The results demonstrate
that the improved model better reproduces the lake surface water temperature, lake ice thickness, and
lake ice phenology at Nam Co. Additionally, the thin air density affects lake processes by weakening
sensible heat and latent heat, which ultimately leads to a delayed ice-on date and a slightly earlier
ice-free date in Nam Co. This study contributes to an enhanced understanding of the freeze–thaw
processes in Nam Co and reduces the biases in lake ice simulation on the Tibetan Plateau through the
lake model improvement.

Keywords: Tibetan Plateau; lake ice phenology; air density; numerical simulations

1. Introduction

The Tibetan Plateau is situated between 26◦ N to 39.5◦ N and 73◦ E to 104.5◦ E,
boasting a distinct high-altitude terrain with an average elevation exceeding 4000 m [1,2].
This elevated topography results in significantly lower local temperatures and air density
compared to the adjacent plains [3]. Most areas experience a monthly average temperature
below 10 ◦C, while the central plateau registers an average annual temperature below
0 ◦C [4]. The year-round low temperatures facilitate the presence of ample permafrost and
ice across the Tibetan Plateau [5,6]. Moreover, the Tibetan Plateau serves as the origin of
numerous Asian rivers and harbors many lakes [7–9], thus earning the renowned title of
the ‘Asian Water Tower’ [10].

The Tibetan Plateau is home to 32,843 lakes [11], comprising approximately 50% of
the total number of lakes in China [12]. However, the majority of these lakes are smaller
than 1 km2, with only over 1,000 lakes exceeding 1 km2 [13–15]. Several studies have
shown that both the area and number of the lakes on the Tibetan Plateau have increased in
recent years [11,16–18]. The consistently low temperatures on the Tibetan Plateau cause
the lakes in mid–low latitudes to freeze during winter [19]. However, recent studies
have indicated that the ice-covered period on the Tibetan Plateau have been shortened
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due to global warming [19–23]. The presence of lake ice cover plays a crucial role in the
physical processes of lakes on the Tibetan Plateau. Lake ice phenology, including the
timing of freeze-up, break-up, and the duration of ice cover, serves as a highly sensitive
indicator of climate change [24]. Lake ice thickness and temperature have an impact on
lake–atmosphere interactions [25–28]. Following the freezing of the lake surface on the
Tibetan Plateau, evaporation from the lake surface typically reduces by 40–60% compared
to the ice-free state [27]. Furthermore, the spatial distribution of lake ice plays a role in
lake-effect precipitation [29]. Therefore, studying lake ice is essential for comprehending
the processes occurring in lakes [24].

The Tibetan Plateau experiences a harsh climate and is a remote region, posing chal-
lenges for conducting studies during the period with lake ice cover [30]. Therefore, nu-
merical models have become an excellent complement to field campaigns for studying
lake ice. Recent studies have indicated that the atmospheric boundary layer stratification
remained consistently stable or neutral during the ice-covered period [27,31]. The turbu-
lent atmosphere-ice heat fluxes and the net heat gain by the lake are significantly lower
compared to the ice-free period [27]. To evaluate the impact of lake ice, we selected a deep
lake, Nam Co, which has a maximum depth of over 95 m. We considered lake surface
temperature, lake ice thickness, and lake ice phenology. Most prior studies on lake ice
have primarily focused on shallow lakes at single points [32–34]. However, the majority
of current lake models rely solely on energy balance and statistical empirical formulas to
estimate lake ice thickness. Examples include the Community Land Model (CLM) and the
Flake model [35,36]. For this study, we selected a lake model developed by Ren et al. (2014)
(RLake) and utilized enthalpy as predictive variables during the ice-on period [37].

We conducted a modeling case study for Nam Co, situated in the central Tibetan
Plateau. Our objectives are as follows: (1) We enhance the accuracy and reliability of the
RLake model by coupling more reasonable schemes. These improvements encompass the
integration of more realistic air density, and ice sublimation schemes. Furthermore, the
model considers the influence of lake salinity on the freezing point. (2) Using the improved
lake ice model, we choose Nam Co as an example to evaluate the ice thickness based on a
single lake surface temperature point and the lake ice phenology. (3) We discuss the impact
of low air density on the ice phenology of the plateau.

2. Materials and Methods
2.1. Study Area

Nam Co is located in the central Tibetan Plateau (90◦16′–91◦03′ E, 30◦30′–30◦55′ N)
with an elevation of 4718 m (Figure 1). This lake is a closed inland lake, and it gains
water from precipitation and melting glacier and loses water mainly through evaporation
and ground water [38,39]. The bathymetry of Nam Co is shown in Figure 1, where the
maximum depth is about 95 m and the mean depth is about 40 m [40,41]. The high elevation
generates the low air density and pressure, with the annual average values near the lake
surface being 0.73 kg/m3 and 571.2 hPa, respectively (Nam Co station) [42,43]. The highest
monthly temperature in the lake area is about 10 ◦C, the lowest one is around −12 ◦C [44],
the annual precipitation is about 297–550 mm, and the long-term mean annual evaporation
is about 832 mm [40,45,46]. Nam Co is barely affected by human activities, making it an
ideal location for studying natural lake processes. Nam Co is a typical Tibetan Plateau lake,
which has been focused in many studies [40,47–50].

2.2. Meteorological and Observational Data
2.2.1. Climate Forcing Data

For this modeling study, the China Meteorological Forcing Data (CMFD) was selected
as the forcing data to driver our lake model. A detailed description of this model can be
found in Section 2.3. The CMFD dataset was obtained from the Institute of TP Research,
Chinese Academy of Sciences (ITPCAS) [51,52]. It covers the region of 70–140◦ E and
15–55◦ N for the period of 1979–2018, with a spatial resolution of 0.1◦ (~10 km) and a time
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step of 3 h. We utilized this dataset specifically for the Nam Co area and focused on the
period of 2000–2013. The CMFD dataset includes various meteorological variables required
by the lake model used in this study, such as precipitation, downward shortwave radiation,
downward long wave radiation, near-surface air temperature, specific humidity, wind
speed, and surface pressure. It is important to note that the CMFD dataset is a combination
of satellite data and regular meteorological observation data from the China Meteorological
Administration (CMA). However, during our verification process using the in situ Nam Co
weather station data (available only for the period of 2011–2013), we identified significant
biases in the wind speed data of the CMFD dataset (figures not shown). To rectify these
biases, we employed a linear regression approach. We utilized the Nam Co weather station
data along with the corresponding grid cell CMFD wind speed data to develop a regression
equation. This equation was then applied to the CMFD wind speed data covering the Nam
Co area, encompassing a total of 18 grid cells (Figure 2), for the study period of 2000–2013.
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Figure 2. RLake model structure.

2.2.2. Observational Data

In this study, we used observational data including lake temperature, lake depth,
lake ice thickness, and ice phenology for model evaluation and input. The Moderate-
resolution Imaging Spectroradiometer (MODIS) daily land surface temperature data at
a 0.05◦ resolution [53,54] were used to verify lake surface temperature simulations. The
MODIS data have four values each day, and we averaged these four values to generate
daily surface temperature. The Nam Co depth data used for model input were from
Wang et al. (2009), and the lake ice thickness observations for the period of 2007–2011 were
from Qu et al. (2012), who collected the data near the Nam Co meteorological station. The
ice phenology data for Nam Co were obtained from Gou et al. (2015) including the dates of
ice-on and ice-free and the ice duration for the period of 2000–2011 [41,55,56]. The ice-on
date refers to the date when the observation area starts to freeze. The ice-free date indicates
the date when the observation area is completely free of ice.

2.3. The Lake Model
2.3.1. The Original Lake Model

For this study, we used a one-dimensional lake model developed by Ren et al. (2014) to
simulate ice processes in Nam Co [37]. This model is based on the energy balance equation
using lake temperature as the prognostic variable during the non-freezing phase. But in the
freezing phase, enthalpy is employed as the prognostic variable to filter out the effects of
water phase change (Figure 2) [57]. The lake model simulates the heat and mass exchange
processes between the atmosphere and lake surface. The water mixing is described with an
eddy diffusion scheme adopted from Henderson-Sellers [58]. RLake is a layered model,
and the layer number and thickness of each layer can be flexibly defined by the user. For
this study, we set the total layer number to 56–60 depending on the lake depth in Nam Co.
We placed a particular emphasis on the upper strata of the lake: the top 30 layers were
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precisely set at a thickness of 0.01 m each. This decision was made to capture and reflect the
diurnal variations and the subtle fluctuations in lake variables that occur daily. Following
the setting of these 30 layers, we gradually and arbitrarily increased the thickness of each
successive layer until it culminated at the lake’s bottom. The thickness of the layers near
the lake’s bottom varied widely, ranging from a minimum of 4 m to a maximum of 28 m,
once again depending on the particular depth of the Nam Co at different regions.

In addition, RLake physically simulates the ice processes and depth. The continuous ice
mass is simulated in RLake through the convective adjustment for an unstable stratified water
column. In this model, the ice thickness of each lake layer (dice) was calculated using enthalpy:

dice = −
Hd

L f ρice
(1)

where d is the thickness of each lake layer (m), the ice depth is the sum of the ice thicknesses
of all lake layers, ρice is the ice density (917 kg/m3), H is the enthalpy in the layer (J/m3),
and L f is the latent heat of fusion (3.337 × 105 J/kg).

H = ρicecice

(
T − Tf re

)
− ρwaterL f (2)

where cice is the specific heat of ice, T is the temperature of each lake layer (K), Tf re is the
freezing temperature (273.15 K), and ρwater is the water density (1000 kg/m3).

2.3.2. The Lake Model Improvement

For this study, we improved RLake by modifying the air density calculation and
including the ice sublimation processes. In the original RLake, the air density is set to a
constant with a value of 1.225 kg/m3. In this study, the air density (ρatm) was calculated
according to:

ρatm =
Patm − 0.378eatm

Rda Tatm
(3)

where Patm is the atmospheric pressure (Pa), Rda is the gas constant for dry air
(287.0423 J/kg−1 K−1), Tatm is the air temperature (K) at 2 m, and eatm is the atmospheric
vapor pressure (Pa). The water vapor pressure (eatm) calculation scheme is as follows:

eatm =
qatmPatm

0.622 + 0.37qatm
(4)

where qatm is the atmospheric specific humidity.
In addition, the effect of sublimation on the ice depth is neglected in the original RLake.

However, ice sublimation in the Tibetan Plateau could be an important process that affects
the ice depth in an environment of strong solar radiation and dry climate. Thus, the ice
sublimation process was parameterized as follows and was added to RLake:

Tsub =
t

ρice
ρatmu∗q∗ (5)

Tsub is the loss of ice thickness due to sublimation (m), t is the time step (s), u∗ is the
friction velocity (m/s), and q∗ is the moisture (kg/kg).

Nam Co is a saline lake, and the water salinity is about 1.5 g/L [43]. The freezing
point temperature is about −0.08 ◦C with such a salinity (the National Snow and Ice Data
Center (NSIDC) (http://nsidc.org/cryosphere/seaice/characteristics/brine_salinity.html,
accessed on 20 July 2023)), which is very close to 0 ◦C. Thus, we still used 0 ◦C as the ice
freezing point in this study.

http://nsidc.org/cryosphere/seaice/characteristics/brine_salinity.html
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3. Results
3.1. Lake Surface Temperature and Lake Ice Thickness

The lake surface temperature serves as a valuable indicator for evaluating lake models
as it reflects the lake processes and lake–atmosphere exchange. Assessing the accuracy
of lake models heavily relies on this factor. We compared the simulated lake surface
temperature for Nam Co over a ten-year span from 2011 to 2012 with MODIS data. The
simulation was performed at the central location of Nam Co, which represents the deepest
point of the entire lake with a depth exceeding 90 m (30.75◦ N, 90.75◦ E). Superior results
at this location demonstrate the strong modeling capability of the simulation. Figure 3
demonstrates a satisfactory agreement between the simulated lake surface temperatures
and the MODIS data, displaying a correlation coefficient of 0.89 and an average error
of 1.75 ◦C. This alignment suggests that our improved RLake model not only effectively
captures the lake–atmosphere exchange but also replicates real lake processes. Therefore,
this positions the RLake model as a reliable tool for further simulations regarding lake ice.
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Figure 3. Comparison between simulated values (red line) and MODIS data (green points) of daily
lake surface temperature at 30.75◦ N, 90.75◦ E during the period of 2011–2012 in Nam Co. Lake depth:
93.3 m.

The improved RLake model was utilized to simulate ice thickness (represented by the
black line in Figure 4), and a comparison was conducted with the observed ice thickness
curve by Qu et al. (2012) at Nam Co from 2006 to 2011 [55]. The simulation was performed
at the closest point to the observation location, located at coordinates 30.85 ◦N, 90.95◦ E.
Based on the lake depth data provided in Figure 1, we set the lake depth at this coordinate to
36.3 m. Figure 3 illustrates the comparison results, showing that the simulated ice thickness
generally exceeds the observed value. This disparity is attributed to the significant impact
of sublimation loss on lake ice thickness [27]. Consequently, the RLake model was enhanced
by incorporating the ice sublimation process (Section 2.3.2).

After incorporating the sublimation parameterization scheme into the RLake model,
the simulation outcomes, delineated by the red line in Figure 4, show a closer congruence
with the observed data, yielding a correlation coefficient of 0.87, an average error of 5.4 cm,
and a mean annual sublimation of 6.9 cm. Notably, in the Nam Co region, even with
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the combined influences of low ambient humidity and strong lake winds, sublimation
significantly impacts the simulation of lake ice thickness, accounting for approximately
10% of the yearly average ice thickness. This refinement emphasizes the significance of
sublimation and affirms the capability of the model to faithfully replicate the year-to-year
variations in the ice thickness of Nam Co.

Figure 4 reveals that in 2009, the ice thickness was markedly thinner compared to other
observed years. This observation aligns with the forcing data, which indicates that 2009
experienced higher average winter temperatures than other years. Moreover, the reduction
in ice thickness due to sublimation in 2011 was lower compared to other years, which can
be attributed to lower wind speeds and higher humidity based on the forcing data.
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3.2. The Change in Lake Ice Phenology

To investigate the impact of climate change on the lake ice of Nam Co, we simulated
the ice phenology of Nam Co using an improved lake ice model. The results, presented
in Figure 5, illustrate that both the MODIS data and simulation results indicate a delay in
the ice-on date, an advancement in the ice-free date, and a reduction in the duration of
lake ice cover. However, the model simulation exhibits these trends as more pronounced
changes compared to the MODIS observation. The most significant disparity between the
simulation results and MODIS data pertains to the ice-free date. The simulation results
indicate an advancement of ice melt, foreseeing the ice-free date arriving 1.76 day/year
earlier. In contrast, the MODIS data point to a more conservative shift, anticipating the ice-
free date moving up by only 0.54 day/year within the same times. The simulation results
for the ice-on date did not differ significantly from the MODIS data. The simulation results
indicate a delay of 1.19 day/year for the ice-on date, while the MODIS data shows a delay
of 1.01 day/year for the icing date. Regarding the duration of lake ice cover, over the course
of these thirteen years, the simulation results showed a decrease of 2.76 day/year, whereas
the MODIS data exhibited a decrease of 1.72 day/year. Overall, the lake ice phenological
patterns from both our simulations and MODIS observations emphatically highlight the
profound impact of climate change in Nam Co.
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4. Discussion

To investigate the effect of low air density on lake ice, we conducted two tests. Test 1
involved using a standard value at standard atmospheric pressure, with the air density set
at 0 ◦C. This test aimed to simulate the freezing and thawing process at a presumed low
altitude for Nam Co. In Test 2, we employed the air density calculation scheme described in
the model introduction and utilized forced data to calculate the air density. This set of tests
aimed to simulate the actual freeze–thaw process of Nam Co. Both tests were conducted
at a specific location, with the lake depth set at 36m, and the simulation period spanning
from 2006 to 2013.

The results of the single-point test indicated that air density primarily influences the
ice-on date of Nam Co. A lower air density on the Tibetan Plateau leads to a delayed
ice-on date and a slightly earlier ice-free date (Figure 6). The low air density on the
plateau weakened the energy exchange between the lake and the atmosphere, particularly
reducing the sensible and latent heat fluxes, with a significant reduction in the latent heat
fluxes (Figure 7). Further analysis reveals that two types of energy impact the freeze–thaw
process on the lake surface: energy stored within the lake and atmospheric forcing. During
freezing, the stored heat in the lake suppresses the freezing of the lake surface, while the
low temperature atmospheric forces promote the freezing of the lake surface. The low air
density on the Tibetan Plateau weakens the effect of atmospheric forcing on the freeze–thaw
process of the lake, allowing the energy stored in the lake to have a greater impact, leading
to a delayed ice-on date. During thawing, the energy stored in the lake and atmospheric
forcing contributes to the ice-thawing of the lake surface. Therefore, during this stage,
although the influence of atmospheric forcing is weakened by the low air density, due to
the fact that these two energies have a coherent impact on the lake surface, the ice-free
dates of the lake surface are only slightly advanced.
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Owing to the distinctive climatic conditions of the Tibetan Plateau, numerical simu-
lations of its lakes have revealed limitations, especially in modeling the deep lake ice-on
phase. Notably, these simulations often prematurely predict the commencement of lake
ice-on [49,59–63]. In response, the RLake model employed enthalpy as the predictive
variable throughout the freezing phase, effectively addressing complications associated
with the phase transitions of freezing and thawing in water [57]. Figure 3 illustrates a
marked correlation between our simulated results and observed data concerning lake
freeze–thaw timings, achieving a correlation coefficient of 0.89. Although the simulation of
lake ice thickness in Figure 4 appears marginally high, its trajectory corresponds closely
with the observational findings, devoid of significant phase deviations. Consequently,
the incorporation of enthalpy as the predictive parameter proves pivotal in elevating the
precision of freeze simulations for lakes on the Tibetan Plateau.

Our simulation yielded an overestimation of Nam Co Lake’s ice thickness, in contrast
to Li et al. (2021), who reported an underestimation for Ngoring Lake [62]. The ice
phenology of the north Europe lake, Lake Inari, also shows the same trend of change: a
delayed ice-on date, an earlier ice-free date, and a shortened ice duration [64,65]. However,
the rate of change in the ice phenology of Nam Co Lake far exceeds that of the Lake Inari,
whether in simulation results or remote sensing data [64,65]. Contrarily, Guo et al. (2017)
deduced a delayed ice melt date for Nam Co Lake based on remote sensing data, diverging
from our findings [66]. Such variations are likely due to differing research time frames.
Moreover, changes in both the lake surface temperature and ice cover will impact the
aquatic ecosystem of Nam Co, leading to phenomena such as an increase in phytoplankton,
shifts in community composition, biodiversity changes, and species invasions [23].

The Tibetan Plateau, characterized by its lower latitude, arid conditions, and min-
imal atmospheric dust, demonstrates a high transparency that intensifies radiation. In
winter, amplified wind speeds coupled with dryness over the lake contribute to marked
sublimation of the ice, which in turn affects its thickness. Simultaneously, studies on lake
ice phenology have found that due to global warming, the freezing dates of lake ice are
delayed, melting dates are advanced, and the duration of lake ice cover is shortened. These
changes have all impacted the sublimation of lake ice. This sublimation, integral to the
lake’s evaporation mechanism, modulates the lake’s water level and its overall expanse,
fostering a feedback mechanism between salinity and evaporation rates [67]. This study
posits that factors such as snowfall, rainfall, surface runoff, and groundwater influx com-
pensate for the water deficit caused by sublimation, thereby stabilizing annual lake surface
elevations. However, the recent literature suggests a rise in the water level of Nam Co
and an expansion of its surface area in recent years, which may influence its salinity and
evaporation rate [18,68,69]. While our investigation was constrained to a bidimensional
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analysis and overlooked fluctuations in the water elevation, future endeavors employing a
tridimensional lake model may offer enhanced perspectives on the subject.

5. Conclusions

This study enhanced the RLake model by incorporating additional air density param-
eterization schemes from the CLM. Additionally, it considered the effects of lake salinity
and sublimation on the freezing point and ice thickness. The improved lake ice model
demonstrates excellent accuracy in simulating the temperature and thickness of individual
lake points. The correlation coefficient between the simulated lake surface temperature and
MODIS data is 0.89, with an average error of 1.75 ◦C. The correlation coefficient between
the simulated lake ice thickness and field observation data is 0.87, with an average error of
5.4 cm. Meanwhile, it accurately reproduces the MODIS trends, including delayed ice-on
dates, advanced ice-free dates, and a shorter duration of lake ice cover. However, the
model still faces challenges in accurately simulating the spatial variability and dynamics
of the entire lake surface. Future research should focus on enhancing the lake model’s
representation of the connectivity between the lake and its surrounding environment to
improve simulation accuracy.
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