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Abstract: Climate change and its impact on surface runoff in the upper Blue Nile basin and sub-basins
have been widely studied in future climate projections. However, the impact on extreme flow events
of rivers is barely investigated discretely. In this paper, the change in temperature and rainfall under
the Representative Concentration Pathway (RCP) highest emission scenario (RCP 8.5) and its impact
on the high flow and low flow simulated by the Soil and Water Assessment Tool (SWAT 2012) in major
watersheds of the Lake Tana Basin has been evaluated by comparing the baseline period (1971–2000)
with the 2020s (2011–2040), 2050s (2041–2070), and 2080s (2071–2100). The high flows of watersheds
were selected by the Annual Maximum Series (AMS) model, whereas the low-flow watersheds were
selected by the 7-day sustained mean annual minimum flow method. The result showed that the
highest change in maximum temperature ranged from 2.93 ◦C to 5.17 ◦C in monthly time scales in
the 2080s. The increment in minimum temperature is also more prominent in the 2080s and it is
expected to rise by 4.75 ◦C. Inter-annual variability of the change in rainfall has shown increasing
and decreasing patterns. The highest increments are expected by 22.37%, 25.58%, and 29.75% in
the 2020s, 2050s, and 2080s, respectively, whereas the projected highest decrease in rainfall dictates
the decrease of 6.42%, 7.11%, and 9.26% in 2020s, 2050s, and 2080s, respectively. Due to changes in
temperature and rainfall, the low flow is likely to decrease by 8.39%, 8.33%, 6.21%, and 5.02% in
Ribb, Gumara, Megech, and Gilgel Abay watersheds, respectively, whereas the high flow of Gilgel
Abay, Megech, Gumara, and Ribb watersheds are expected to increase by 13.94%, 12.16%, 10.90%,
and 10.24%, respectively, every 30 years.

Keywords: climate change; high flow; low flow; SWAT; upper Blue Nile basin

1. Introduction

Climate change is a major global issue in the sustainable management of natural
resources today. Globally, the mean atmospheric temperature is predicted to increase
continuously, which causes alterations in the energy cycles and hydrological processes [1].
Currently, most climate scientists have been agreeing that anthropogenic emissions of green-
house gases contributed to the change in climate and the consequent global warming [2].
Since the 19th century, the emission of Greenhouse Gases (GHGs) has been increasing be-
cause of population growth, industrialization, and the consequent increase in consumption
of different energy sources, deforestation, and human settlement [3]. Due to the uncer-
tainty in the future scenario of anthropogenic activities and the subsequent emission of
greenhouse gases also not being certainly defined, the global atmospheric temperature is
expected to keep changing. Based on the expected continual anthropogenic factors in the
emission of GHGs, the four GHGs emission and concentration pathways of the atmosphere
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are developed using the Representative Concentration Pathway (RCP) scenarios. The
development of these scenarios has taken into account the atmospheric concentrations of
GHGs, emissions of air pollutants, and land use in a global context in terms of radiative
forcing concentration pathways including RCP2.6, RCP4.5, RCP6.0, and RCP8.5 which are
described by 2.6 W/m2, 4.5 W/m2, 6 W/m2, and 8.5 W/m2 radiative forcing concentrations,
respectively [4].

In different versions of the Intergovernmental Panel on Climate Change (IPCC) report,
it is indicated that many climate scientists conducted their research and revealed that
climate change has been significantly affecting the hydrologic cycle including the change
in rainfall patterns, the frequent and high degree of extreme weather events, flooding
problem, intense and frequent droughts, and desertification [5]. In previous studies,
researchers have suggested that streams would be subjected to flooding in the occurrence
of intensive storms and alteration in environmental stream flows in drought times because
of climate change [6–8]. When temperature increases in the atmosphere, the atmospheric
air is warm and able to hold more water vapor, and then the favorable condition is created
to accelerate the movement of water in the atmosphere, which leads to the intensification of
precipitation [9], finally causing increased soil saturation and surface runoff [10,11]. On the
other hand, a warmer climate can cause losses of moisture from the soil by an evaporation
process, and from plants by evapotranspiration, which potentially leads to the drying of
soil layers and offset any additional rainfall from the surface [12].

Over the past few decades, the hydrological cycle components of the major Ethiopian
river basins have been significantly affected by climate change [13–15]. In the country,
numerous studies have shown that hydrological drought becomes common even in many
perennial rivers during the dry seasons, whereas in the rainy/summer season, the flooding
problem has also been common, including in some small catchments [16,17]. Plenty of
research conducted on the ways in which the water resources of many catchment areas
in the upper Blue Nile basin have potentially been affected and predicted to be affected
by climate change using various climate change models, climate change scenarios, and
hydrological models indicated that climate change has been altering the stream flow
nature of the basin [18–21]. In the basin, previous studies have focused on the future
dynamics of the mean stream flow of catchments. However, the extreme flow of rivers of
the basin should have been investigated discretely under the future climate projection for
management of the water resources of the basin in particular and the overall ecosystem of
the basin in general. Therefore, the overall purpose of this study is to evaluate the effects
of climate change on high flow and low flow under the highest emission scenarios of the
Representative Concentration Pathway (RCP 8.5) and the ensemble of six global climate
models in the Lake Tana sub-basin of upper Blue Nile basin. The result shows relevant
indications for policymakers concerned with flood and hydrological drought management
activities in the Blue Nile basin, including the Grand Ethiopian Renaissance Dam (GERD)
and different water projects in Sudan and Egypt.

2. Materials and Methods
2.1. Study Area Description

The Lake Tana basin is geographically located in the Northwestern Highlands of
Ethiopia, and it covers between 10.96◦ and 12.79◦ N and 36.88◦ and 38.26◦ E, and the
area coverage of the basin is approximately 15,096 km2, of which nearly one-fifth of the
area (3063 km2) is covered with Lake Tana, the largest lake in Ethiopia (Figure 1). Even
though there are other ungauged small rivers, the Lake Tana basin consists of four major
gauged watersheds including Ribb, Gilgel Aba, Megech, and Gumara watersheds that
are contributing more than 93% of the flow of the lake [22]. Among all major watersheds,
Gilgel Abay is the largest one, which covers 1754 km2, whereas Ribb, Gumara, and Megech
watersheds cover 1407 km2, 1272 km2, and 514 km2, respectively. According to [23], most
of the rainfall (70–90%) of the total rainfall in the region occurs during the summer/Kiremt
season from June to September. In the study area, the mean annual rainfall ranges from
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1100 to 1700 mm based on data from 1971 to 2007. In Lake Tana basin and the region,
temperature varies between 9 ◦C and 28 ◦C. The elevation ranges of Gilgel Abay, Gumara,
Ribb, and Megech watersheds are 1885–3534 m, 1797–3585 m, 1793–4112 m, and 1864–2972
m above sea level, respectively.
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Figure 1. Geographical location of Lake Tana basin.

According to [24], the Lake Tana basin consists of ten major soil types including eutric
fluvisols, chromic luvisols, eutric leptosols, eutric cambisols, eutric regosols, eutric vertisols,
haplic alisols, lithic leptosols haplic luvisols, and haplic nitisols. Because agriculture is the
major economic activity of the community in the Lake Tana basin, 51.3% of the total area
of the basin is covered by crop cultivation, whereas 29% and 20% of the basin has been
covered by agro-pastoral area, and lake water, respectively [25].

2.2. Hydro-Meteorological Data Collection and Processing

The Meteorological station data of different periods were collected from the Ethiopian
national meteorological agency. Among those, some of the stations that had data for thirty
years from 1971 to 2000 were used to verify the results of the climate models. In the region,
meteorological stations are not adequate in number, and even the exiting stations do not
store the instruments required to measure all important climate variables for hydrological
modeling. In this study, twelve stations that have better historical temperature and rainfall
data were selected (Table 1).

The future climate data were projected using six Global Climate Models (GCMs)
mentioned in (Table 2) under the highest emission scenario of Representative Concentration
Pathway (RCP8.5) in the Coupled Model Inter-comparison Project Phase 5 (CMIP5). For
this study, three important climate variables such as precipitation, minimum temperature,
and maximum temperature were projected starting from the 1971 to 2100 time series data,
and from which the data series from 1971 to 2000 were used for bias correction, whereas
the data from 2011to 2100 were also used for evaluation of future change.

2.3. Bias Correction of Climate Models Data

The watershed-based hydrological models are mostly used to assess the potential
impacts of future climate change on the components of hydrological cycles. Local topo-
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graphical differences such as mountains strongly affect the simulations of temperature and
rainfall by coarse-resolution climate models. Therefore, correcting the biases which may
have been created in simulations of these climate variables is highly recommended. In this
study, the bias of climate model outputs in the simulation of both maximum and minimum
temperature was corrected by using the variance scaling approach, whereas rainfall outputs
were corrected by power transformation algorism using CMhyd 2016 software [26]. Among
many other methods, these two bias correction approaches were selected based on their
efficiency in frequency-based statistics verified by other studies [27,28]. The historical
observed data of maximum temperature, minimum temperature, and rainfall are taken
between 1971 and 2000 for bias correction process.

Table 1. The location, altitude and accessed climate variables of meteorological stations.

Stations Latitude Longitude
Altitude
(Meter)

Accessed Data

Temperature Rainfall

Gondar 12.3 37.25 1973 1952–2009 1952–2009
Makisegnit 12.39 37.55 1912 1987–2008 1996–2008

Addis Zemen 12.12 37.77 1940 1996–2009 1997–2009
Debretabor 11.86 37.99 2612 1951–2009 1951–2009

Werota 11.92 37.69 1819 1992–2008 1969–2007
Wanzaye 11.78 37.67 1821 2000–2009 1984–2008
Bahir Dar 11.60 37.36 1800 1961–2009 1961–2009
Dangila 12.25 36.84 2125 1954–2009 1954–2009
Injibara 10.99 36.92 2568 1984–2008 1954–2008

Adet 11.27 37.49 2179 1989–2009 1989–2009
Sekela 10.98 37.21 2715 1989–2008 1988–2008

Wetet Abay 11.37 37.04 1920 1987–2008 1987–2008

Table 2. Climate models with their description, climate variables, and data used.

Climate Model Description Institution and Country Climate Variables Data Used

CanESM2 The second-generation
Canadian Earth System Model

Canadian Centre for Climate
Modelling and Analysis (CCCma),

Canada

• Tmax
• Tmin
• Precipitation

1971–2100

EC-EARTH A European community Earth
System Model

ECMWF (European Centre of
Medium-Range Weather Forecast)

• Tmax
• Tmin
• Precipitation

1971–2100

CNRM-CM5

Centre National de Recherches
Météorologiques—Groupe
d’études de l’Atmosphère

Météorologique

(Centre National de Recherches
Météorologiques—Groupe
d’études de l’Atmosphère

Météorologique) and Cerfacs
(Centre Européen de Recherche et

de Formation Avancée), France

• Tmax
• Tmin
• Precipitation

1971–2100

HadGEM2-ES Hadley Centre Global
Environment Model version 2 Met Office Hadley Centre, UK

• Tmax
• Tmin
• Precipitation

1971–2100

NORESM1-M The Norwegian Earth System
Model version 1

Norwegian Climate Centre,
Norway

• Tmax
• Tmin
• Precipitation

1971–2100

CSIRO-Mk3-6-0
Commonwealth Scientific and

Industrial Research
Organization

Commonwealth Scientific and
Industrial Research Organization,

Australia

• Tmax
• Tmin
• Precipitation

1971–2100

Notes: Tmax = Maximum Temperature, Tmin = Minimum Temperature.
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According to [26], CMhyd software was developed to generate simulated climate data
that can represent meteorological stations used in a watershed-based hydrological model
setup. A transformation algorism was employed in bias correction processes for adjusting
simulated climate variables so that outputs should be closer to the reality or observed data.

2.4. Geophysical Data Collection and Processing

The geophysical inputs such as soil, land use/cover, and elevation (DEM) have been
used as input in SWAT model for hydrological simulation. The land use/cover of the Lake
Tana basin were obtained from the Ethiopia Ministry of Water and Energy (MoWE), and the
naming of each land use classes was adjusted based on the lookup table format of SWAT
model. Soil data of the basin were also obtained from Food and Agriculture of United
Nation Soil Map of the World with 1:5,000,000 scale [24]. The Shuttle Radar Topography
Mission (SRTM) Digital Elevation Model (DEM) data were obtained from the United State
Geological Survey (USGS) agency. The elevation data were used in the process of setting
up of SWAT model to determine flow paths of streams and delineate the entire watersheds.
Additionally, it was also used to define slopes of watersheds, which are another key element
in Hydrological Response Unit (HRU) definition and analysis process combined with soil
and land use data.

2.5. SWAT Model Description, Setup, and Simulation

The Soil Water Assessment Tool (SWAT) is a semi-distributed, physical-based wa-
tershed model. The model estimates the hydrological cycle components, including areal
average rainfall, surface runoff, evapotranspiration, groundwater flow, and sediment yield
in HRU level on a daily time scale. It is commonly aappliedto simulate both the combined
and discrete impact of climate change and land use changes on both the quantity and
quality of water [29].

The digital elevation data of the study area was taken for river networking and water-
shed delineation through the “burn-in” method. This method of a stream network theme
improves hydrographic division and delineation the of boundaries of sub-watersheds.
In the delineation process, the flow outlet locations where the ground-measured data
are taken were selected for the four watersheds, and each watershed was delineated by
the combination of many small sub-watersheds. The sub-watersheds were also further
classified into the smallest spatial units named Hydrological Response Units (HRUs) by
overlaying the soil, land use, and slope classifications. In the HRU definition process, all
the predefined thresholds of land use, soil, and slope classes in the entire watersheds were
taken into consideration. Surface runoff is generated at the HRU level and it is routed
in each sub-basin level and from all sub-basins to the outlets of watersheds using the
following equation (Equation (1)) [29]:

SWt = SW0 +
t

∑
i=1

(
Rday − Qsur f − Ea − Wsweep − Qgw

)
i
, (1)

where SWt is the total soil water content (mm), SW0 is the soil water content of the day
before rainfall starts (mm), t is time (days), Rday is the measure of rainfall on the day i (mm),
Qsurf is the measure of surface runoff on the day i (mm), Ea is the amount of water lost by
evapotranspiration on the day i (mm), Wsweep is the amount of water joining the vadose
zone from the soil profile on the day i, and Qgw is the amount of water percolated to join
the groundwater on the day i (mm). The measure of surface runoff is computed using
Equation (2),

Qsur f =

(
Rday − Ia

)2(
Rday − Ia + S

) , (2)
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where Ia is the initial abstractions (mm) and S is the retention parameter which is computed
using Equation (3):

S = 25.4
(

1000
CN

− 10
)

, (3)

where CN is the curve number for the day and the initial abstractions (Ia) are usually esti-
mated as 0.2S. Therefore, by substituting, Qsurf can also be computed using (Equation (4)):

Qsur f =

(
Rday − 0.2S

)2(
Rday + 0.8S

) . (4)

Therefore, runoff will occur only when the amount of rainfall (Rday) is greater than the
initial abstraction (Ia).

2.6. SWAT Model Calibration and Validation

In our previous study [30], the Soil and Water Assessment Tool (SWAT) has been
calibrated and validated using model parameters. The calibration is performed using
1995–2002 climate data, whereas the validation of calibrated parameters has also been
performed using 2003–2006 data. The overall efficiency of the model in terms of Nash
Sutcliff Efficiency (NS) and Relative Volume Error (RVE) was evaluated and the maximum
possible efficiency obtained from the previous study in the four watersheds (Table 3).

Table 3. SWAT model efficiency in simulation of stream flow of watersheds.

Watersheds
Calibration Validation Default Efficiency

NS RVE (%) NS RVE (%) NS RVE (%)

Gilgel Abay 0.86 1.31 0.84 1.36 0.15 32.41
Gumara 0.67 1.25 0.63 1.88 0.18 36.84

Ribb 0.71 1.14 0.74 1.07 0.09 28.69
Megech 0.51 −8.84 0.54 −6.62 −0.32 −48.52

Note: Source: Reprinted/adapted with permission from [30].

Therefore, for this study, a new calibration process of the SWAT model was not
performed; the calibrated parameters with their fitted value were simply obtained from the
previous study, and the stream flow was simulated using those parameters. The calibrated
parameters, with their description, range of values to iterate, fitted value, and degree of
sensitivity, are presented in Table 4.

2.7. Selection and Analysis of High Flow and Low Flow of Watersheds

In this study, the high-flow and low-flow selection and analysis are performed to
evaluate the degree to which the climate change, most importantly the change in rainfall
and temperature, is affecting and going to affect the extreme flow trends of watersheds in
this century. The high flow as well as the low flow of watersheds were selected in the daily
simulated flow output of the SWAT model for the entire study period (1971–2100).

There are different methods of low-flow selection models from the normal daily time
series flow data based on the number of consecutive days which has the lowest flow of the
year. The most commonly used methods are 3-day sustained mean annual low flow, 7-day
sustained mean annual low flow, and 10-day sustained mean annual low flow, which are
defined as the mean value of the lowest flow of the three, seven, and ten consecutive days,
respectively. For this study, the 7-day sustained method is used in selecting low flow from
the daily annual flow of the whole period. After the daily flow is obtained from the SWAT
model, the whole 120 years of daily flow data were sorted from lowest to largest values of
flow in the annual time frame, the lowest 7 days of flows in each year were selected and
the mean values of each selected flows were also calculated.
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Table 4. Hydrological parameters used in SWAT model.

Watershed Parameter Description t-Stat p-Value Minimum Value Maximum Value Fitted Value Rank

Gumara

R_CN2.mgt Initial SCS CN II value −10.14 0 0 1 0.14 1

V_ALPHA_BF.gw Base flow alpha-factor (days) 5.48 0 −25 25 −12 2

V_ESCO.hru Soil evaporation compensation factor −3.07 0.03 0 1 0.42 3

V_GW_DELAY.gw Groundwater delay (days) −2.9 0.09 0 10 7.34 4

V_GW_REVAP.gw Groundwater “revap” coefficient (days) −2.23 0.11 0.02 0.2 0.19 5

Gilgel Abay

R_CN2.mgt Initial SCS CN II value −58 0 −0.2 0.2 −0.18 1

V_ALPHA_BF.gw Base flow alpha-factor (days) 10.8 0 0 1 0.12 2

A_SOL_K.sol Saturated hydraulic conductivity (mm/h) 6.1 0 −0.5 1 0.47 3

V_GW_REVAP.gw Groundwater “revap” coefficient (days) −1.2 0.2 0.02 0.2 0.10 4

V_GWQMN.gw Threshold water depth in the shallow aquifer for flow (mm) 1 0.3 0 10 1.31 5

Ribb

V__ESCO.hru Soil evaporation compensation factor 3.76 0.01 0 1 0.5 1

R__SOL_AWC.sol Available water capacity (mm water/mm soil) 3.55 0.01 0 1 0.9 2

V__EPCO.hru Plant uptake compensation factor 2.55 0.04 0 1 0.7 3

R__CN2.mgt Initial SCS CN II value −1.95 0.09 −0.2 0.2 2.37 4

V__ALPHA_BF.gw Base flow alpha-factor (days) 1.77 0.12 0 1 0.5 5

Megech

R__CN2.mgt Initial SCS CN II value −10.55 0.00 −0.2 0.2 −0.02 1

V_ALPHA_BF.gw Base flow alpha-factor (days) −8.27 0.00 0 1 0.76 2

V_GW_DELAY.gw Groundwater delay (days) −2.70 0.01 0 10 5.37 3

V_GWQMN.gw Threshold water depth in the shallow aquifer for flow (mm) 2.26 0.03 0 2 0.55 4

A_SOL_K.sol Saturated hydraulic conductivity (mm/h) 1.90 0.06 −0.5 1 −0.17 5
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Once the low flow of each year was selected, the Flow Duration Curve for the four-
time period was plotted to compare changes in the three periods compared to the baseline
period (1971–2000). The process of plotting FDC passes four important steps: (1) the daily
annual low flow data of every period are sorted in terms of descending order; (2) the
rank is assigned for each value starting from the lowest value to the highest one; (3) the
probability of non-exceedance for each value is computed in terms of Weibull formula
percentile (Equation (5)), and (4) the Flow Duration Curve (FDC) of the four periods are
plotted using the sorted value of the four periods versus the percent of non-exceedance.

The frequency of high flows in time series data is commonly used for flood manage-
ment, and safety analysis of water work constructions constructed for different purposes
such as irrigation, hydropower, and other projects. For this study, the purpose of plot-
ting Flow Duration Curve (FDC) is for evaluating the change in magnitudes of extreme
flow events with respect to their frequency in the categorized time periods in the future
predicted climate condition. There are two most commonly known methods of high flow
selection methods in time series data, which are Annual Maximum Series (AMS) and Partial
Duration Series (PDS). In AMS method, one maximum is selected from each year, whereas
in Partial Duration Series (PDS), the threshold will be set and the peak values that are
above that threshold will be selected as a high flow for analysis. For this study, the Annual
Maximum Series (AMS) method was used for the selection of high extreme flow of the
four watersheds in 120 years. Since only one highest flow is selected each year, a total
of 120 peak flows are selected for analysis. Like in low-flow analysis, the Flow Duration
Curve is also plotted for high flows by which the change in the high flow because of climate
change is clearly shown on the curve plotted in all periods including the baseline period.
The procedures to plot the Flow Duration Curve (FDC) are the same as those used in low
flow except in ordering of the time series data, where, the order is descending in case
of high flow. The X-axis on the plot in the high-flow duration curve is representing the
exceedance probability, whereas the low-flow duration curve represents the percentile of
non-exceedance probability.

P =
M

(N + 1)
∗ 100, (5)

where P is the exceedance probability of each value with in the thirty years of data; M is
the rank of each value, and N, is the total number of data.

The change has also been evaluated in terms of comparison of extreme events with
respect to the probability of exceedance of each event through categorizing in five ranges
of the probability of exceedance in percent. These categories include Q0–Q25, Q26–Q50,
Q51–Q75, and Q76–Q100, where, the mean values of extreme events in each category were
also computed. Therefore, the changes in both high flow and low flow of the watersheds
were evaluated by comparing the mean values of each exceedance probability in the case
of high flow and non-exceedance probability in the case of low flow of the three periods
with the baseline one.

3. Results and Discussion
3.1. Errors of Climate Models

The efficiency of climate models has been evaluated before and after the bias correction
was performed. The default efficiency of climate models has been improved by the bias
correction process. After the bias correction process result, the maximum possible error
bounds of all climate models were evaluated. The errors of climate models before and
after bias correction in the three climate variables are analyzed on monthly time scale. The
purpose of minimizing the deviation of rainfall and both the minimum temperature and
minimum temperature outputs is to minimize the bias and enhance the consistency of in
simulation of stream flow of watersheds by SWAT model.

Before the biases were corrected, the default errors of climate models in the simulation
of rainfall ranged from 2.11% to 6.87% including over- and under-estimations in which
the lowest error was observed by CSIRO-Mk3-6-0 in January, whereas the highest error
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was observed by CNRM-CM5 in April (Table 5). The model error of rainfall shows the
negative and positive oscillation from the observed value that ranges from ±0.05% to
1.94%. When we compared the climate models, the highest inefficiency was observed by
the NORESM1-M climate model in August, whereas the best-fit value was simulated by
CSIRO-Mk3-6-0 in January. Seasonally, more or less all climate models were consistent
reasonably with the measured rainfall, especially from November to February (Table 5).
Indeed, in the region, rainfall is mostly common in the summer season and the errors of
climate models are more visible in this season.

Table 5. Errors of climate models in simulation of climate variables.

Months

Rainfall Model Error (%)

CanESM2 EC-EARTH CNRM-CM5 HadGEM2-ES NORESM1-M CSIRO-Mk3-6-0

BBCr ABCr BBCr ABCr BBCr ABCr BBCr ABCr BBCr ABCr BBCr ABCr

January 3.71 0.14 3.09 0.06 4.77 0.83 4.02 0.57 3.92 0.54 2.11 0.05

February 4.19 0.52 4.71 0.84 4.82 0.66 3.56 0.38 5.59 0.83 2.39 0.12

March 4.69 0.81 4.89 1.23 6.34 1.28 2.13 0.08 4.03 0.622 6.51 1.33

April 5.81 1.05 −4.7 −1.44 6.87 1.33 3.4 0.41 −3.09 −0.33 −4.68 −0.75

May −5.61 −1.89 −3.89 −0.84 4.93 1.55 4.32 1.24 −4.87 −1.52 3.28 0.72

June −5.37 −1.21 5.78 1.71 6.45 1.58 −5.93 −1.61 5.95 1.41 4.29 0.84

July −6.09 −1.94 6.01 1.96 −5.89 −1.85 −6.49 −1.85 5.81 1.81 5.43 1.64

August 5.88 1.77 5.91 1.84 6.22 1.92 6.63 1.88 6.27 1.94 5.9 1.78

September 5.52 1.69 5.03 1.36 −4.11 −1.04 2.76 0.42 5.35 1.61 4.39 1.17

October 5.38 1.51 −3.99 −1.08 4.05 0.94 4.09 0.96 −5.05 −1.37 3.79 0.83

November 4.6 0.79 4.23 0.41 4.46 0.75 2.62 0.25 6.55 1.35 4.77 0.84

December 4.03 0.72 3.74 0.17 2.55 0.23 3.83 0.66 3.12 0.42 1.43 −0.14

Average 2.23 0.33 2.57 0.52 3.46 0.68 2.08 0.28 2.80 0.61 3.33 0.70

Model errors in maximum temperature (◦C)

January 0.67 0.24 0.39 0.14 −0.61 −0.22 0.03 0.01 0.17 0.08 0.11 0.04

February 0.83 0.02 0.61 0.22 0.14 0.06 1.66 0.04 0.25 0.13 0.89 0.19

March 0.41 0.36 0.07 0.06 −0.32 −0.28 0.05 0.04 0.06 0.05 0.28 0.25

April 1.04 0.31 0.37 0.11 1.11 0.33 1.07 0.32 0.71 0.22 0.91 0.27

May 0.83 0.14 0.83 0.14 1.26 0.50 0.97 0.32 1.06 0.23 0.99 0.28

June 0.51 0.35 −0.47 −0.32 0.07 0.05 0.29 0.20 −0.09 −0.06 0.10 0.07

July 0.21 0.04 0.95 0.18 −1.04 −0.35 −0.84 −0.16 0.05 0.01 −0.58 −0.15

August −0.75 −0.17 −1.19 −0.27 0.09 0.02 −0.35 −0.08 −0.72 −0.17 −0.53 −0.12

September 0.86 0.20 −0.30 −0.07 −0.60 −0.14 0.13 0.03 −0.09 −0.02 0.04 0.01

October −0.48 −0.13 1.22 0.33 1.25 0.44 0.59 0.16 0.84 0.24 0.88 0.20

November −0.16 −0.09 −0.34 −0.19 0.44 0.25 0.14 0.08 −0.11 −0.06 0.16 0.09

December 0.79 0.27 0.20 0.07 0.97 0.33 0.88 0.30 0.56 0.19 0.89 0.24

Average 0.40 0.13 0.20 0.03 0.23 0.08 0.39 0.11 0.22 0.07 0.35 0.11

Model errors in minimum temperature (◦C)

January 0.18 0.07 0.42 0.11 −0.49 0.04 0.35 0.00 0.39 −0.22 0.36 −0.04

February −0.4 −0.15 −0.90 0.03 0.92 0.12 0.06 −0.07 −0.12 0.07 1.02 0.01

March −0.39 −0.12 0.22 −0.03 −0.02 −0.06 −0.34 −0.15 0.24 0.10 1.52 −0.03
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Table 5. Cont.

Months

Rainfall Model Error (%)

CanESM2 EC-EARTH CNRM-CM5 HadGEM2-ES NORESM1-M CSIRO-Mk3-6-0

BBCr ABCr BBCr ABCr BBCr ABCr BBCr ABCr BBCr ABCr BBCr ABCr

April 0.09 0.01 0.36 0.06 0.55 0.05 0.39 −0.01 1.20 −0.14 1.60 −0.03

May 1.12 0.20 1.22 0.17 1.17 0.19 1.21 0.22 1.26 0.17 1.66 0.19

June 0.21 0.09 0.18 −0.11 −0.38 −0.19 0.44 0.02 0.11 0.00 0.47 −0.03

July 1.25 0.24 1.25 0.21 1.14 0.18 −0.60 0.21 0.57 −0.07 −0.19 0.12

August −0.42 −0.17 −0.60 −0.22 0.43 −0.02 −0.42 0.19 −0.42 −0.15 −0.02 −0.06

September 1.15 0.20 0.04 0.07 −0.27 −0.03 0.87 0.12 0.25 −0.01 0.38 0.06

October −0.23 −0.13 0.79 0.10 1.67 0.35 1.04 0.21 1.39 0.22 1.22 0.18

November 0.1 −0.09 −0.17 −0.14 1.21 0.06 1.05 0.21 0.18 0.02 0.58 0.03

December 1.61 0.27 0.97 0.17 0.89 0.11 0.75 0.14 1.23 0.21 1.47 0.17

Average 0.36 0.04 0.32 0.04 0.57 0.07 0.40 0.09 0.52 0.02 0.84 0.05

Notes: BBCr stands for “Before Bias Correction“, and ABCr stands for “After Bias Correction“.

In the simulation of maximum temperature, the default model error was highest in the
HadGEM2-ES climate model in February, which overestimated it by 1.66 ◦C (Table 5). After
the errors have been corrected, most climate models projected maximum temperature with
some overestimation compared to the measured data; for instance, it is overestimated in
all months except July and August in the CSIRO-Mk3-6-0 climate model. From December
to May, except CNRM-CM5, all the other climate models overestimated maximum tem-
perature compared to the ground observed data. In general, the error bounds of climate
models in predicting maximum temperature range from ±0.01 ◦C to 0.5 ◦C, CSIRO-Mk3-6-0
and HadGEM2-ES being more efficient in producing the data in September and January,
respectively (Table 5).

Like rainfall and maximum temperature, the default efficiency of climate models in
simulation of minimum temperature was evaluated and the error bounds ranged from
−0.02 ◦C by CNRM-CM5 in March to 1.67 ◦C by the same model in October. After bias
correction process, in the simulation of minimum temperature, almost all climate models
were more efficient compared to their efficiency in the simulation of maximum temperature.
The error bounds of all climate models ranged from ±0.01 ◦C to 0.35 ◦C (Table 5), in which
the maximum deviation was shown by CNRM-CM5 in October.

3.2. Change in Maximum Temperature

In the simulation of the hydrological process, the SWAT model uses both maximum
temperature and minimum temperature to estimate evapotranspiration in the water bal-
ance computation algorism. In the highest emission of the Representative Concentration
Pathway scenario (RCP8.5), the maximum temperature has shown a visible increment in
the region. The highest change is expected to be observed in the 1980s period compared
to the others, in which the change ranges from 2.93 ◦C in November by CNRM-CM5 to
5.17 ◦C in April by CSIRO-Mk3-6-0 in monthly time scales. Seasonally, the changes in
maximum temperature in the 2020s and 2050s have also been likely to range from 0.75 ◦C in
November by CNRM-CM5 to 3.07 ◦C in April by NORESM1-M, and 1.13 ◦C in November
by CNRM-CM5 to 3.55 ◦C in November by CNRM-CM5, respectively. In this period, the
average annual change in maximum temperature in the ensemble of six climate models is
likely to be 3.9 ◦C. Comparatively, the highest increment in maximum temperature in the
mean monthly time scale is simulated by EC-EARTH in the 2020s and 2050, and CSIRO-
Mk3-6-0 in 2080s, by which it is likely to be 2.17 ◦C, 2.55 ◦C, and 5.17 ◦C, respectively. In an
annual basis, the maximum temperature is expected to rise by 1.91 ◦C, 2.40 ◦C, and 4.04 ◦C
in the 2020s, 2050s, and 2080s, respectively, using the ensemble mean of six climate models
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(Figure 2). For this study, the SWAT model uses the Hargreaves method for the computation
of potential evapotranspiration in the simulation process. Therefore, as far as the method
uses both maximum and minimum temperatures as input, the increment of maximum
temperature has directly affected the amount of water losses by evapotranspiration in the
watersheds [15,31,32].
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Figure 2. Change in maximum temperature in 2020s, 2050s, and 2080s including the average change
in all climate models.

3.3. Change in Minimum Temperature

On a monthly time scale, the mean minimum temperature is showing a consistently
increasing pattern in all periods, even though it is more prominent in the 2080s. The highest
increment is likely to raise up to 4.75 ◦C as predicted by CSIRO-Mk3-6-0 in April. The
overall change in minimum temperature is showing a consistently increasing pattern from
the baseline to the 2020s, 2050s, and 2080s. In comparison, EC-EARTH climate model
predicts the highest increment in the 2020s and 2050s, by which the change is likely to
increase by 2.66 ◦C, and 3.57 ◦C, respectively. In general, in a mean annual basis, it is
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expected to rise by 1.57 ◦C, 2.75 ◦C, and 4.28 ◦C in the 2020s, 2050s, and 2080s, respectively,
using the ensemble of the six climate models (Figure 3). Other similar studies have also
revealed that the minimum temperature is showing an increasing pattern and affecting
stream flow of catchments in the region in the coming decades of this century [21,33].
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Figure 3. Change in minimum temperature in 2020s, 2050s, and 2080s, including the average change
in all climate models.

3.4. Change in Rainfall

Rainfall is expected to show both increasing and decreasing trends in the coming
decades of 21st century. The change is likely to be highest in November in the 2020s and
2080s, whereas it is expected to be highest in October in the 2050s. These highest increments
are expected to be 22.37% under CanESM2, 25.58% under CanESM2, and 29.75% under
CNRM-CM5 in 2020s, 2050s, and 2080s, respectively. Based on most of the model outputs,
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rainfall is likely to decrease in the dry season, the highest decrease expected to be observed
in March in all periods under the CanESM2 climate model in the 2020s and 2080s, whereas
in 2050s, it is predicted by EC-EARTH climate model. The projected highest decrease in
rainfall dictates the decrease of 6.42%, 7.11%, and 9.26% in the 2020s, 2050s, and 2080s,
respectively. The variability of change in rainfall in average values of all climate models
is also highest in the 2080s, which also dictates a 17% increase in November. The average
change in all climate models showed a decrease in March and April in all periods, in which
the highest decreasing change is 5.6% in the 2080s. Other previous similar studies have also
indicated the inter-annual variability of change in rainfall in the region [31,33]. In general,
mean annual rainfall in the basin is expected to increase by 4.43%, 4.38%, and 4.7% in the
2020s, 2050s, and 2080s, respectively (Figure 4).
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Figure 4. Rainfall change in 2020s, 2050s, and 2080s, including the average change in all climate
models.
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3.5. Impacts of Climate Change on Low Flow of Watersheds

The dynamics of the low flow of the four watersheds in the three periods were
analyzed in terms of a simple annual average basis. The study showed that the low flow
of all watersheds is likely to decrease in all periods compared to the baseline period. The
low flow is predicted to decrease more prominently in the 2080s than the other periods in
all watersheds. Among the watersheds, the highest decreasing trend is observed in Ribb
watershed which showed a change by 5.30%, 7.57%, and 12.31% in the 2020s, 2050s, and
2080s, respectively, whereas the lowest relative decreasing trend was shown in Gilgel Abay
watershed that is decreasing by 3.67%, 5.31%, and 6.8% in the 2020s, 2050s, and 2080s,
respectively. In general, because of future changes in climate, the low flow is predicted
to decrease by 8.39%, 8.33%, 6.21%, and 5.02% in the Ribb, Gumara, Megech, and Gilgel
Abay watersheds, respectively every 30 years (Table 6). Similar studies revealed that the
low flow is reduced by the reduction of rainfall in the dry season and the shift in the
rainy season [7,34–36] and the increment of evapotranspiration resulted by increasing in
temperature [32,37]. As it is revealed by numerous studies that the low flow nature of
watersheds is predominantly highly affected by the dynamics of geophysical characteristics,
most importantly the change in land use/cover of the catchments plays a great role in such
a way that it affects the infiltration process of water in the soil profile [38–41].

Table 6. Impacts of climate change on low flow of watersheds.

Watersheds
Average Low Flow in the

Baseline Period (m3/s)
Change in Low Flow (%)

Average Change (%)
2020s 2050s 2080s

Gilgel Abay 2.45 −3.67 −5.31 −6.8 −5.02

Gumara 0.69 −4.71 −8.51 −11.71 −8.33

Ribb 0.40 −5.30 −7.57 −12.31 −8.39

Megech 1.02 −1.45 −6.69 −10.49 −6.21

The low flow of watersheds has also been indicated in terms of Flow Duration Curves
(FDC) (Figure 5) and the curves clearly showed the degree to which climate change is
likely to affect the low flow of watersheds by comparing the position of curves. The low
flows of the four periods which have the same non-exceedance probability have been
compared through the five categories. Thus, in the Gilgel bay watershed, the magnitudes
of low flows which have the non-exceedance probability in terms of percentile ranged in
Q76–Q100 are showing the highest decrement change which is likely to be 15.24% every
thirty years. In the Gumara watershed, the change in low flow is more prominent in
Q0–Q25, which dictates that it is expected to decrease by 0.073 m3/s (13.74 %), 0.071 m3/s
(13.44%), and 0.094 m3/s (17.70%) in the 2020s, 2050s, and 2080s, respectively (Table 7).
The change in low flow in the Ribb watershed is showing decreasing trend in all periods
and all categories of non-exceedance probability in which the highest decreasing trend is
expected to be −18.45% in Q0–Q25 and 2080s. Unlike other watersheds, in Megech and
Gilgel Abay watersheds, the low flows which have a non-exceedance probability range of
Q0–Q25 are expected to increase in the three periods. In the Gilgel Abay watershed, these
lowest flows are expected to increase by 1.64%, 11.86%, and 12.70% in the 2020s, 2050s, and
2080s, respectively, whereas in the Megech watershed, they are likely to increase by 47.06%,
21.27%, and 47.96% in 2020s, 2050s, and 2080s, respectively.

3.6. Impacts of Climate Change on High Flow of Watersheds

Annually, the change in high flow showed a consistently increasing trend in all change
periods in all watersheds. Among all watersheds, the change is higher in the Gilgel
Abay watershed in the 2020s and 2050s, which shows an increase of 10.56% and 13.57%,
respectively, whereas in 2080s, it is higher in the Megech watershed, which is expected
to increase by 22.12% in the ensemble of six climate models. Moreover, this increasing
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change is more prominent in the 2080s compared to the other periods in all watersheds that
dictated that it is predicted to increase by 22.12%, 18.67%, 17.69%, and 14.36% in Megech,
Ribb, Gilgel Abay, and Gumara watersheds, respectively. In general, the high flow is likely
to increase by 13.94%, 13.16%, 10.90%, and 10.24%, and in Gilgel Abay, Megech, Gumara,
and Ribb watersheds, respectively, every 30 years of the 21st century using the ensemble
mean results of the six climate models (Table 8). The indication of this result that showed
the change in climate affects the high flow of watersheds has also been revealed by other
similar studies [42,43].
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Figure 5. Flow Duration Curve of low flows of watersheds.

The high flow of watersheds is selected from the flow simulated by the SWAT model
using the Annual Maximum Series (AMS) model for all periods in all watersheds. The
selected maximum flows of all periods are plotted using Flow Duration Curve (FDC),
and the result indicated that there is a great variation between all periods (Figure 6). The
change in the high flow of watersheds has been evaluated by categorizing the magnitudes
of flows in five classes based on their probability of exceedance (Q0–Q25, Q26–Q50, Q51–Q75,
and Q76–Q100). Based on these categories, the change in high flow is more visible in
Q76–Q100 in all watersheds except Ribb watershed. In this highest probability of exceedance
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category, the high flow is expected to increase by 55.95 m3/s (23.70%), 16.11 m3/s (21.97%),
29.89 m3/s (15.00%), and 5.76 m3/s (6.86%), and in Gilgel Abay, Megech, Gumara, and
Ribb watersheds, respectively, every thirty years (Table 9). This result indicated that
the change in high flow is more prominent in the minimum magnitudes. Even though
it is insignificant, the high flow is decreasing by 0.15 m3/s in the lowest probability of
exceedance (Q0–Q25) in the Ribb watershed by 2020s, whereas in 2050s and 2080s, it shows
a significant increase, which is 12.70% and 27.81%, respectively. In all watersheds and
categories of the probability of exceedance, the change in high flow is highest in the 2020s
except the Gilgel Abay watershed, which is expected to show the highest increment in
2050s in Q76–Q100. Relative to all watersheds, Megech watershed is likely to experience a
change of 33.53%, which is the highest increment observed in Q76–Q100 by 2080s compared
to the other periods and categories of the probability of exceedance. In general, it is possible
to conclude that the increment of high flow is considerably much detectable between the
lowest ranges of maximum flows every thirty years in almost all watersheds.
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Table 7. The mean annual low flows of watersheds in the range of probability of non-exceedance in the ensemble mean of six climate models.

Watersheds

MLF (Q0–Q25)
(m3/s)

MLF (Q26–Q50)
(m3/s)

MLF (Q51–Q75)
(m3/s)

MLF (Q76–Q100)
(m3/s)

BlF 2020s 2050s 2080s BlF 2020s 2050s 2080s BlF 2020s 2050s 2080s BlF 2020s 2050s 2080s

Gilgel Abay 1.46 1.48 1.63 1.64 1.80 1.84 1.82 1.79 2.11 2.04 1.93 1.99 2.84 2.52 2.40 2.30
Gumara 0.53 0.46 0.46 0.44 0.64 0.63 0.61 0.56 0.72 0.72 0.67 0.65 0.90 0.85 0.81 0.82

Ribb 0.25 0.24 0.24 0.24 0.33 0.32 0.30 0.27 0.41 0.38 0.36 0.34 0.62 0.59 0.59 0.57
Megech 0.41 0.61 0.50 0.61 0.84 0.95 0.91 0.81 1.22 1.08 1.08 0.95 1.53 1.31 1.24 1.22

Notes: MLF = Mean Low Flow, BlF = Baseline Flow

Table 8. Change in high flow of watersheds because of climate change.

Watrsheds Average High Flow in the Baseline Period (m3/s)
Change in High Flow (%)

Average Change (%)
2020s 2050s 2080s

Gilgel Abay 283.49 10.56 13.57 17.69 13.94
Gumara 238.1 7.15 11.18 14.36 10.90

Ribb 94.53 3.56 8.50 18.67 10.24
Megech 87.10 6.72 10.63 22.12 13.16

Table 9. The mean annual maximum flows of watersheds in the range of probability of exceedance in the ensemble mean of six climate models.

Watersheds

MHF (Q0–Q25)
(m3/s)

MHF (Q26–Q50)
(m3/s)

MHF (Q51–Q75)
(m3/s)

MHF (Q76–Q100)
(m3/s)

BlF 2020s 2050s 2080s BlF 2020s 2050s 2080s BlF 2020s 2050s 2080s BlF 2020s 2050s 2080s

Gilgel Abay 345.09 345.77 352.31 376.11 293.90 321.93 323.92 344.27 267.13 307.30 314.98 325.81 236.02 281.84 301.49 292.57
Gumara 279.55 287.91 302.90 313.59 253.31 260.73 273.38 282.95 226.19 249.31 259.01 263.78 199.23 226.65 227.60 233.10

Ribb 109.69 109.54 123.62 140.19 96.65 101.17 104.70 114.31 90.06 95.81 98.06 102.90 83.92 86.06 86.92 96.05
Megech 102.05 105.59 110.36 120.08 91.60 94.98 97.78 108.25 82.88 89.08 92.94 101.34 73.33 83.95 86.46 97.92

Notes: MHF = Mean High Flow, BlF = Baseline Flow.
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4. Conclusions

The study revealed that future extreme flow events of the headwater catchments
in the upper Blue Nile basin are expected to be significantly affected by climate change.
Both the maximum temperature and minimum temperature were prominently increased
in the 2080s in monthly and annual time scales, and consequently, the loss of water by
evaporation from the soil and evapotranspiration from plants is expected to increase in the
watersheds. Inter-annual variability of change in rainfall showed increasing and decreasing
patterns on monthly time scales, whereas the variability of changes in the three periods is
not significant on the annual time scale. On the monthly time scale, the maximum change
in rainfall is expected to rise up to 28.79% in the 2050s as predicted by the CanESM2 climate
model.

The high flow is likely to increase and even probably be changed to flooding in some
areas of watersheds for the coming decades of this century. The dry season flow/low flow
which contains the environmental flow of catchments is predicted to decrease in all periods
because of decreasing rainfall and increasing temperature in the dry seasons in the region.
Thus, concerned bodies working on different water projects and river basin management
projects should consider these expected flooding and hydrological droughts of watersheds.

Besides the climate factors, the changes in land use/cover in the watersheds also
considerably impact stream flow; therefore, researchers of this study suggest that the
combined impacts of land use/cover change on the stream flow focusing on extreme flow
nature of watersheds in the basin should be investigated using the worst climate change
scenario and numerous climate models.
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