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Abstract: The long short-term memory network (LSTM) model alleviates the gradient vanishing or
exploding problem of the recurrent neural network (RNN) model with gated unit architecture. It has
been applied to flood forecasting work. However, flood data have the characteristic of unidirectional
sequence transmission, and the gated unit architecture of the LSTM model establishes connections
across different time steps which may not capture the physical mechanisms or be easily interpreted for
this kind of data. Therefore, this paper investigates whether the gated unit architecture has a positive
impact and whether LSTM is still better than RNN in flood forecasting work. We establish LSTM
and RNN models, analyze the structural differences and impacts of the two models in transmitting
flood data, and compare their performance in flood forecasting work. We also apply hyperparameter
optimization and attention mechanism coupling techniques to improve the models, and establish an
RNN model for optimizing hyperparameters using BOA (BOA-RNN), an LSTM model for optimizing
hyperparameters using BOA (BOA-LSTM), an RNN model with MHAM in the hidden layer (MHAM-
RNN), and an LSTM model with MHAM in the hidden layer (MHAM-LSTM) using the Bayesian
optimization algorithm (BOA) and the multi-head attention mechanism (MHAM), respectively, to
further examine the effects of RNN and LSTM as the underlying models and of cross-time scale
bridging for flood forecasting. We use the measured flood process data of LouDe and HuaYuankou
stations in the Yellow River basin to evaluate the models. The results show that compared with the
LSTM model, under the 1 h forecast period of the LouDe station, the RNN model with the same struc-
ture and hyperparameters improves the four performance indicators of the Nash–Sutcliffe efficiency
coefficient (NSE), the Kling-Gupta efficiency coefficient (KGE), the mean absolute error (MAE), and
the root mean square error (RMSE) by 1.72%, 4.43%, 35.52% and 25.34%, respectively, and the model
performance of the HuaYuankou station also improves significantly. In addition, under different
situations, the RNN model outperforms the LSTM model in most cases. The experimental results
suggest that the simple internal structure of the RNN model is more suitable for flood forecasting
work, while the cross-time bridging methods such as gated unit architecture may not match well
with the flood propagation process and may have a negative impact on the flood forecasting accuracy.
Overall, the paper analyzes the impact of model architecture on flood forecasting from multiple
perspectives and provides a reference for subsequent flood forecasting modeling.

Keywords: flood forecasting; RNN; LSTM; model interpretability

1. Introduction

Floods are a major global issue that exposes over a billion people around the world to
the risk of disasters [1]. For hydrology, reducing the losses caused by flood disasters by
improving the accuracy of flood forecasting is a crucial challenge, and hydrological models
play a key role in it [2–4].
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Hydrological models can be classified into two categories based on their driving mode:
data-driven and process-driven [5–7]. Traditional process-driven hydrological models suffer
from a limited understanding of the flood process and rely on idealized assumptions and
approximations in their construction, which results in drawbacks such as excessive state
equations and parameters, discrepancies between the model and reality, and complex and
challenging computations. On the other hand, data-driven deep learning models leverage
enhanced computing power to achieve powerful fitting ability and can produce accurate
predictions of the flood process [8].

Based on their underlying architectures, existing deep learning models can be catego-
rized into convolutional neural network (CNN) models, recurrent neural network (RNN)
models, and attention mechanism neural network (AMNN) models [9–11]. Recurrent neu-
ral network models in particular are widely adopted in flood forecasting tasks due to
their sequential architecture that matches the spatio-temporal distribution characteristics of
floods [12,13].

However, upon further reviewing the related research work, we find that most of
the current flood forecasting task modeling relies on the LSTM model, which is a variant
of the RNN model, and there is a lack of research on the prediction performance of the
basic RNN model [14–16]. The LSTM model, as a variant of the RNN model, addresses the
gradient issue of the RNN model in long sequence data by employing a gated unit, but the
physical mapping mechanism of the gated unit is hard to interpret, which attracts a lot of
criticism [2]. In contrast, the basic architecture of the RNN model facilitates the physical
interpretation of spatio-temporal units.

Furthermore, model selection should be based on fundamental evaluation measures
rather than on the complexity of the model [17]. Beven [18] demonstrated with a case
study that models with complex parameters can fit the observed values well in the training
and validation periods but encounter over-parameterization issues in the test period.
On the other hand, models with few parameters tend to maintain consistent prediction
performance across different periods [19,20]. However, regrettably, in flood forecasting
tasks, direct comparison studies between the RNN model and the LSTM model are scarce;
many scholars assume that LSTM is better than RNN and opt for the LSTM model for
modeling [21–23]. However, the advantages and disadvantages of the RNN model and
the LSTM model in hydrology are not clear-cut, and this arbitrary selection results in the
paucity of relevant research on the RNN model in the flood forecasting direction [24].

The notion that the LSTM model is better than the RNN model originates from fields
such as Natural Language Processing (NLP), which claim that the LSTM model excels in
complex sequential tasks [25–27]. However, compared with these fields, a flood forecasting
task has its differences, and its sequence complexity is much lower than that of tasks such
as sentiment analysis. Hochreiter and Schmidhuber [28] proposed in the article the LSTM
model that can learn to bridge minimal time lags over 1000 discrete-time steps by enforcing
constant error flow through constant error carousels within special units. However, flood
forecasting task does not require such a long-time memory at all, which also implies that
the long-term memory advantage of the LSTM model is not evident in the flood forecasting
task. From this standpoint, it is critical for hydrological research to explicitly compare the
performance of the two models in flood forecasting accuracy, which has implications for
the underlying model selection in hydrological research.

In order to evaluate the performance of the two models in flood forecasting tasks, we
analyze them from various perspectives. First, we use the hydrological information flow
within the model architecture to reveal the underlying information mechanism behind
the model prediction results. Then, we analyze the specific performance of the model
prediction results straightforwardly. We also extend the forecast period time to evaluate
the scalability of the model prediction performance. Moreover, taking into account the
popular hyperparameter optimization and attention mechanism coupling techniques, we
further evaluate the performance of the hyperparameter optimization models and attention
mechanism coupling models based on RNN-type models from these two aspects [29,30].
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The paper concentrates on the flood forecasting task and assesses the differences
between using the RNN model and the LSTM model for flood forecasting. The main
contributions of the paper are as follows:

(1) The paper begins with the perspective of the underlying architecture of the model
and elucidates the uniqueness of the information flow of the model in the flood forecasting
task and its physical level mapping, which offers a structured basis for the subsequent
model research selection. At the same time, based on the underlying architecture analysis,
the paper evaluates the performance of the model under different forecast periods.

(2) The paper further extends the model performance comparison experiments in
two directions of hyperparameter optimization and attention mechanism coupling by
employing the Bayesian optimization algorithm and the multi-head attention mechanism
coupling model; it also enhances the generality of the research conclusion and furnishes
reference for multi-directional flood forecasting modeling.

(3) The analysis of the models in the paper can assist in the selection of basic models
for flood forecasting tasks, further improving the accuracy of flood forecasting tasks while
saving experimental costs.

The remainder of the paper is organized as follows. In Section 2, the paper describes
the structural differences between RNN and LSTM models, introduces the algorithms and
attention mechanism structures required by other parts of coupling models, and determines
the indicators used to evaluate the model. In Section 3, the paper introduces the basin data
used to verify the model conclusion and the methods used to process data. In Section 4,
the paper analyzes and discusses the material from different perspectives such as model
structure and performance. Finally, the whole paper is summarized.

2. Research Object
2.1. Research Area and Data

To enhance the universality of the research conclusions of the paper, we selected two
stations with different underlying surface properties and runoff conditions as the research
objects, namely the HuaYuankou station in the mainstream of the Yellow River and the
LouDe station in the downstream tributary Dawen River. The data were obtained from
the Henan River Bureau and the Shandong Hydrology and Water Resources Bureau of
the Yellow River Water Conservancy Commission. The Yellow River is 5464 km long and
flows through nine provinces in China. The drainage area is 795,000 km2. The downstream
Henan and Shandong provinces are flat, and the sediment accumulation forms a suspended
river on the ground. The river channel safety directly affects more than 300 million people
in the North China Plain. Therefore, it is necessary to establish an accurate flood forecasting
model for the river channel [31].

The HuaYuankou station is located in the lower reaches of the mainstream of the
Yellow River, 4696 km away from the source. It is a major control point in the Yellow
River basin, a drainage area of 730,000 km2, accounting for 92% of the Yellow River basin
area. The water supply of the HuaYuankou station mainly comes from the upstream river
channel, with three inflow stations: XiaoLangdi, WuZhi, and HeiShiguan. In addition, due
to the flat river channel and sediment accumulation in the lower reaches of the Yellow River,
the riverbed elevation increases, and the rainfall in the station interval makes it difficult to
converge into the main river channel of the Yellow River. Therefore, this station no longer
takes the interval rainfall as a model input factor. The topography and river conditions of
the HuaYuankou station are shown in Figure 1.

Due to the large catchment area and the influence of the upstream reservoir regulation,
the flood process of the HuaYuankou station lasts for a long time. The station selected
a total of 31,043 h of flood process data from 2015 to 2022 with peak flows greater than
1000 m3/s. All data were divided into a training set, a validation set, and a test set according
to the ratio of 70:25:5 (since the flood lasted for a long time, the last flood was chosen as the
test set). The data division is shown in Figure 2.
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Figure 2. Division of the HuaYuankou Station Dataset.

The LouDe station is located on the Dawen River, the only tributary of the lower
Yellow River below the HuaYuankou station (the JinDi River and the natural Wenyan Canal
need to be lifted into the Yellow River when necessary due to the elevation effect). It is
the control station of the south branch of the Dawen River. The Dawen River originates
from the north of the XuanGu Mountain in Shandong Province, with a total length of
209 km and a drainage area of 9098 km2. It flows into the Dongping Lake from east to
west and then into the Yellow River. Affected by the monsoon climate, the precipitation in
the flood season accounts for more than 70% of the year, and the river flow changes are
greatly affected by rainfall. Seasonal floods are likely to occur, and the flood confluence
and the mainstream overlap may even affect the safety of the main river channel of the
Yellow River. The Loude station has two inflow stations: the GuangMing Reservoir and the
DongZhou Reservoir, and there are 16 rainfall stations such as XiaFeng and MengYinzhai
in the station interval. The topography and river conditions of the HuaYuankou station are
shown in Figure 3.
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Figure 3. Watershed situation of the LouDe station.

The catchment area of the LouDe station is relatively small, and the flood process of the
station mostly comes from the flash flood confluence caused by short-term heavy rainfall,
so it lasts for a short time and rises and falls sharply. A total of 4684 h of flood process data
were selected, with 22 flood events with instantaneous flow exceeding 200 m3/s. They
were divided according to the ratio of 77:16:7, and the last two floods were selected as the
test set. The data division is shown in Figure 4.
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2.2. Input and Output Sequence Settings

Setting the input and output sequences reasonably can enable the model to obtain
more comprehensive data and make accurate predictions. In order to evaluate the model’s
learning situation for flood sequence data, the paper ensures that the model obtains all the
relevant information that affects the outflow of the station. Considering that the confluence
time of the HuaYuankou station is long, the time step of the model input sequence is set to
15 h, which is enough to meet the confluence time requirements of most basins. In order to
accurately compare the prediction results of the model, the output sequence is set to one,
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that is, to test the single-point prediction ability of the model and avoid the influence of the
error weight of each time point in multi-step prediction.

2.3. Research Process

We processed the initial data and obtained two hydrological sequences, with matrix
formats of (31,043 × 4) and (4684 × 19), respectively, corresponding to the sequence time
length and data factor types. According to Time step 15, we transformed the matrix format
and obtained two groups of input and output data for model verification. We input the
relevant data into RNN and LSTM models, MHAM-RNN and MHAM-LSTM models,
and BOA-RNN and BOA-LSTM models built in Section 3, respectively, and obtained the
underlying prediction results of RNN and LSTM models from three perspectives: basic
model, hyperparameter optimization model, and attention mechanism coupling model.
We analyzed the influence of structure on the model from the change in results and verified
it with the model structure analysis. The specific research process is shown in Figure 5.
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the types of model input factors; 31, 028 and 4669 represent the length of the flood sequence used
for model training, validation, and testing after removing Time step 15; 1 represents the type of the
output target).

3. Methods

To compare the performance of RNN and LSTM models for flood forecasting, we con-
sider three aspects: model structure, prediction results, and computational cost. The results
are further divided into three perspectives: basic model results, algorithm optimization
model results, and attention mechanism coupling model results, to obtain an objective and
comprehensive comparison.

Therefore, in this section, we introduce the basic RNN unit, the LSTM unit, the way
information flows in the model, the way attention mechanism is coupled, and the logical
structure of algorithm optimization to clarify the characteristics of information flow in each
model and analyze the relevant results based on this.
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3.1. Basic Model
3.1.1. RNN Unit

As the earliest recurrent neural network model, the RNN unit has a clear structure,
and its internal structure is shown in Figure 6:
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In the unit shown in Figure 6, the information propagation mode is as follows:

ht = tanh(Wh[ht−1, xt] + bh), (1)

where Wh and bh are the corresponding weights and biases. The hidden state ht output at
the time t is jointly determined by the input information xt and the hidden state ht−1 at
time t− 1.

3.1.2. LSTM Unit

The LSTM model introduces three gate units inside the RNN unit to control the
information flow and uses a cell state to store the historical information, thereby solving
the gradient vanishing or exploding problems. The internal structure of the unit is shown
in Figure 7.
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The internal structure of LSTM is very complex, and the specific calculation process
can be found in article [32]. The mathematical expression of its information transmission
can be found in Equations (2)–(7):

Γ<t>
f = σ(W f [ht−1, xt] + b f ), (2)

Γ<t>
i = σ(Wi[ht−1, xt] + bi), (3)

c̃t = tanh(Wc[ht−1, xt] + bc), (4)

ct = Γ<t>
f ∗ ct−1 + Γ<t>

i ∗ c̃t, (5)

Γ<t>
o = σ(Wo[ht−1, xt] + bo), (6)

ht = Γ<t>
o ∗ tanh(ct), (7)

where W and b are the variable weights and biases; Γ f , Γi and Γo are the forget, input, and
output gates that vary over time; c̃t is the candidate cell state computed from the new input
xt and the previous hidden state ht−1; ct is the updated cell state by combining c̃t and the
previous cell state ct−1; ht is the hidden state at time t generated by the output gate.

3.1.3. Model Transmission Structure

Based on the RNN unit or LSTM unit, the overall model information flow architecture
is shown in Figure 8.
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3.2. Attention Mechanism Coupling Model

Neural network models have a black-box structure that limits their interpretability,
which has been a major concern for many researchers, especially regarding LSTM mod-
els [33]. To shed some light on the way the model works, researchers applied the attention
mechanism (AM) to it. The AM was first proposed by Bahdanau, et al. [34] and others to
address the long sequence gradient propagation issue of recurrent neural network models
in NLP tasks. AM allows researchers examination of the amount of attention that the model
pays to different parts of input information, and thus obtention of some insight into its
working mechanism. Therefore, the AM is also adopted by hydrologists to enhance the
interpretability of their models [35]. Building on the AM, Google team [10] introduced a
multi-head attention mechanism (MHAM) and developed the transformer architecture,
which had a huge impact on various fields. To compare the performance of interpretable
models, this paper integrates RNN and LSTM models with MHAM and develops MHAM-
RNN and MHAM-LSTM for performance evaluation. The logic structure of the model is
illustrated in Figure 9.
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For the input information, the model processes the information flow as follows:
(1) Taking x1 as an example, after passing through the RNN or the LSTM unit, it

enters the linear unit O1 and outputs n copies of answer sequences
{

K1
1K2

1 . . . Kn
1
}

and
value sequences

{
V1

1 V2
1 . . . Vn

1
}

. At the same time, the question sequences
{

Q1
t Q2

t . . . Qn
t
}

are obtained from the last moment, representing the answers, values, and questions on
different heads, respectively;

(2) Taking the nth head as an example, Qn
t and Kn

1 perform a vector-scaled dot product,
and obtain the attention situation of x1 on the nth head:

n(α1
t ) =

(
Kn

1
)
∗ (Qn

t )
T

√
dk

, (8)

where dk is the dimension of the sequence K, and αi
t is the degree of attention of Qt to Ki at

time t (i = 1 . . . t);
(3) The attention scores of n heads n(α1

t ) are normalized and activated by the softmax
function, and the sequence n

(
α̂1

t
)

is obtained:

α̂1
t =

exp
(
α1

t
)

∑t
j=1 exp

(
α

j
t

) ; (9)

(4) The activated attention sequence h(α1
t ) and Vn

1 perform a vector dot product, and
obtain the calculation content of the nth head about x1:

content(h1) = h
(

α̂1
t

)
∗Vn

1 ; (10)

(5) After concatenating the calculation contents, the prediction result is obtained
through the linear layer.

3.3. Model Hyperparameter Optimization

Appropriate hyperparameters can enhance the model performance and prediction
accuracy, so they can be selected by using algorithm optimization methods [36]. To compare
RNN and LSTM models more objectively, this paper adopts the BOA to choose important
hyperparameters for each model and aims to achieve the best fit [37]. BOA is stable and
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efficient, and widely applied in hyperparameter optimization tasks [38,39]. The details
of BOA are not repeated here but can be referred to in [37]. The algorithm is integrated
with each model to obtain BOA-RNN and BOA-LSTM models, whose logical structures are
shown in Figure 10.

Water 2023, 15, x FOR PEER REVIEW 10 of 28 
 

 

𝛼 = exp (𝛼 )∑ exp (𝛼 ) ; (9)

(4) The activated attention sequence ℎ(𝛼 )  and 𝑉   perform a vector dot product, 
and obtain the calculation content of the nth head about 𝑥 : 𝑐𝑜𝑛𝑡𝑒𝑛𝑡(ℎ ) = ℎ(𝛼 ) ∗ 𝑉 ; (10)

(5) After concatenating the calculation contents, the prediction result is obtained 
through the linear layer. 

3.3. Model Hyperparameter Optimization 
Appropriate hyperparameters can enhance the model performance and prediction 

accuracy, so they can be selected by using algorithm optimization methods [36]. To com-
pare RNN and LSTM models more objectively, this paper adopts the BOA to choose im-
portant hyperparameters for each model and aims to achieve the best fit [37]. BOA is stable 
and efficient, and widely applied in hyperparameter optimization tasks [38,39]. The de-
tails of BOA are not repeated here but can be referred to in [37]. The algorithm is integrated 
with each model to obtain BOA-RNN and BOA-LSTM models, whose logical structures 
are shown in Figure 10. 

 
Figure 10. Logical structure of the BOA coupling model. In this figure, the unit can be an RNN unit 
or an LSTM unit (1 represents the algorithm optimization process, and 2 represents the process 
where the model makes predictions based on the hyperparameters found by the algorithm.). 

Based on relevant research, this paper tries to optimize three hyperparameters: learn-
ing rate, neuron number, and regularization parameter. Table 1 shows their optimization 
ranges and selection reasons [40–42]. The learning rate affects the learning speed of the 
model. A suitable learning rate can help the model avoid saddle points and find optimal 
solutions; The neuron number determines the nonlinear representation ability of the hid-
den layer. A proper number can facilitate the model to extract a consistent representation 
from data. The regularization parameter prevents overfitting by adding a penalty term to 
the model and balances its performance in training and testing.  

Figure 10. Logical structure of the BOA coupling model. In this figure, the unit can be an RNN unit
or an LSTM unit (1 represents the algorithm optimization process, and 2 represents the process where
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Based on relevant research, this paper tries to optimize three hyperparameters: learn-
ing rate, neuron number, and regularization parameter. Table 1 shows their optimization
ranges and selection reasons [40–42]. The learning rate affects the learning speed of the
model. A suitable learning rate can help the model avoid saddle points and find optimal
solutions; The neuron number determines the nonlinear representation ability of the hidden
layer. A proper number can facilitate the model to extract a consistent representation from
data. The regularization parameter prevents overfitting by adding a penalty term to the
model and balances its performance in training and testing.

Table 1. Algorithm optimization target details.

Optimization Objectives Optimization Scope Reason for Selection

Learning rate (1 × 10−4, 1 × 10−2) Control model gradient descent

Hidden units (10, 200) Control model’s nonlinear
expression ability

L2 Regularization (1 × 10−7, 1 × 10−3) Avoid overfitting

3.4. Analysis of Model Differences

The paper constructs three sets of models: RNN and LSTM, MHAM-RNN and MHAM-
LSTM, BOA-RNN and BOA-LSTM. Comparing the three sets of models horizontally, the
differences lie in the way information is transmitted between RNN and LSTM, which is
used to analyze the impact of the way information is transmitted on the results when RNN
and LSTM models are used as the basis. Comparing the three sets of models vertically,
there are only hyperparameter differences between RNN and BOA-RNN models as well as
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LSTM and BOA-LSTM models, which are used to analyze the impact of hyperparameters
on RNN and LSTM models; there is a change in the way information is transmitted between
RNN and MHAM-RNN models as well as LSTM and MHAM-LSTM models, which is used
to further analyze the impact of the differences in information transmission brought about
by the coupling of multi-head attention mechanisms on the model.

3.5. Related Parameter Settings

To better utilize model performance, this paper sets important hyperparameters such
as learning rate, neuron number, and regularization parameter. For the sake of comparison
and analysis, except for the target hyperparameters optimized by the algorithm optimiza-
tion models, the other hyperparameters of each model are set to the same values, as shown
in Table 2.

Table 2. Model-related settings.

Name Setting Reason

Learning rate 1 × 10−3 Beneficial for stable gradient descent
Hidden units 128 Sufficient nonlinear expression ability

L2 Regularization 1 × 10−5 Avoidable overfitting
Gradient descent algorithm Adam Stable effect

iterations 1500 Meet iteration requirements

3.6. Model Evaluation Indicators

The paper selects suitable indicators to evaluate the model performance based on
the previous research results [43]. The Nash–Sutcliffe efficiency coefficient (NSE), the
root mean square error (RMSE), the mean absolute error (MAE), and the Kling–Gupta
efficiency coefficient (KGE) are adopted, and their calculation Equations are as follows:

NSE = 1− ∑N
i=1(Qi − Pi)

2

∑N
i=1
(
Qi −Qavg

)2 , (11)

RMSE =

√
∑N

i=1(Qi − Pi)2

N
, (12)

MAE =
1
N

N

∑
i=1
|Qi − Pi|, (13)

KGE = 1−
√
(α− 1)2 + (β− 1)2 + (R− 1)2, (14)

where N is the number of data points, Qi is the observed runoff at time i, Pi is the predicted
runoff at time i, Qavg is the mean of the observed runoff, α = σp/σo is the variability
bias, β = µp/µo is the mean bias, σ and µ represent the standard deviation and mean,
respectively, and R is the linear correlation coefficient.

NSE is sensitive to the fluctuations of the data series and can characterize the tracking
ability of the predicted values to the actual values. It is used to evaluate the stability of
the model prediction. RMSE and MAE are used to calculate the error of the predicted
values, indicating the overall prediction accuracy of the model. KGE combines the model
correlation, bias, and flow variability into one objective for unified evaluation.

4. Results and Discussion
4.1. Model Structure Comparison Analysis

The difference in model performance ultimately stems from their different underlying
architectures, and the architecture that is more in line with the task requirements will
inevitably be able to obtain better forecasting results. Therefore, analyzing the adaptability
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of the two models to the flood forecasting task requirements from the structural perspective
can better explain the difference in performance of the two models.

The principle of deep learning models for flood forecasting tasks is simply to fit the
true mapping relationship between effective data and prediction targets. The structural
difference between the two models is that the LSTM model uses gated units to construct
information transfer of cell states at longer time steps, avoiding gradient vanishing prob-
lems, as shown in Equations (4) and (5). Is mitigating gradient vanishing problems effective
for approximating the true flood mapping relationship? We show the specific gradient
propagation processes of the two models, as shown in Figure 11.
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Figure 11. Gradient propagation process of each batch of data in flood forecasting tasks. The black arrow
represents the forward-propagation process; the red arrow represents the backpropagation process.

There are two types of gradient problems in recurrent neural networks: spatial and
temporal. Spatial gradient problems refer to the gradient vanishing or exploding when
flowing between different hidden layers in the neural network. Since the data relationship
of the flood forecasting task is not complex (compared to the TB-level tasks in NLP), the
model can achieve good generalization without increasing the number of hidden layers;
thus, there is no spatial gradient problem. Temporal gradient problems refer to the gradient
vanishing or exploding when flowing through different time steps within each batch, as
shown in Figure 11.

For the temporal dimension, the flood forecasting task exhibits the gradient propaga-
tion phenomenon shown in Figure 11 in each batch, but compared to the NLP task, the
gradient accumulation in the flood forecasting task has its uniqueness.

(1) The batch time span of the flood forecasting task is short, and there is no phe-
nomenon of long-term gradient accumulation.

Different from the NLP task, limited by the basin scale, the model input sequence time
step in the flood forecasting task is relatively short. As shown in Figure 11, the longest
gradient propagation process spans only from x1 to y15, and the gradient multiplication
occurs no more than 15 times. Compared with the gradient propagation of thousands
of time steps in the NLP task, the flood forecasting time scale is difficult to lead serious
gradient propagation problems.

(2) The gradient propagation is more consistent with the physical level of flood
phenomena.

As the NLP task depends on the linguistic context, it often requires establishing
connection relationships across any time span, which can be mathematically formulated as
Equation (15).

xi = linear
(
yj
)

i, j = 1, 2, 3 . . . size(batch). (15)

The cell state transmitted by the gated unit of the LSTM model is also used for
this purpose.
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The outflow state at Time step 15 in the flood forecasting task is solely determined by
Time step 14, and the hydrological-related factors at Time steps 1–13 cannot affect Time step
15 across time scales. Flood propagation is strictly stepwise and monotonic, and gradient
propagation better reflects this physical phenomenon, while the cross-time-scale connection
established by the gated unit of the LSTM model is inconsistent with the physical level of
the flood process.

(3) Long-distance information is not important for the flood forecasting task. Since the
flood information propagation process is stepwise unidirectional, the flood information
weight should decrease with time. To illustrate this situation, we apply the attention
mechanism model to measure the attention level to the input information in the flood
process using the DaWenkou station as an example, as illustrated in Figure 12.
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As can be seen from Figure 12, the model pays very little attention to the information
with a longer time span (t− 15), which indicates that it has a small impact on the prediction
result, while the attention level to the recent information (t− 1) remains high. Therefore, it
can be seen that since the values at longer time steps have a small impact on the prediction
result, even if the gradient vanishing phenomenon occurs, it does not affect the prediction
result significantly, because the information itself does not require high weights.

In summary, the characteristics of the flood forecasting task itself determine that it
does not need a cross-time-scale connection, and the LSTM model’s gated unit’s mitigation
of gradient problems is also unlikely to improve flood forecasting, but instead reduces the
interpretability due to the increased model complexity.

4.2. Basic Model Comparison Analysis

Comparing the prediction results of the two models is the most direct way to validate
the structural analysis. In total, 10 experiments were performed in this paper for each of
the two models at two stations, and the prediction result metrics were plotted into charts
for comparison.

The average performance of the RNN model and the LSTM model experiment results
are shown in Table 3 and Figure 13.
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Table 3. Average performance of model experiment results.

Station Model NSE KGE MAE RMSE

LouDe
RNN 0.9789 0.9591 13.1555 24.9860
LSTM 0.9621 0.9184 20.4024 33.4670

HuaYuankou
RNN 0.9994 0.9988 14.2209 29.6959
LSTM 0.9992 0.9984 17.3051 35.2501
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Combining Table 3 and Figure 13, we can see that at the LouDe station, compared
with the LSTM model, the RNN model improved by 1.72%, 4.43%, 35.52%, and 25.34% in
the four metrics of NSE, KGE, MAE and RMSE, respectively; at the HuaYuankou station,
due to the longer time span of the flood process, the NSE and KGE metrics were not very
sensitive to the performance difference between the two models, but the RNN model
still outperformed the LSTM model, and the performance of the RNN model in the MAE
and RMSE metrics improved by 18.09% and 17.22%, respectively. In general, the average
performance of each metric of the RNN model at different stations during the test period
was better than that of the LSTM model.

The average metrics can only show the average situation of the model prediction
effect, and they cannot capture the variation of the prediction result metrics. If the model
prediction effect fluctuates greatly, it is also difficult to apply it to practical work. Therefore,
we plotted the results of 10 random experiments of the model into a graph to observe the
variation of its prediction effect, as shown in Figure 14.
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Figure 14. Distribution of indicators during the testing period of RNN and LSTM models.
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Based on Figure 14, we can see that for the flood forecasting task, the two models have
similar fluctuations in the prediction results, but the RNN model performs better than the
LSTM model in all cases.

In addition to the distribution of the prediction performance, the extensibility of the
lead time when performing the flood forecasting task also needs to be considered. To
compare the RNN and LSTM models more comprehensively, we gradually increased the
lead time to 3 h, and the average performance metrics of the models are shown in Table 4.
The performance improvement of the RNN model is shown in Table 5. The changes in the
prediction performance of the two models are shown in Figure 15.

Table 4. Average performance indicators of RNN and LSTM models under different lead times.

Lead Time Station Model NSE KGE MAE RMSE

2 h
LouDe

RNN 0.9305 0.9305 23.8539 45.3195
LSTM 0.8988 0.8887 28.6722 54.6817

HuaYuankou
RNN 0.9985 0.9988 24.0427 47.8815
LSTM 0.9981 0.9976 27.3378 54.9296

3 h
LouDe

RNN 0.9009 0.9225 29.7196 54.1151
LSTM 0.8783 0.8907 31.6699 59.9619

HuaYuankou
RNN 0.9971 0.9979 35.0459 67.4454
LSTM 0.9966 0.9957 36.9041 73.3273

Table 5. Performance improvement effect of the RNN model compared to the LSTM model.

Lead Time Station NSE KGE MAE RMSE

2 h
LouDe 3.53% 4.70% 16.80% 17.12%

HuaYuankou 0.04% 0.12% 12.05% 12.83%

3 h
LouDe 2.57% 3.57% 6.16% 9.75%

HuaYuankou 0.05% 0.22% 5.04% 8.02%
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From Tables 4 and 5 and Figure 15, we can observe that as the lead time increases, the
average performance of the two models declines in all metrics, but the RNN model still
outperforms the LSTM model significantly.
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To intuitively show the model prediction effect at different lead times, we visual-
ized the model prediction of the flood process at two stations in graphs, as illustrated in
Figures 16–19.
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As can be seen from Figure 16, there is a significant difference between the two models
in the prediction effect of the flooding process at the LouDe station during the test period.
Compared with the LSTM model, the RNN model is closer to the measured value except
for being slightly larger at the peak, especially in the flood recession process. The LSTM
model has a relatively poor prediction effect, and the prediction process at 3 h lead time
shows obvious deviation.

Figure 17 shows the correlation of the predicted results for the two models at the
LouDe station under different forecast periods. The RNN model demonstrates better
performance in various scenarios.

Figures 18 and 19 show that the flood prediction performance of the two models at
the HuaYuankou station is comparable. However, the RNN model has a higher correlation
coefficient of the predicted results and a better prediction accuracy than the LSTM model.
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Figure 17. Scatter plot of the model prediction performance at the LouDe station under different lead
times (“+×” represents the distribution of data in observed and predicted values).
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Figure 19. Scatter plot of the model prediction performance at the HuaYuankou station under different
lead times (“+×” represents the distribution of data in observed and predicted values).

The comparison of Tables 3–5 and Figures 13–19 reveals that the RNN model outper-
forms the LSTM model in flood forecasting tasks, which is different from their performance
in NLP tasks. This finding is consistent with the analysis of the two models’ architectures in
Section 4.1, which indicates that the RNN unit structure is more adaptive to the information
propagation in flood forecasting tasks.

4.3. Basic Model Hyperparameter Optimization Comparison Analysis

Selecting model hyperparameters with optimization algorithms is a common opti-
mization technique. Algorithmically optimized hyperparameters can usually exploit model
performance and improve model abstraction ability better than manually selected ones;
on the other hand, optimizing hyperparameters brings the model performance closer
to its limit and enables a better evaluation of model performance. Therefore, we use
the Bayesian optimization algorithm to couple the RNN and LSTM models, determine
their relevant hyperparameters (see Table 1 for details), and construct the BOA-RNN and
BOA-LSTM models to evaluate their performance in flood forecasting. Table 6 shows the
selected hyperparameters of both models, and Table 7 and Figure 20 show their average
performance indicators.

Table 6. Algorithm-selected model hyperparameters.

Model Station Learning Rate Hidden
Units L2 Regularization

RNN
LouDe 9.94721325044244 × 10−3 102 1.24128822320419 × 10−6

HuaYuankou 6.31430706313691 × 10−4 169 2.29751978936061 × 10−5

LSTM
LouDe 8.60162246721079 × 10−3 141 1.00331686970300 × 10−6

HuaYuankou 1.16040150867700 × 10−3 130 5.49314205875754 × 10−6
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Table 7. Average Performance of Algorithm Optimization Model Experimental Results.

Station Model NSE KGE MAE RMSE

LouDe
BOA-RNN 0.9819 0.9679 11.4860 23.1318
BOA-LSTM 0.9752 0.9607 13.4444 27.0929

HuaYuankou
BOA-RNN 0.9994 0.9988 14.5352 30.1463
BOA-LSTM 0.9993 0.9985 15.6075 32.1723
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Table 7 and Figure 20 show that at the LouDe station, the BOA-RNN model improved
by 0.69%, 0.75%, 14.57% and 14.62% in NSE, KGE, MAE and RMSE, respectively, compared
to the BOA-LSTM model; at the HuaYuankou station, both models had similar NSE and
KGE indicators, but the BOA-RNN model performed better in MAE and RMSE indicators
by 6.87% and 6.30%, respectively. The difference between both models resembles that of the
basic models, and the BOA-RNN model continues to outperform the BOA-LSTM model.

However, Tables 3 and 7 reveal that after using the Bayesian optimization algorithm,
the LSTM model improved its performance significantly; but the RNN model had a
small improvement, and even performed slightly worse than the BOA-RNN model at
the HuaYuankou station. Table 8 shows the change in the average values of both groups
of models.

Table 8. Changes in model performance after algorithm optimization.

Station Model NSE KGE MAE RMSE

LouDe
BOA-RNN/RNN 0.31% 0.92% 12.69% 7.42%

BOA-LSTM/LSTM 1.36% 4.61% 34.10% 19.05%

HuaYuankou
BOA-RNN/RNN 0.00% 0.00% −2.21% −1.52%

BOA-LSTM/LSTM 0.01% 0.01% 9.81% 8.73%

We attribute this phenomenon to the RNN model structure’s better adaptation to the
flood forecasting task, which enables it to learn the data mapping relationship accurately.
Therefore, the manually selected hyperparameters work well, and the hyperparameter
optimization has little impact on the model learning effect. At the HuaYuankou station,
however, the rich data make the data mapping relationship fitted by the RNN model closer
to the physical level relationship, which makes it hard to improve the model performance
indicators with hyperparameter optimization.

We also show the indicator distribution of the 10 experiments of both models in
Figure 21.
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Figure 21. Distribution of indicators during the testing period of BOA-RNN and BOA-LSTM models.

The BOA-RNN model’s prediction performance distribution is still better than that of
the BOA-LSTM model; in addition, the BOA-LSTM model’s prediction results fluctuate
significantly.

The prediction effects of the two models at different stations during the test period are
shown in Figures 22 and 23.
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Figure 23. Algorithm optimization model prediction effect of the HuaYuankou station during the
testing period.

The BOA-RNN model maintains a better prediction effect than the BOA-LSTM model.
Tables 6–8 and Figures 20–23 show that the BOA-LSTM model, which optimizes the hy-

perparameters with the algorithm, significantly improves the LSTM model’s performance,
but the BOA-RNN model performs similarly to the RNN model. This suggests that the
RNN model fits flood forecasting better, and makes relatively accurate predictions without
hyperparameter optimization, saving computational and human resources in research.
Moreover, the RNN model as the optimization object predicts better than the LSTM model,
even with hyperparameter optimization.

4.4. Attention Mechanism Coupling Model Comparison Analysis

The LSTM model has a complex gate unit that makes its mechanism hard to explain.
Therefore, researchers use the attention mechanism to measure the amount of attention
the model pays to the data and then infer its mechanism. In this study, we couple the
RNN and LSTM models with the advanced multi-head attention mechanism and construct
the MHAM-RNN and MHAM-LSTM models. We analyze both the coupling effect of the
attention mechanism on the model and the difference in attention to the input data between
the two models.

Table 9 shows the average values of both model prediction results, and Figure 24
shows their performance distribution.

Table 9. Predicting average performance with a coupled attention mechanism model.

Station Model NSE KGE MAE RMSE

LouDe
MHAM-RNN 0.9758 0.9569 14.2923 26.7232
MHAM-LSTM 0.9556 0.9433 20.4595 36.2084

HuaYuankou
MHAM-RNN 0.9991 0.9979 18.6464 36.9343
MHAM-LSTM 0.9986 0.9960 24.0945 46.4824
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Figure 24. Predicting average performance with a coupled attention mechanism model.

Table 9 and Figure 24 show that the RNN model as the base model outperforms the
LSTM model in all aspects after coupling with the multi-head attention mechanism. At
the LouDe station, the MHAM-RNN model improves NSE, KGE, MAE, and RMSE by
2.11%, 1.44%, 30.13%, and 26.20%, respectively, compared to the MHAM-LSTM model; at
the HuaYuankou station, it also improves these indicators by 0.05%, 0.19%, 22.61%, and
20.54%, respectively. This suggests that the RNN model’s output hidden state is more
compatible with the multi-head attention mechanism, and its unit structure preserves more
information.

However, Tables 3 and 9 reveal that the models coupled with the multi-head attention
mechanism perform worse than the basic models, as shown in Table 10.

Table 10. Changes in average performance indicators relative to the basic model.

Station Model NSE KGE MAE RMSE

LouDe
MHAM-RNN/RNN −0.32% −0.23% −8.64% −6.95%

MHAM-LSTM/LSTM −0.68% 2.71% −0.28% −8.19%

HuaYuankou
MHAM-RNN/RNN −0.03% −0.09% −31.12% −24.38%

MHAM-LSTM/LSTM −0.06% −0.24% −39.23% −31.86%

At the LouDe station, all indicators except the MHAM-LSTM model’s KGE indicator
decline slightly; at the HuaYuankou station, both models show a significant decline in all
indicators, with the worst performance degradation in the MHAM-LSTM model.

We attribute this phenomenon to the logical structure of the multi-head attention
mechanism. Figure 5 shows that the multi-head attention mechanism establishes the final
mapping by relating each time to time t after obtaining the model unit information; that is,
it bridges the input data and the final result across time. Its information transmission logic
structure can be generalized in Equation (16),

yn
t = linear(xn

i ) i = 1, 2, . . . t, (16)

where t is the final time of each group of data; n is the number of heads of the multi-head
attention mechanism; i is a different time; linear is the complex relationship between the
input data and the result that directly connects them.

As we analyzed in Section 4.1, the flood information flows in a one-way sequence, and
the cross-time bridge contradicts the objective law of flood propagation. This feature avoids
the gradient problem but hardly impacts the flood prediction result positively. The LSTM
basic and derived models predict worse than the RNN model, which also confirms our
analysis results. Therefore, adding the attention mechanism to the basic model reinforces
the cross-time data bridge in another way, which also lowers the prediction result.
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The relatively small performance decline at the LouDe station and the KGE indicator
increase in the MHAM-LSTM model as a special case have more reasons for the relatively
small data amount at this station, which hinders full reflection of the model performance,
and for the multi-head attention mechanism’s positive impact on learning complex high-
dimensional data (the input data feature value at the LouDe station is 19, or 19-dimensional
input data). However, the overall prediction result performance still declines.

To further confirm our analysis on the time span bridge, we graph both models’
input data attention degree and analyze their difference in data sensitivity. The multi-
head attention mechanism has 16 heads, or 16 attention dimensions, which are hard to
understand, so we simplify the attention result to one dimension for easy analysis, shown
in Figure 25 (for the LouDe station).
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Figure 25. Attention difference of the model for test period data.

Figure 25 intuitively shows the attention differences between the two models. Under
the same z-axis, MHAM-RNN with RNN as the underlying model can still distinguish
between recent and distant data with different attention weights; however, due to the time
bridging ability of the LSTM model, the MHAM-LSTM model is unable to differentiate
between different data with the attention mechanism, which leads to the decrease in
prediction performance quality. It can be seen that the cross-time bridging of the LSTM
model has a negative impact on flood forecasting tasks.

Combining Tables 9 and 10 and Figures 24 and 25, it can be seen that although the
introduction of an attention mechanism can improve the interpretability of the model, it
has a negative impact on model performance. In addition, neither the attention mechanism
nor the cross-time bridging method in the LSTM model have a positive impact on the flood
forecasting task.

4.5. Model Parameter and Computational Cost Comparison Analysis

The model development is based on the torch framework of Python 3.8 language, and
the GPU and CPU models used for computation are NVIDIA GeForce RTX3080 and Intel
Core i7-11800H, respectively. The model computation time cost and parameter number
used in this paper are shown in Table 11 (taking the Lode station as an example, the
Bayesian algorithm optimization model is excluded due to the high time cost of calculating
the optimization process).

As shown in Table 11, the RNN model has the lowest parameter number and compu-
tation time cost.
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Table 11. Model cost.

Model RNN LSTM BOA-RNN BOA-LSTM MHAM-RNN MHAM-LSTM

Parameters 19,201 76,417 19,201 76,417 68,737 125,953
Time Cost(s) 57.02 63.00 -- --- 80.13 88.12

5. Conclusions

To address the research gap in comparing the RNN model and the LSTM model for
flood forecasting tasks, this paper conducts a comparative analysis of the models from
the perspectives of model structure, algorithm improvement, and attention mechanism
coupling based on the measured flood process data of the Lode station and the HuaYuankou
station. The main conclusions are as follows:

(1) In flood forecasting tasks, compared with LSTM and its derived models, the
RNN model has a simpler structure, a lower computation cost, and a better prediction
performance, which makes it more suitable for flood forecasting work;

(2) The RNN model has a stronger interpretability and a better physical mapping of
the flood process. Due to the uniqueness of flood data, the LSTM model’s construction of
the cell state and the attention mechanism and other cross-time bridging methods do not
apply to flood sequence forecasting work;

(3) There is no definite relationship between the complexity of the model structure
and the quality of prediction results. The model structure should be analyzed according to
the characteristics of the target data.

However, the field of hydrological forecasting is not limited to flood forecasting
direction. For medium and long-term runoff forecasting work with a larger time span,
this paper still lacks corresponding research. Whether there will be any difference in the
advantages and disadvantages of the RNN model and the LSTM model in a larger time
span unit structure and what are the reasons for these differences needs further exploration.
This is of great significance for understanding the application of various deep learning
models in the hydrology direction and using them to obtain a clear runoff mechanism.
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