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Abstract: The roughness of a river’s boundary significantly influences the sediment transport process
and the ultimate configuration of the river’s stable cross-section. This interplay between boundary
roughness and river morphology is crucial to a river’s overall behavior and form. This study aims
to analyze the influence of the relative roughness of riverbanks to a riverbed λ on the equilibrium
form of alluvial rivers using a variational method. The results show the following: (1) As the
parameter λ transitions from smaller to larger values, noteworthy variations are observed in a
river’s characteristics. Specifically, there is a discernible reduction in the calculated maximum
sediment discharge, coupled with a corresponding expansion in the optimal width–depth ratio. For
instance, when λ changes from 1 to 0.1, the optimal width–depth ratio increases by 45%, while the
calculated maximum sediment discharge experiences a decrease of 1.62%. (2) An examination of
hydraulic geometric relationships, derived by assigning distinct values to the relative roughness
of riverbanks to the riverbed, highlights the significant influence of this relative roughness on the
ultimate equilibrium configuration of the river channel. Remarkably, this effect remains consistent and
stands independently of other variables such as sediment discharge, flow discharge, channel gradient,
and sediment size. (3) The critical and average hydraulic geometric relationships deduced in this
study closely align with previous research findings. Notably, this research contributes to addressing
the existing gap in understanding the mechanistic underpinnings of how river boundary conditions
impact the equilibrium forms of rivers, thereby advancing our knowledge of river morphology.
Nevertheless, it is imperative to emphasize that while this study provides valuable theoretical
insights, the practical application of these findings in the context of river morphological evolution
necessitates further in-depth research. It calls for a more comprehensive exploration of the transition
from theoretical constructs to real-world applications, thus promoting a deeper understanding of the
dynamics that shape river systems.

Keywords: relative roughness; riverbanks; riverbed; variational method; river morphology; alluvial rivers

1. Introduction

As complex natural systems, rivers inherently exhibit the capacity to self-regulate
and attain a dynamic equilibrium state. This dynamic equilibrium state is characterized
by a delicate balance between erosional and depositional processes, achieved through the
river’s ability to adjust its channel geometry and gradient [1,2]. Dynamic equilibrium in
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river systems is paramount in fluvial geomorphology and river engineering. It serves as
the linchpin for understanding the intricate and multifaceted interactions among various
factors, including river flow dynamics, sediment transport mechanisms, and the resultant
morphological features of the river channel. While rivers have the innate propensity to
operate within a state of dynamic equilibrium, certain conditions and external factors can
lead to temporary deviations from this equilibrium state.

Nevertheless, the dynamic equilibrium state is a guiding principle, akin to an over-
arching attractor, influencing the natural adjustments in river channel forms [3]. These
adjustments are a testament to a river’s innate capacity to respond to changing environmen-
tal conditions and balance erosion and deposition. In recent decades, rivers worldwide have
encountered substantial anthropogenic interventions, ranging from riverbank reinforce-
ment to dam construction, urban expansion into floodplains, agricultural development, and
logging practices, among others [4]. The cumulative impact of these interventions on river
systems raises crucial questions. Assessing the extent to which these human activities have
caused deviations from the state of dynamic equilibrium within river systems becomes
imperative. Equally vital is whether these rivers still retain the inherent capability to return
to a state of dynamic equilibrium. Determining the dynamic equilibrium state in river
channel flow transcends mere academic curiosity. It enriches our understanding of river
behavior and the underlying physical processes governing their responses to environ-
mental changes [5]. Furthermore, this understanding provides invaluable guidance for
developing effective strategies to preserve and restore river systems [6]. By comprehending
the complex interplay of factors influencing rivers and their dynamic equilibrium, we can
better navigate the challenges posed by contemporary human activities and work toward
sustainable river management and conservation.

In specific hydrological conditions characterized by distinct flow discharge, sediment
discharge, and erodible boundaries, rivers have the remarkable capacity to adjust their
channel characteristics, such as width, depth, and gradient. These adjustments enable a
river to transport sediment from its upstream regions, culminating in a dynamic equilibrium
state where neither erosion nor deposition prevails [2]. Dynamic equilibrium in river
systems has been a subject of scientific inquiry for many years. Early investigations in this
domain predominantly relied on empirical approaches, resulting in qualitative descriptions
and the development of quantitative statistical hydraulic geometric relationships [7–10].
Despite the contributions of these empirical studies, which provided valuable insights into
river equilibrium dynamics, they have remained limited in elucidating the intricate internal
physical mechanisms governing the evolution of river systems [11]. While qualitative
descriptions and quantitative hydraulic geometric relationships have proven beneficial
in characterizing river behavior and morphology, they have offered little to explicate the
underlying physical processes that drive river channel adjustments [12–17]. As such, a
substantial gap exists in our understanding of the fundamental mechanisms at play during
the evolution of river systems. This gap necessitates a more comprehensive and mechanistic
exploration of the internal dynamics governing the dynamic equilibrium state in rivers.

In light of the complexities surrounding river equilibrium dynamics, contemporary
research endeavors aim to transcend the limitations of past empirical approaches. Instead,
they seek to unravel the intrinsic physical mechanisms responsible for shaping river channel
forms. By delving deeper into the internal workings of rivers, the scientific community
strives to elucidate the intricate interactions between flow dynamics, sediment transport,
and the evolution of river channels. This evolving scientific discourse is driven by a
commitment to uncover the underlying principles that govern the dynamic equilibrium
state in river systems, thereby providing a more robust and comprehensive understanding
of these vital natural entities.

The endeavor to comprehensively elucidate the evolutionary processes governing
rivers encounters an inherent challenge—a seemingly inescapable conundrum marked by
three fundamental relationships characterizing river flow and four unknown variables.
This intricate system, bereft of a closed-form solution, necessitates innovative approaches
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for resolution [18]. Numerous theoretical frameworks have been introduced to surmount
this challenge, notably stability and extreme hypothesis theories. The stability theory
posits the notion of river stability, implying that sediment throughout the entirety of a
river boundary is perpetually in a critical incipient motion state [19,20]. While the stability
theory provides a highly rigorous and theoretically sound foundation for understanding
river dynamics, it is not without its limitations, particularly in scenarios where achieving
satisfactory computational results remains elusive [21]. The capacity of the stability theory
to offer precise predictions is subject to constraints in certain situations, prompting the
exploration of alternative methodologies to address this shortcoming.

Much like stability theories, the extremal hypotheses approach seeks to introduce an
extremal condition as an additional flow equation, with examples encompassing parameters
like a minimum energy gradient [22–29], maximum sediment transport capacity [30], and
minimum energy loss rate [31–39], among others. While this approach offers relative ease
of application, its utilization has stirred significant debate within the scientific community.
Critics of the extremal hypothesis methodology raise two primary objections: firstly, a
river channel’s width computed using extremal hypotheses consistently falls short of
observed measurements and secondly, it is contended that extremal hypotheses lack robust
physical mechanisms to justify their adoption [40,41]. Conversely, proponents of extremal
hypotheses posit that these theories are grounded in widely applicable physical principles,
such as the principles of minimum work and maximum entropy [42–44]. Additionally,
some argue that the detractors have employed the extremal approach incompletely, failing
to account for the influence of riverbank anti-scourability on river channel morphology [40,
41,45]. Building upon a series of investigations, Eaton and Millar introduced the UBC
model, incorporating the repose angle of a bank sediment into their extremal hypothesis-
based framework. This integration enabled the UBC model to better encapsulate the effects
of riverbank anti-scourability, resulting in improved computational accuracy in predicting
alluvial channel forms across various scenarios [46]. The discourse surrounding extremal
hypotheses in river dynamics remains a topic of substantial complexity and divergence of
opinion, with ongoing research endeavors aiming to reconcile contrasting viewpoints and
develop more comprehensive models that accommodate the intricacies of river channel
behavior. This pursuit is instrumental in furthering our comprehension of river equilibrium
and evolution, enhancing the efficacy of river engineering and preservation efforts.

In a departure from the equilibrium models, such as the stability theory and the
extreme hypothesis, a novel approach was introduced by Huang and collaborator Nan-
son [47–50], known as the variational model. This model aimed to streamline the computa-
tional process and reduce the number of unknown variables by introducing the variational
factor ζ = W/D (width/depth ratio). Doing so effectively addressed the fundamental
flow equations governing river systems. The variational analysis model revealed that
the maximum sediment transport rate and the minimum channel slope characterize the
optimal hydraulic conditions for achieving the most favorable river channel morphology.
Importantly, it established that these conditions are specific manifestations of the principle
of least action, a well-established physics concept applied to river systems. In essence,
alluvial rivers exhibit two primary modes for achieving optimal sediment transport: for
a given discharge and sediment transport rate, channel morphology is adjusted to min-
imize the slope, whereas for a given flow discharge and slope, channel morphology is
adjusted to maximize the sediment transport rate. Huang’s variational model has proven
to be instrumental in elucidating the evolution of river morphology and explaining the
formation mechanisms of various river patterns. Additionally, recent research by Fan and
Huang in 2020 extended this model by incorporating bank steepness as a factor to partially
reflect the anti-scourability of riverbanks, further enhancing its utility in understanding
and analyzing river systems [51].

However, the concept of river boundary conditions is multifaceted, and bank steep-
ness alone may not comprehensively capture an entire riverbank’s anti-scourability. Thus,
a pressing need arises to investigate additional factors contributing to the anti-scourability
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of riverbanks to gain deeper insights into the evolutionary processes shaping river geomor-
phology. Consequently, this study delves into the examination of the relative roughness
of riverbanks to a riverbed, which represents another pivotal aspect of river boundary
anti-scourability. In this endeavor, we employed a rectangular shape as a generalized
cross-section of a river, providing an in-depth analysis of how this parameter influenced
the ultimate equilibrium form of the river. Moreover, we deduced the critical and aver-
age hydraulic geometric relationships under varying degrees of the relative roughness
of riverbanks to a riverbed. These deduced relationships were subsequently scrutinized
for consistency with prior theoretical analyses and empirical findings. This exploration
into the relative roughness of riverbanks to a riverbed constitutes a crucial step toward
enhancing our understanding of river geomorphology and advancing our knowledge of
the intricate interplay between hydraulic factors and boundary anti-scourability in the
context of river systems.

2. Methodology
2.1. Huang’s Variational Model

In the context of straight and single-thread alluvial open channels with a rectan-
gular cross-section, the research conducted by Huang and Nanson (2000, 2002) and
Huang et al. (2004) presents a noteworthy contribution [47–49]. Their analytical investiga-
tions unveiled a profound revelation—establishing a curvilinear equilibrium relationship.
This relationship provides insights into the intricate dynamics between Qs, representing
the bedload transport discharge within a channel, and ζ, which denotes the channel’s
cross-sectional shape factor, specifically its width-to-depth ratio.

This equilibrium relationship is of paramount significance as it elucidates the existence
of a specific width-to-depth ratio, referred to as ζm, which corresponds to the maximum
bedload transport discharge point, Qsmax. This maximum discharge point is achieved
under well-defined flow energy conditions, encompassing a flow discharge and an energy
gradient, as well as the channel’s boundary composition, particularly related to sediment
size. The implications of this relationship are significant, shedding light on the complex
dynamics governing bedload transport in alluvial open channels.

It is essential to emphasize that the curvilinear relationship between the bedload
transport discharge (Qs) and the width-to-depth ratio (ζ) offers a comprehensive portrayal
of the underlying dynamics. When the bedload transport discharge reaches its maximum
value, denoted as Qs = Qsmax, under specific conditions comprising flow discharge, energy
slope and sediment size, a unique value for the width-to-depth ratio, ζm, emerges. This
specific state is known as maximum flow efficiency (MFE), a term introduced by Huang
and Nanson [51]. In cases where the bedload transport discharge is less than the maximum,
i.e., Qs < Qsmax, a single value for bedload transport discharge can be achieved through
two distinct width-to-depth ratios, one smaller and the other larger than ζm. In the broader
framework of physics, MFE signifies the state of stationary equilibrium in river channel
flow. It embodies the concept of the most efficient utilization of available energy by the
flow for transporting a given bedload, resulting in the maximum bedload discharge while
expending the specified energy quantity. In contrast, the other states represent dynamic
equilibrium states, wherein the flow has the flexibility to choose between two channel cross-
sections. These cross-sections offer varying resistance levels, allowing for the expenditure
of more than the minimal energy required. These concepts were further elucidated by
Huang et al. (2004) and Nanson and Huang (2008) [4,48].

2.2. Definition of the Relative Roughness of Riverbank to the Riverbed

The boundary conditions of alluvial rivers exhibit significant variability, particularly
concerning the roughness of riverbanks relative to a riverbed. This variability results
in a diverse range of river morphologies. This study explores the impact of the relative
roughness of riverbanks to a riverbed on the equilibrium channel configuration of alluvial
rivers. It employs a simplified rectangular cross-section for representing a river [3–6,51–53],
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as depicted in Figure 1. The factor influencing the relative roughness of the riverbank to the
riverbed was incorporated using the hydraulic radius segmentation method. Variational
analysis was employed to assess its influence on the equilibrium channel shape of a river.
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For a one-dimensional flow continuity equation, the formula is given as the following:

Q = VA (1)

In Equation (1), Q expresses flow discharge, V represents flow velocity, and A means
a cross-sectional area.

For the resistance equation of alluvial rivers, the Manning formula was adopted in
this paper, as shown in the following formula [52]:

V =
1
n

R2/3S1/2 (2)

In Equation (2), n expresses the roughness coefficient, R represents the hydraulic
radius, and S means the channel slope.

The bedload transport equation adopted in this paper is expressed as the exponential
form of shear force, shown as the following [53,54]:

qb = cbτi
0(τ0 − τc)

j (3)

In Equation (3), qb expresses the bedload transport rate on the unit width, cb represents
a coefficient, τ0 means the average shear stress (τ0 = γRS), and τc means the critical shear
stress for the critical starting state of the sediment.

However, it has been proven that the following formula is closer to the natural sedi-
ment transport condition of a river under many conditions:

q∗b = cb(τ
∗
0 − τ∗c )

j (4)

In Equation (4), q∗b expresses the dimensionless rate of bedload transport on the unit
width, τ∗0 represents dimensionless average flow shear stress, and τ∗c means dimensionless
critical flow shear stress, which separately is expressed as the following:

q∗b = qb√
(γs/γ−1)gd3

= Qs/Pb√
(γs/γ−1)gd3

τ∗0 = τ0
(γs−γ)d = γRS

(γs−γ)d
τ∗c = τc

(γs−γ)d

(5)

In Equation (5), Pb means the wetted perimeter of the cross-section, Qs represents the
bedload transport discharge, γs means the specific weight of sediment particles (γs = ρsg),
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γ is the specific weight of water (γ = ρg), ρs expresses the density of sediment parti-
cles (2650 kg/m3), ρ means the density of water (1000 kg/m3), and g means the gravity
acceleration (9.8 m/s2).

Furthermore, in previous studies [53,54], the values of cb, τ∗c , and j have been different.
In this study, since the research method inherits the equilibrium theory of Huang, the
research results of Huang (2010) were adopted [50], in which j = 5/3, cb = 6, and τ∗c = 0.047.
Therefore, Formula (4) can be simplified to the following form:

q∗b = 6(τ∗0 − 0.047)5/3 (6)

To evaluate the impact of the non-uniform distribution of riverbed boundary rough-
ness on channel morphology, Einstein suggested employing the hydraulic radius segmen-
tation method for partitioning boundary resistance [55,56]. This method integrates the
Manning formula for channel resistance segmentation. The specific formulation is the
following:

(n)3/2P = (nb)
3/2Pb + (nw)

3/2Pw (7)

where n, nb, and nw are, respectively, the comprehensive roughness coefficient of the whole
cross-section, the roughness coefficient of the riverbed, and the roughness coefficient of
the riverbank, and P, Pb, and Pw are the wetted perimeter of the whole cross-section, the
riverbed, and the riverbank, respectively.

For the channel with a rectangular cross-section, as shown in Figure 1, the following
geometric relationship exists as

P = W + 2D, Pb = W, Pw = 2D (8)

where W and D are, respectively, the width of the river and the depth of the river. Accord-
ingly, Equation (7) can be specifically expressed as the following:

(n)3/2(W + 2D) = (nb)
3/2W + (nw)

3/22D (9)

The relative roughness of riverbanks to a riverbed is represented by the variable λ,
and the definition is the following:

λ = (nw)
3/2/(nb)

3/2 (10)

3. Mathematical Analysis of the Influence of Relative Roughness of Riverbanks
to a Riverbed on River Channel Equilibrium Form

In accordance with the river equilibrium theory and the variational method developed
by Huang and his collaborators [3–6,51–53], in order to reduce the number of unknown
variables, it is necessary to combine river width and depth into a single variable, as
illustrated in Figure 1. This newly combined variable is expressed as the following:

ζ =
W
D

(11)

In Equation (11), W expresses the width of the channel and D represents the depth of
the channel.

For the river cross-section shown in Figure 1, there is the following basic geometric
relationship:

R = ζ(ζ + 2)−1D (12)

Combining Equations (1), (2), (7), and (8) yields the following relationships:

W = (nQ)3/8S−3/16(ζ + 2)1/4ζ3/8

D = (nQ)3/8S−3/16(ζ + 2)1/4ζ−5/8

τ0 = γ(nQ)3/8S13/16(ζ + 2)−3/4ζ3/8
(13)
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In order to reflect the influence of the uneven distribution of boundary roughness,
combining Equations (7), (8), (11), and (12) yields the following relationship:

n3/2 =
(ζ + 2λ)

ζ + 2
n3/2

b (14)

Incorporating Equation (14) into (13) yields the following relations:

W = (nbQ)3/8S−3/16(ζ + 2λ)1/4ζ3/8

D = (nbQ)3/8S−3/16(ζ + 2λ)1/4ζ−5/8

τ0 = γ(nbQ)3/8S13/16(ζ + 2λ)1/4(ζ + 2)−1ζ3/8
(15)

Combining Equations (5), (6), and (15) with Qs = qbW yields the following:

Qs = K0(ζ+ 2λ)1/4ζ3/8

[
K1

(ζ+ 2λ)1/4ζ3/8

(ζ+ 2)
− 0.047

]5/3

(16)

where constants K0, K1, and λ are determined by the following equations:

K0 = 24.1275d3/2(nbQ)3/8S−3/16;

K1 = γ(nbQ)3/8S13/16

(γs−γ)d ;
(17)

Utilizing Formulas (16) and (17), where Q was set to 4000 cubic meters per second, the
channel gradient was 2/10,000, sediment size (d), was 0.6 mm, and roughness, was 0.012;
variable λ was assigned values of 0.1, 0.5, 1, and 2 to represent different relative roughness
of riverbanks to a riverbed. Subsequently, a curve of Qs was generated concerning ζ within
the range of 10–1000. Figure 2 and Table 1 display the variation curve and computation
results of sediment discharge, respectively.
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It is evident from Figure 2 that as the relative roughness of riverbanks to a riverbed
varies, the sediment discharge curve takes the shape of a parabola with a downward
opening. It initially rises slowly, reaches its peak at a certain point, and then descends
gradually. Notably, there is only one eligible width–depth ratio corresponding to the peak
point along the curve. Conversely, for points on the curve that are less than the peak value,
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two corresponding width–depth ratios are available. For points greater than the peak, there
is either no corresponding width–depth ratio or no solution.

Table 1. Values of Qsmax and ζm under different values of λ.

λ ζm
ζm − ζm0

ζm0
(%) Qsmax (m3/s) Qsmax − Qsmax0

Qsmax0
(%)

1 61.48 0 0.0741 0
0.1 89.2 45.09 0.0729 −1.62
0.5 73.36 19.32 0.0734 −0.94
2 29.8 −51.53 0.0763 2.97

Furthermore, when the relative roughness of riverbanks to a riverbed was set at
values of 0.1, 0.5, 1, and 2, the apex of the Qsmax curve increased as the values grew larger.
Specifically, the corresponding Qsmax values for each level of relative roughness were 0.0729,
0.0734, 0.0741, and 0.0763, respectively. Conversely, the associated width–depth ratio at the
highest point ζm decreased with larger relative roughness values, measuring 89.2, 73.36,
61.48, and 29.8, respectively.

To quantify the influence of changes in the relative roughness of a riverbank to a
riverbed on both sediment discharge and width–depth ratio, using a reference level of a
relative roughness value of 1, we observed from Table 1 that when the relative roughness
was 0.1, 0.5, and 2, the width–depth ratio changed by −51.53%, 19.32%, and 45.09%,
respectively. Simultaneously, the sediment discharge experienced changes of −1.62%,
−0.94%, and 2.97%, respectively. These data illustrate that the alteration in the relative
roughness of a riverbank to a riverbed has a more pronounced effect on the width–depth
ratio compared to its impact on sediment discharge.

Assuming nb, Q, S, and λ are constants, the following relationships can be obtained
by differentiating ζ on both sides of Formula (15):

1
D

dD
dζ = −−3ζ−10λ

8ζ(ζ+2λ)
1

W
dW
dζ = 5ζ+6λ

8ζ(ζ+2λ)
1
τ0

dτ0
dζ = −3ζ2+10ζ−10λζ+12λ

8ζ(ζ+2)(ζ+2λ)

(18)

Using the bedload sediment discharge expression as shown in Formula (3), the deriva-
tion of ζ on both sides of the Formula (3) was obtained, which is expressed as the following:

1
Qs

dQs

dζ
=

1
W

dW
dζ

+

(
i +

τ0 j
τ0 − τc

)
1
τ0

dτ0

dζ
(19)

According to the differential principle, when the function value reaches the maximum,
the differential of the function value to the variable equals 0. Therefore, an equation can be
derived as the following:

dQs

dζ
= 0 (20)

The following equations can be obtained by solving Equations (18)–(20) simultane-
ously:

τ0

τc
=

A + Bi
A + B(i + j)

(21)

In relationship (21), parameters A and B can be expressed as the following forms:

A = 5ζ2 + 6λζ + 10ζ + 12λ
B = −3ζ2 + 10ζ − 10λζ + 12λ

(22)
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In order to be consistent with Huang’s research, Formula (6) was adopted as the
bedload transport rate formula, i.e., i is equal to 0 and j is equal to 5/3, so Equation (21)
can be simplified as the following:

τ0

τc
=

A
A + (5/3)B

(23)

Through mathematical transformation, Equation (23) can be simplified into the follow-
ing form:

τ0 − τc

τc
=
−(5/3)B

A + (5/3)B
(24)

Furthermore, it can be seen from Formula (24) that based on the differential principle,
when the sediment discharge reaches the maximum at the lower threshold, it needs to
meet the condition of τ0 = τc, i.e., B = 0. By solving equation B = 0, as expressed in
Equation (22), the solutions can be obtained as the following:

ζmc =
10(1− λ)±

√
100(1− λ)2 + 144λ

6
(25)

As can be seen from Formula (25), there are two values that can satisfy B = 0, but only

ζmc = [10(1− λ) +
√

100(1− λ)2 + 144λ]/6 is a reasonable solution, which is inconsistent
with actual river conditions. In particular, when λ = 1, ζm = 2, it is 100% consistent
with Huang’s previous research [51], which further proves the rationality of the reasoning
process used in this paper. Therefore, the reasonable solution in the case of a low threshold
of τ0 = τc can be expressed as

ζmc =
10(1− λ) +

√
100(1− λ)2 + 144λ

6
(26)

4. Effects of Relative Roughness of Riverbanks to a Riverbed on Equilibrium
Hydraulic Geometry
4.1. Equilibrium Hydraulic Geometry in the State of τ0 = τc

Under the assumption that the sediment on a riverbed has reached a critical incipient
motion state, i.e., τ0 = τc, the critical hydraulic geometric expression can be derived by
concurrently solving Formulas (13) and (26):

W = aQ6/13

D = bQ6/13

S = cQ−6/13
(27)

In relationships (27), the correlation coefficients a, b, and c are determined by the
following relationships:

a = c−3/16n3/8(ζm + 2)1/4ζ3/8
m

b = c−3/16n3/8(ζm + 2)1/4ζ−5/8
m

c = [0.047 (γs−γ)d
γn3/8 (ζm + 2)3/4ζ−3/8

m ]
16/13

(28)

Building upon the framework established by Formula (28), we introduced specified
parameters, setting variable n at 0.03, d at 0.3 mm, ρs at 2650 kg/m3, and ρ at 1000 kg/m3.
Subsequently, we varied the coefficient λ across values of 0.1, 0.5, 1, and 2 to represent the
changing relative roughness of riverbanks to a riverbed. Analysis of the results presented
in Table 2 demonstrated that as λ transitioned from lower to higher values, coefficients a,
b, and c exhibited distinct variations within a narrow range. In more precise terms, with
λ values of 0.1, 0.5, 1, and 2, a assumed the respective values of 4.4642, 3.9633, 3.7919,
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and 3.6405, while b took on values of 1.4266, 1.6015, 1.8960, and 2.2524. The coefficient
c registered values of 2.6736 × 10−5, 2.6267 × 10−5, 1.8698 × 10−5, and 1.3268 × 10−5.
Notably, as λ increased, a gradually decreased, while b steadily increased. This implies that
in scenarios where a river operates under a lower threshold state, a smaller λ value leads
to adopting a narrower and deeper cross-sectional configuration for sediment transport.

Table 2. Values of the coefficients a, b, and c under different values of λ.

λ ζm Values of a, b, and c

0.1 3.12
a = 4.4622
b = 1.4266

c = 2.6736× 10−5

0.5 2.47
a = 3.9633
b = 1.6015

c = 2.6267× 10−5

1 2
a = 3.7919
b = 1.8960

c = 1.8698× 10−5

2 1.62
a = 3.6405
b = 2.2524

c = 1.3268× 10−5

4.2. Averaged Equilibrium Hydraulic Geometry at the State of τ0 > τc

Formulas (23) and (24) reveal that the width–depth ratio variable, as dictated by
Formula (20), can span any positive range of values. A series of mathematical trans-
formations must be applied to derive the geometric relationship for average river hy-
draulic characteristics. Consequently, Equations (11)–(13), (22), and (23), and the condition
Qs = qbPb = qbW, were simultaneously solved to eliminate the variable energy gradient
S. Through this process, the relationships among the optimal width–depth ratio, variable
flow discharge, sediment discharge, sediment size, the relative roughness of riverbanks to
a riverbed, and roughness were ascertained as the following:(

−(5/3)B
A + (5/3)B

)65/9 A + (5/3)B
A

ζm
2(ζm + 2)1/3 = 3.0725 ∗ 102d−11/2 Q13/3

s

(nQ)2 (29)

Consequently, Equation (29) was combined with Equations (12), (13), (22), and (23) to
express the equilibrium channel slope Sm, width Wm, and depth Dm as

Sm =

(
−(5/3)B

A + (5/3)B

)80/9
ζm

2(ζm + 2)4/3 = 3.7136 ∗ 10−5d8 (nQ)2

Q16/3
s

(30)

Wm =
Qs

1.4768 ∗ 10−1d3/2
(
−(5/3)B

A+(5/3)B

)5/3 (31)

Dm =
Qs

1.4768 ∗ 10−1d3/2ζ
(
−(5/3)B

A+(5/3)B

)5/3 (32)

Theoretically, the optimal width–depth ratio can encompass any positive integer
greater than ζmc, implying that the range of the optimal width–depth ratio extends from
ζmc to positive infinity. However, considering the practical constraints of river evolution,
it is highly unlikely for a river’s width–depth ratio to exceed 1000. Therefore, for mathe-
matical analysis, this study posits an upper limit of the optimal width–depth ratio at 1000.
Table 2 illustrates that the relative roughness of riverbanks to a riverbed (represented by
λ) significantly influences the critical optimal width–depth ratio (ζmc). When λ is set to
0.1, the range of possible values for ζm spans from ζmc to 1000. Calculations revealed that
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the variation range of τ0/τc extended from 1 to 195.7 within this context. Similarly, when
λ was set to 0.5, 1, and 2, with τ0/τc varying within the same range, the corresponding
variation range of ζm could be calculated. The results are presented in Table 3.

Table 3. Values and varying ranges of ζm when λ take various specific values.

λ ζmmax Varying Range of ζm

0.1 1000 4~1000
0.5 833 3~833
1 625 3~625
2 215 2~215

The terms involving ζm in Formulas (29)–(32) are notably intricate. Mathematical
transformations become imperative to streamline the computational process. For instance,
when the relative roughness of riverbanks to a riverbed equals 1, a variation range for the
optimal width–depth ratio ζm is established, ranging from 4 to 1000, with increments of 1.

An exponential fitting analysis of the terms dependent on ζm within Formulas (29)–(32)
was performed using Excel. Consequently, the terms containing ζm in these formulas could
be approximated by the following expressions:(

−(5/3)B
A + (5/3)B

)65/9 A + (5/3) ∗ B
A

ζm
2(ζm + 2)1/3 ≈ 4 ∗ 10−6ζm

8.9069, R2 = 0.9986 (33)

(
−(5/3)B

A + (5/3)B

)80/9
ζ2

m(ζm + 2)4/3 ≈ 4 ∗ 10−8ζm
12.609, R2 = 0.9992 (34)

(
−(5/3)B

A + (5/3)B

)5/3
≈ 0.0401 ∗ ζm

1.7444, R2 = 0.9982 (35)

(
−(5/3)B

A + (5/3)B

)5/3
ζm ≈ 0.0401 ∗ ζm

2.7444, R2 = 0.9993 (36)

Combining the terms of ζm contained in Equations (33)–(36) into Equations (29)–(32),
could yield the following average hydraulic geometric relationship:

W = 9.2753 ∗ 105d1.0769(nQ)0.3916Q0.1515
s = 9.2753 ∗ 10−5(n)0.3916

(
Qs
Q

)0.1515
Q0.5431

D = 0.0121 ∗ 107d1.6946(nQ)0.6162Q−0.3351
s = 0.0121 ∗ 107d1.6946(n)0.6162

(
Qs
Q

)−0.3351
Q0.2811

Sm = 0.2172d0.2148(nQ)−0.8310Q0.8005
s = 0.2172d0.2148n−0.8310

(
Qs
Q

)0.8005
Q−0.0305

(37)

The same methodology was employed to derive the average hydraulic geometric
relationships for λ being the values of 0.5, 1, and 2, with the outcomes presented in Table 4.
A comparative analysis of the hydraulic geometric relationships for these varying relative
roughness values indicated that roughness n, sediment size d, flow discharge Q, and
sediment discharge Qs all exerted a substantial influence on the final equilibrium river
width, depth, and specific gradient. To assess the relative impact of λ on these four variables,
the exponential variation ranges of these variables in the four sets of average hydraulic
geometric relationships were statistically compiled. The findings are the following:

Wm = KWd1.0769∼1.1158n0.3916∼0.4058
(

Qs
Q

)0.1207∼0.1515
Q0.5265∼0.5431

Dm = KDd1.6684∼1.6967n0.6067∼0.6170
(

Qs
Q

)−(0.3368∼0.3145)
Q0.2802∼0.2922

Sm = Ksd0.2148∼0.2577n−(0.8310∼0.8154)
(

Qs
Q

)0.7667∼0.8005
Q−(0.0487∼0.0305)

(38)
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Table 4. The averaged equilibrium hydraulic geometry when λ took various specific values.

λ ζm Averaged Equilibrium Channel Relationships

0.1 4 ≤ ζm ≤ 1000
W = 9.2753 ∗ 105d1.0769(nQ)0.3916Q0.1515

s = 9.2753 ∗ 10−5d1.0769(n)0.3916
(

Qs
Q

)0.1515
Q0.5431

D = 0.0121 ∗ 107d1.6946(nQ)0.6162Q−0.3351
s = 0.0121 ∗ 107d1.6946(n)0.6162

(
Qs
Q

)−0.3351
Q0.2811

S = 0.2172d0.2148(nQ)−0.8310Q0.8005
s = 0.2172d0.2148n−0.8310

(
Qs
Q

)0.8005
Q−0.0305

0.5 3 ≤ ζm ≤ 833
W = 8.1486 ∗ 105d1.0772(nQ)0.3916Q0.1515

s = 8.1486 ∗ 105d1.0772n0.3916
(

Qs
Q

)0.1515
Q0.5431

D = 0.0124 ∗ 107d1.6941(nQ)0.6160Q−0.3347
s = 0.0124 ∗ 107d1.6941(n)0.6160

(
Qs
Q

)−0.3347
Q0.2813

S = 0.2905d0.2209(nQ)−0.8288Q0.7957
s = 0.2905d0.2209n−0.8288

(
Qs
Q

)0.7957
Q−0.0331

1 3 ≤ ζm ≤ 265
W = 7.4526 ∗ 105d1.0773(nQ)0.3918Q0.1512

s = 7.4526 ∗ 105d1.0773(n)0.3918
(

Qs
Q

)0.1512
Q0.5430

D = 0.0139 ∗ 107d1.6967(nQ)0.6170Q−0.3368
s = 0.0139 ∗ 107d1.6967(n)0.6170

(
Qs
Q

)−0.3368
Q0.2802

S = 0.2269d0.2159(nQ)−0.8306Q0.7996
s = 0.2269d0.2159(n)−0.8306

(
Qs
Q

)0.7996
Q−0.0310

2 2 ≤ ζm ≤ 215
W = 5.8931 ∗ 105d1.1158(nQ)0.4058Q0.1207

s = 5.8931 ∗ 105d1.1158n0.4058
(

Qs
Q

)0.1207
Q0.5265

D = 0.0155 ∗ 107d1.6684(nQ)0.6067Q−0.3145
s = 0.0155 ∗ 107d1.6684n0.6067

(
Qs
Q

)−0.3145
Q0.2922

S = 0.3152d0.2577(nQ)−0.8154Q0.7667
s = 0.3152d0.2577(n)−0.8154

(
Qs
Q

)0.7667
Q−0.0487

In Equation (38), coefficients KW , KD, and KS are correlation coefficients, respectively.
Equation (38) revealed that as the relative roughness values of riverbanks to a riverbed

changed, specifically at 0.1, 0.5, 1, and 2, the coefficients of the four main variables—sediment
discharge, flow discharge, roughness, and sediment size—within the formula exhibited
minimal fluctuations. Consequently, these variable coefficients in Equation (38) could be
approximated as constants in analyzing specific river geometries. When the values of λ were
set to 0.1, 0.5, 1, and 2, the variation trends of the correlation coefficients KW , KD, and KS
in Equation (38) are depicted in Figure 3. It is evident that with an increase in the relative
roughness of the riverbank to the riverbed, KW experienced a gradual decrease, with values
of 9.2753 × 105, 8.1486 × 105, 7.4526 × 105, and 5.8931 × 105 representing a decrease of up to
36.64%. Meanwhile, KD gradually increased, with values of 0.0121 × 107, 0.0124 × 107, 0.0139
× 105, and 0.0155 × 107, respectively. However, KS did not demonstrate a specific trend,
with values ranging from 0.2172 to 0.2905, 0.2269, and 0.3152, respectively. This suggests
that the coefficient KS remains relatively stable or experiences minimal change and can thus
be considered a constant. In summary, as the relative roughness of riverbanks to a riverbed
increases, the river tends to adjust itself by adopting a wider and shallower cross-section
for sediment transport and vice versa. However, the relative roughness of riverbanks to a
riverbed has little influence on KS, indicating a weak correlation between the two.

To facilitate a comparison with previous studies, we considered the energy gradient
as an independent variable. By combining Formula (37) with Formula (1), we could
derive hydraulic geometric relationships that related river width, river depth, flow velocity,
roughness, flow, and energy gradient. These relationships are expressed as the following:

Wm = 199.0d−0.0407(nQ)0.5489S0.1893

Dm = 0.068d0.0899(nQ)0.2683S−0.4186

Vm = 0.0739d−0.0492n−0.8172Q0.1828S0.2293
(39)

Similarly, the average hydraulic geometric relationships were derived for cases in
which the relative roughness of riverbanks to a riverbed was set to 0.5, 1, and 2. These
results are presented in Table 5. Upon comparing and analyzing the hydraulic geometric
relationships across these different values of relative roughness, as shown in Table 4, it
became evident that roughness, sediment size, flow discharge, and energy gradient all
exerted a significant influence on the final equilibrium river width, depth, and velocity. To
assess the degree of influence of λ on these four variables, we statistically summarized the
exponential variation ranges of these variables across the four sets of average hydraulic
geometric relationships. The results are the following:
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Wm = K′Wd−(0.0421∼0.0406)S0.1574∼0.1904(nQ)0.5188∼0.5494

Dm = K′Dd0.0899∼0.1057S−(0.4212∼0.4102)(nQ)0.2671∼0.2722

Vm = K′Vd−(0.0651∼0.0492)n−(0.8172−0.7910)S0.2293−0.2528Q0.1828∼0.2090
(40)
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Table 5. The averaged hydraulic geometry when λ took various specific values.

λ ζm Averaged Hydraulic Geometry Relationships

0.1 4 ≤ ζm ≤ 1000 W = 199.0d−0.0407(nQ)0.5489S0.1893

D = 0.068d0.0899(nQ)0.2683S−0.4186

V = 0.0739d−0.0492n−0.8172Q0.1828S0.2293

0.5 3 ≤ ζm ≤ 833 W = 165.2629d−0.0421(nQ)0.5494S0.1904

D = 0.0754d0.0929(nQ)0.2674S−0.4206

V = 0.0803d−0.0508n−0.8168Q0.1832S0.2302

1 3 ≤ ζm ≤ 625 W = 158.4510d−0.0408(nQ)0.5489S0.1891

D = 0.0784d0.0909(nQ)0.2671S−0.4212

V = 0.0805d−0.0501n−0.8160Q0.1840S0.2321

2 2 ≤ ζm ≤ 215 W = 78.4891d−0.0406(nQ)0.5188S0.1574

D = 0.1279d0.1057(nQ)0.2722S−0.4102

V = 0.0996d−0.0651n−0.7910Q0.2090S0.2528

In Equation (40), KW , KD, and KS are correlation coefficients, respectively.
As indicated in Formula (40), when varying the values of the relative roughness

of riverbanks to a riverbed at 0.1, 0.5, 1, and 2, the coefficients associated with the four
key variables—namely, energy gradient, flow discharge, roughness, and sediment size in
Formula (40)—exhibited only minimal fluctuations. Consequently, within the context of
specific river geometry analysis, these coefficients within Formula (38) could be reasonably
approximated as constants.

When we considered different values of λ, specifically 0.1, 0.5, 1, and 2, and examined
the trends of the correlation coefficients K′W , K′D, and K′V within Formula (40), a discernible
pattern emerged (see Figure 4). As the relative roughness of riverbanks to a riverbed
increased, coefficient K′W exhibited a gradual decrease, with values of 199.0, 165.2629,
158.4510, and 78.4891, respectively. In contrast, coefficient K′D displayed a progressive
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increase, with values of 0.068, 0.0754, 0.0784, and 0.1279. Meanwhile, coefficient K′V initially
showed a slow increase followed by a more rapid rise, with values of 0.0739, 0.0803,
0.0805, and 0.0996, respectively. In broad terms, as the relative roughness of riverbanks
to a riverbed diminishes, the river tends to adopt a wider and shallower cross-section for
sediment transport and vice versa.
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5. Comparative Analysis between This Study and Previous Studies
5.1. Hydraulic Geometric Relationships in the State of τ0 = τc

Through a comparative analysis of the calculated hydraulic geometric relationship
in the context of the critical incipient motion state with the classical threshold theoretical
relationship and the prior study conducted by Fan and Huang [51], certain intriguing findings
emerged. Notably, the flow discharge index in these relationships remained consistently
near approximately 0.46. However, a notable disparity became evident in the critical optimal
width–depth ratio obtained through the various methodologies, as detailed in Table 6. In the
present study, the critical optimal width–depth ratio spanned a range of values between 1.62
and 3.12, while the results from Fan and Huang’s study encompassed a range from 2 to 4. In
stark contrast, the threshold theory, with its idealized assumptions, yielded a much broader
range, spanning from 7.05 to 8.61. The principal reason for this discrepancy stems from
the highly idealized conditions postulated by the threshold theory. Specifically, this theory
assumes that all sediments within a river cross-section exist in a critical incipient motion, a
condition that significantly deviates from the real-world complexities of river dynamics. This
paper and Fan and Huang’s (2020) study adopted a more nuanced approach, dividing the
cross-section into two distinct components, the riverbank and the riverbed, each characterized
by differing degrees of roughness [51]. Consequently, the theoretical outcomes derived from
these studies align more closely with the observed sediment discharge in natural rivers, as
documented by Nanson et al. (2010) [57]. Nevertheless, when comparing the results of this
paper with those of Fan and Huang’s research, it became apparent that the two river boundary
anti-scourability factors introduced by the authors exerted a substantial influence on the
ultimate equilibrium form of the river. To date, the collective impact of these factors, including
the bank slope and relative roughness of a riverbank to a riverbed, on the eventual equilibrium
configuration of the river, remains an unexplored avenue of inquiry. It is conceivable that
should the combined influence of both factors be considered, the range of variation in the
critical optimal width–depth ratio would likely expand. Moreover, it is reasonable to anticipate
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that the range established by the threshold theory would fall within this broader spectrum.
Nonetheless, the validity of such an assumption necessitates further research and empirical
verification.

Table 6. Comparison among studies by Fan and Huang [51] and the “threshold theory” by Lane
(1952) [58].

Channel Geometry
Factor This Study Fan and Huang (2020) [51] Threshold Theory (Lane, 1952) [58]

Width (W) W ∝ Q0.46 W ∝ Q0.46 W ∝ Q0.46

Depth (D) D ∝ Q0.46 D ∝ Q0.46 D ∝ Q0.46

Slope (S) S ∝ Q−0.46 S ∝ Q−0.46 S ∝ Q−0.46

Width/depth ratio (W/D) 1.62–3.12 2–4 7.05–8.61

5.2. Hydraulic Geometric Relationships in the State of τ0 > τc

Historically, flow discharge has been regarded as the primary controlling factor in-
fluencing river evolution. The development of “regime theory”, based on observations
of stable canals in countries such as India, Pakistan, and the United States, gained global
recognition in the early 20th century [57]. However, a plethora of studies conducted on
natural rivers have unveiled significant variations in the impact of flow discharge on river
evolution, not only across different rivers but also within different sections of the same river.
For instance, when examining hydraulic geometric relationships where flow discharge
served as the primary variable (i.e., W ∝ Ql, D ∝ Q f and V ∝ Qm), the exponents l, f,
and m exhibited considerable variability, spanning the broad ranges of 0.3 to 0.6, 0.2 to
0.5, and 0.0 to 0.2, respectively [59]. In light of these disparities, numerous scholars have
embarked on investigations into multivariable-dominated hydraulic geometric models.
Notably, Huang and Warner (1995) formulated a comprehensive multivariable geometric
model, drawing upon empirical formulas characterizing the distribution of shear forces
across cross-sections in both natural rivers and stable canals [60]. This model is expressed
as the following:

W = CW Q0.5n0.355S−0.156

D = CDQ0.3n0.383S−0.206

V = CV Q0.2n0.383S−0.206
(41)

In Equation (41), the coefficients CW , CD, and CV represent correlation coefficients
influenced primarily by the strength of riverbanks. Huang et al. conducted a comprehensive
analysis of global river channel data and riverbank composition, using Formula (41) as
the basis. Their research focused on evaluating the impact of riverbank strength on river
channel evolution. Their findings revealed that changes in the composition of riverbanks
can result in threefold variations in river width and roughly twofold changes in river depth.

Equation (41) demonstrates that, in addition to factors such as flow discharge, energy
gradient, roughness, and bank strength, sediment size plays a significant role in shaping the
hydraulic geometric relationship. Indeed, the influence of sediment size on river evolution
has been substantiated by numerous prior empirical studies. In summary, this paper
offers a comprehensive analysis of the various factors influencing river evolution. Notably,
when factors such as the energy gradient, roughness, sediment size, and river boundary
conditions are identical, or their influence on river evolution is minimal, the hydraulic
geometric relationship can be simplified to a more elementary form, as illustrated in Table 7.

Table 7 presents the univariate hydraulic geometric relationship models explored
in this paper alongside those developed by Fan, Rhodes, and Huang, respectively. It is
evident that the flow discharge indices in these three hydraulic geometric relationships
exhibit remarkable consistency, underscoring the sound reasoning and correctness of the
arguments presented in this paper. Furthermore, although there exists a slight disparity in
the range of flow index variation calculated in this paper compared to the authors’ findings
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in 2020, the range obtained in this paper aligns more closely with the flow index variations
calculated by Huang and Warner (1995) [60].

Table 7. Comparison among the studies by Fan and Huang [51], Rhodes (1987) [59], and by Huang
and Warner (1995) [60].

Hydraulic Geometry Factor This Study Fan and Huang (2020) [51] Hydraulic Geometry Model
(Rhodes, 1987) [59]

Huang and Warner (1995)
[60]

Width (W) W ∝ Q0.5188∼0.5494 W ∝ Q0.5431∼0.5489 W ∝ Q0.3∼0.6 W ∝ Q0.5

Depth (D) D ∝ Q0.2671∼0.2722 D ∝ Q0.2655∼0.2692 D ∝ Q0.2∼0.5 D ∝ Q0.3

Velocity (V) V ∝ Q0.1828∼0.2090 V ∝ Q0.1840∼0.1876 V ∝ Q0.0∼0.3 V ∝ Q0.2

6. Discussion

The concept of river boundary conditions encompasses a multifaceted array of factors.
While undoubtedly significant, the consideration of bank steepness may not comprehen-
sively capture the entirety of riverbank anti-scourability. This recognition underscores the
exigency of a more comprehensive investigation into the diverse factors contributing to
a riverbank stability’s complex dynamics. Such an exploration promises to yield more
profound insights into the intricate evolutionary processes governing river geomorphology.
Therefore, the current study examined a specific facet within this multifaceted realm: the
relative roughness of riverbanks to a riverbed. Within this scholarly endeavor, a generalized
cross-section of a river, characterized by a rectangular shape, was meticulously employed
as a foundational element. This deliberate choice of configuration served as a lens through
which to conduct an in-depth analysis of the profound influence exerted by the relative
roughness of riverbanks to a riverbed on the ultimate equilibrium form of a river channel.
Through a systematic deductive process, we sought to elucidate the critical and average
hydraulic geometric relationships while considering various degrees of relative roughness
about riverbanks and their interactions with riverbeds. These deduced relationships un-
derwent rigorous scrutiny to ensure their consistency with prior theoretical analyses and
empirical observations.

The pursuit of this investigation into the relative roughness of riverbanks to a riverbed
constitutes a pivotal stride toward the augmentation of our understanding of river ge-
omorphology. It promises to enrich our knowledge by shedding light on the intricate
interplay between hydraulic factors and the critical concept of boundary anti-scourability
within the context of river systems. This research encompasses an academic initiative with
profound implications, offering the potential to enhance our grasp of river behavior and
morphology, thus contributing to the effective management and conservation of these vital
natural entities.

Nonetheless, it is imperative to underscore that the scope of this investigation re-
mained confined to theoretical analysis. Applying these theoretical insights to the practical
analysis of river morphological evolution warrants further in-depth research. This transi-
tion from theoretical constructs to empirical application necessitates a nuanced examination
to ensure that the proposed theoretical framework aligns seamlessly with the intricate reali-
ties of specific river systems. Consequently, future research endeavors should endeavor to
bridge this gap, thus facilitating the practical utilization of these findings in the comprehen-
sive assessment of river morphology and its evolution.

Moreover, the quantitative determination of the relative roughness of riverbanks to
a riverbed within the context of individual rivers emerged as a distinct avenue for future
exploration. The complexity of river systems, with their unique hydraulic conditions,
sediment compositions, and environmental influences, necessitates tailored approaches
for quantification. To this end, a systematic investigation is warranted to devise robust
methodologies for precisely and quantitatively characterizing the relative roughness of
riverbanks to a riverbed in the context of specific rivers. This endeavor is pivotal for en-
hancing the accuracy and applicability of geomorphological assessments of rivers, thereby
contributing to a more comprehensive understanding of the intricate interplay between
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hydraulic factors and boundary anti-scourability within river systems. Furthermore, this
quantitative determination has the potential to serve as a valuable tool for river manage-
ment and conservation efforts, enabling a more tailored and effective approach to the
preservation and restoration of these vital natural systems.

7. Conclusions

Numerous prior empirical investigations have delved into the ramifications of bank
anti-scourability on river channel morphology. Nevertheless, utilizing a physical mecha-
nism model for a comprehensive quantification of this impact has been a relatively under-
explored avenue within the existing body of literature. Drawing upon Huang’s equilibrium
theory and employing the variational analysis method, this study endeavored to shed light
on this facet by employing a rectangular cross-section to represent a river and designating
the relative roughness of riverbanks to a riverbed as λ to denote the robustness of the
riverbanks. The theoretical scrutiny of the influence of the relative roughness of riverbanks
to a riverbed on the equilibrium channel configuration of an alluvial river yielded several
noteworthy findings:

Primarily, it was observed that for any given value of λ, there exist a unique parameter,
namely, the optimal width–depth ratio of the sediment transport section. This implies that
at this juncture, the sediment discharge across the river cross-section attains its maximum
capacity. In essence, any deviation from this critical value, be it an increase or decrease in the
width–depth ratio, results in a diminished sediment discharge for the river. Furthermore, it
was ascertained that as the value of λ transitions from smaller to larger magnitudes, the
calculated maximum sediment discharge experiences a reduction while the optimal width–
depth ratio undergoes an expansion. This discernment underscores the phenomenon that
as the relative roughness of riverbanks to a riverbed intensifies, the river tends to exhibit a
broader and shallower cross-section for the transportation of sediment.

Secondly, in the scenario where river sediment was in a critical incipient motion state,
denoted by τ0 = τc, the univariate hydraulic geometric relationship proposed in this study
closely resembled that which is conventionally computed using the classic “threshold
theory”.

Thirdly, under certain circumstances, when variables such as the energy gradient,
channel roughness, sediment size, bank angle, and relative roughness of riverbanks to a
riverbed can be approximated as constants, exerting a negligible influence on a river’s
evolutionary trajectory, the multivariable hydraulic geometric relationship articulated
in this study can be elegantly simplified into a univariate model contingent upon flow
discharge. This streamlined model exhibits a high degree of concordance with previous
research endeavors.

Lastly, as the parameter λ underwent a progression from relatively small values to
larger magnitudes, specifically adopting values of 0.1, 0.5, 1, and 2, a nuanced analysis of
the indices pertaining to variables encompassing flow discharge, energy gradient, channel
roughness, and sediment size revealed remarkably limited fluctuations, rendering them
nearly akin to constant values. Simultaneously, this variation in λ manifested itself in
a notable reduction in river width by as much as 36.46%, coupled with a concomitant
elevation in river depth by as much as 28%.

Rivers, in conjunction with various geomorphic agents, play a pivotal role in shaping
landscapes through erosional processes and the transportation of detritus and sediments.
These dynamic watercourses exhibit inherent physical characteristics that facilitate self-
adjustment in response to a multitude of environmental factors. The variational method,
recognized for its efficacy in providing a physical framework for analyzing river dynamics,
emerged as an invaluable tool in this context. This paper, leveraging the variational method,
endeavored to formulate a comprehensive multivariable hydraulic geometric model that
took into account the influence of river boundary conditions. Within this model, the
intricate interplay of multiple variables was examined, shedding light on the complex river
evolution process under the influence of these multivariable factors.
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It is essential to emphasize, however, that the focus of this inquiry remained centered
on theoretical analysis. The transition from these theoretical constructs to their practical
application in the realm of river morphological evolution necessitates further in-depth
research. The quantification of the relative roughness of riverbanks to a riverbed in the
specific context of individual rivers emerged as a distinctive avenue for future exploration.
This quantitative determination enriches our understanding of the complex interplay of
variables within the intricate world of river dynamics and offers promising insights into
real-world applications.
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