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Abstract: Concrete-face rockfill dams have gradually become the preferred dam type in the engineer-
ing community. This study presents a hydropower station in China as a case study to introduce a new
type of embedded concrete-face rockfill dam. The static and dynamic stress–strain characteristics of
the proposed and conventional concrete-face rockfill dams were compared, and the optimal height
of the embedded concrete body at the hydropower station was determined. The results indicate
that, under static conditions, the embedded concrete body could reduce deformation upstream and
downstream of the rockfill body, eliminate tensile stress along the concrete-face slab slope, reduce
concrete-face slab deflection, and increase the maximum deflection area to 0.47 times the dam height.
The inhibitory effect of the embedded concrete body on the stress and strain of the dam body became
more evident as the size of the embedded body increased. Although the embedded concrete body
did not enhance the dynamic and superposed static–dynamic stress states of the embedded concrete
body and rockfill, the stress and strain increase in the dynamic state were within a controllable range.
Through a sensitivity analysis and considering the terrain conditions and engineering cost of the
hydropower station, the height of the embedded concrete body is recommended to be 0.4 times the
dam height.

Keywords: embedded concrete-face rockfill dam; concrete-face slab; numerical calculation; deformation
characteristics; mechanical properties

1. Introduction

Concrete-face rockfill dams have gradually become the preferred dam type in the
engineering community owing to their safety, affordability, and applicability in complex
terrain and climatic conditions [1–3]. The construction height of concrete-face rockfill
dams has exceeded 240 m and is increasing towards 300 m [4–6]. As the only anti-seepage
structure in such dams, the structural safety and integrity of the concrete-face slab are ex-
tremely important [7,8]. Consequently, with increasing construction heights and enhanced
complex deformation coordination problems related to concrete-face slabs, analyses of
the static and dynamic mechanics and deformation characteristics of concrete-face rockfill
dams have become common methods for evaluating the stress and strain characteristics of
concrete-face slabs and rockfills [9,10].

Kim et al. [11] analysed the stress–strain characteristics of the Daegok concrete-face
rockfill dam in South Korea during its construction and found that disturbances caused
by the dam filling had little effect on the concrete-face slab. Instead, the concrete-face
slab deformation was caused by the water load and uneven settling after the dam was
impounded. Their calculated results were also consistent with the monitoring results.
Liu et al. [12] used static and dynamic calculations to determine that the potential cracking
area of the concrete-face slab during the operational period was concentrated in the middle
and lower parts of the slab, which was consistent with the measured results. Based on
finite element analysis of the Shuibuya concrete-face rockfill dam in China, Yao et al. [13]
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proposed a response surface method and improved genetic algorithm, successfully ob-
tained the calculation parameters of the Duncan E-B and creep models, and predicted the
settlement of the dam. Xu et al. [14] focused on the dynamic characteristics of concrete-face
rockfill dams under earthquake excitation conditions and found that tensile damage to the
concrete-face slab following an earthquake was concentrated in regions located at 0.65 and
0.85 times the dam height. The dynamic calculation method can quickly and accurately
determine the location of damage to the concrete-face slab. Kartal et al. [15] used the
improved Rackwitz–Fiessler method to analyse the static effect of the Torul concrete-face
rockfill dam in Turkey. This method considered the geometric nonlinearity of the dam
body and the interactions between the concrete-face slab and rockfill foundation, from
which the critical failure location and failure probability of the concrete-face slab were
determined. Similarly, Wen et al. [16] analysed the influence of foundation overburden
depth on dam body deformation at the Miaojiaba concrete-face rockfill dam in China.
Concrete-face slab deflection increased by approximately 0.1% when the dam was built
on a gravel foundation, and the calculated results were consistent with the monitoring
data. These previous studies indicate that the stress and deformation characteristics of
high concrete-face rockfill dams under complex conditions can be determined accurately
using static and dynamic calculations, which are crucial for engineering construction
and management [17–19].

Previous studies have also indicated that deformation is uncoordinated during the
settlement of the dam body owing to the rigidity of the concrete-face slab, which increases
the risk of slab cracking and failure and can seriously affect the anti-seepage performance
of the dam body. This problem is particularly noticeable in high concrete-face rockfill dams.
To address this problem, the China Electric Power Construction Group Northwest Survey
and Design Institute Co., Ltd. proposed the construction of a new embedded concrete-face
rockfill dam (ECFRD) at a hydropower station in China (Figure 1) based on a conventional
concrete-face rockfill dam (CCFRD). In the ECFRD, the embedded concrete body was
placed at the heel of the dam and connected to the concrete-face slab to form a complete
impervious body, thereby shortening the lengths of the concrete-face slab and joint and
bearing part of the force on the concrete-face slab to limit deformation of the dam body.
This new ECFRD aimed to improve the acceptance conditions of the high concrete-face
rockfill dam and improve its adaptability.
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Figure 1. Cross-sections of embedded and conventional concrete-face rockfill dams.

In this study, the abovementioned hydropower station in China was used as a case
study. Finite element analysis was performed based on static and dynamic analysis methods.
The stress and strain characteristics of the rockfill and concrete-face slabs of the ECFRD
and CCFRD scenarios were compared and analysed, and the influence of the embedded
concrete body on the stress distribution and deformation characteristics of the dam body
was determined. The optimal height of the embedded concrete body was then determined
using sensitivity analysis, and the dynamic stress–strain characteristics of the ECFRD under
seismic excitation conditions were analysed. The findings of this study can be used to
provide a new design concept for the construction of 200~300 m concrete-face rockfill dams.
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2. Computational Methods
2.1. Project Profile

The hydropower station addressed in this study is located in Qinghai Province, China.
The station is dominated by power generation, with a storage capacity of 14.724 billion m3

and a total installed power generation capacity of 1200 MW. An ECFRD was adopted for
the first time in a water-retaining structure at the station, with a maximum dam height
of 150 m. A cross-section of the dam is shown in Figure 2, and the layout of the dam site
is shown in Figure 3. The dam body can be divided into a concrete-face slab, cover zone,
cushion zone, embedded concrete body, transition zone, main rockfill zone, sub-rockfill
zone, and embedded concrete body and dam heel positions. The earthquake intensity
in the engineering area was set to VII on the modified Mercalli intensity scale, with a
peak acceleration of 0.304 g and a 100-year exceedance probability of 2%. The seismic
time-history curve of the hydropower station is shown in Figure 4.
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Figure 2. Cross-sectional drawing of the embedded concrete-face rockfill dam (ECFRD)
hydropower station.
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2.2. Finite Element Modelling and Parameters

Simulation model: The three-dimensional finite element mesh generated for the
ECFRD at the hydropower station is shown in Figure 5. The 8-node hexahedral isoparamet-
ric spatial element was adopted in this study. To adapt to changes in the dam boundary
conditions, the boundary part was degenerated into a triangular prism or tetrahedral
element, which was divided into 16,913 elements and 19,402 nodes.
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Boundary conditions: The bedrock depth at the hydropower station was approxi-
mately 90 m. The lower boundary of the model had an elevation of 2481 m, which was
fixed. The upstream and downstream truncation boundaries were set to 150 m from the
foot of the dam and acted as lateral constraints. The main loading on the dam included the
water load, weight of the dam body, and seismic dynamics.

Material behaviour: The experimentally obtained Duncan–Chang E-B model param-
eters of the main dam materials are listed in Table 1, and the elastic parameters of the
concrete materials and ground baseline are listed in Table 2.

Table 1. Duncan–Chang E-B model parameters of the main dam materials.

Dam
Material

Density
(g/cm3)

Angle of
Internal

Friction (◦)

Elastic
Modulus

Initial
Stiffness

Index

Damage
Ratio

Volume
Compression

Modulus
Coefficient

Volume
Deformation

Modulus
Coefficient

Unloading-
Repeated
Addition

Coefficient

2A 2.25 54.8 1023.3 0.32 0.61 500.0 0.25 2046.6
3A 2.17 56.2 1438.6 0.23 0.72 791.5 0.02 2877.2
3B 2.15 56.6 1412.5 0.22 0.72 772.2 0.04 2825.0
3C 2.15 52.2 800.0 0.26 0.62 400.0 0.29 1600.0

Table 2. Calculated elastic parameters of the concrete materials and ground baseline.

Material Density (g/cm3) Elastic Modulus (GPa) Poisson Ratio

CS 2.4 28 0.167
2B 2.4 30 0.167

Foundation 2.7 11.9 0.167

Convergence criteria: Forced convergence was preferred in this study, with a default
criterion value of 0.5% and a minimum residual reference value of 0.01 N.

3. Influence of the Embedded Concrete Body on the Static Characteristics of the Dam

To demonstrate the role and advantages of the embedded concrete body, we compared
and analysed the stress and strain characteristics of the dam body using an ECFRD and
CCFRD. The height of the embedded concrete body was 40 m, which was the only difference
between the two dam types.

3.1. Rockfill Body Strain Analysis

Because the rockfill is granular and undergoes compressive stress, we focused only
on its strain characteristics. The calculated strains for the two dam types under normal
water levels are shown in Figure 6 and Table 3. For the CCFRD, the maximum horizontal
displacements upstream and downstream of the rockfill body were 5.0 and 7.4 cm, re-
spectively. The maximum settlement of the rockfill body was 46.2 cm, located near half
the dam height, which accounted for 0.3% of the dam height. For the ECFRD, the maxi-
mum horizontal displacements upstream and downstream of the rockfill body were 2.9
and 6.8 cm, respectively, and the maximum settlement of the rockfill body was 45.6 cm.
These results indicate that the embedded concrete body effectively reduced the upstream
and downstream deformation of the concrete-face rockfill dam and slightly reduced the
settlement of the rockfill body.

Table 3. Deformation results for the dam rockfill in the CCFRD and ECFRD.

Dam Type Settlement (cm) Upstream Deformation (cm) Downstream Deformation (cm)

CCFRD 46.2 5.0 7.4
ECFRD 45.6 2.9 6.8
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3.2. Concrete-Face Slab Stress–Strain Analysis

The stress and strain results for the two dam types under normal water-level conditions
are shown in Figures 7 and 8, and Table 4. Figure 7 and Table 4 show that the concrete-
face slab was primarily compressed and partially pulled when a CCFRD was used in
the dam. During the impoundment period, the maximum axial compressive and tensile
stresses on the concrete-face slab were 6.43 and 1.15 MPa, respectively, while the maximum
compressive and tensile stresses along the slope were 8.27 and 0.16 MPa, respectively.
When an ECFRD was used in the dam, the concrete-face slab was only partially tensioned
in the axial direction on both sides, with maximum axial compressive and tensile stresses
of 5.64 and 0.86 MPa, respectively. Thus, the tensile stress on the concrete-face slab along
the slope decreased, with a maximum compressive stress of 6.95 MPa.
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Table 4. Concrete-face slab deformation and strain results for the CCFRD and ECFRD.

Dam Type Axial Compressive
Stress (MPa)

Axial Tensile
Stress (MPa)

Compressive Stress
along the Slope (MPa)

Tensile Stress along
the Slope (MPa) Deflection (cm)

CCFRD 6.34 1.15 8.27 0.16 19.46
ECFRD 5.64 0.86 6.95 / 6.8

In addition, Figure 8 and Table 4 indicate that the maximum deflection of the concrete-
face slab was 19.46 cm at an elevation of 2602 m on the left side of the dam when a CCFRD
was used. Since the lower part of the valley that contains the dam is extremely steep, the
location of the concrete-face slab deflection was low, approximately 0.21 times the dam
height. When an ECFRD was used, the area and length of the concrete-face slab decreased,
and the maximum deflection decreased to 14.25 cm. The location of the maximum deflection
also changed to an elevation of 2642 m on the left side of the dam, which was approximately
0.47 times the dam height.

The results indicate that, in the construction of a 150 m tall concrete-face rockfill dam,
an embedded concrete body could effectively reduce the stress on the concrete-face slab,
reduce concrete-face slab deflection, and compress the concrete-face slab along the slope,
thereby reducing the possibility of tensile failure.

3.3. Sensitivity Analysis of the Embedded Concrete Body Height

To analyse the influence of the embedded concrete body height on the stress and strain
characteristics of the rockfill and concrete-face slab and to determine the optimal height
of the embedded concrete body at the hydropower station, we adjusted the height of the
embedded concrete body to 50, 60, and 70 m (based on the model shown in Figure 5).
The stress and strain maxima for the rockfill, concrete-face slab, and embedded concrete
body during the impoundment period are shown in Figures 9–11, respectively. The results
indicate that the settlement of the rockfill and the upstream and downstream deformation
decreased as the height of the embedded concrete body increased. The height of the
embedded concrete body exceeded 0.3 times the dam height, which had a considerable
influence on controlling the rockfill deformation. Similarly, the length of the concrete-face
slab and the deflection, axial, and slope stresses on the concrete-face slab all decreased as
the height of the embedded concrete body increased. Overall, a taller embedded concrete
body could improve the stress–strain characteristics of the rockfill and concrete-face slab,
thereby improving the stability of the dam body and the integrity of the concrete-face
slab structure.
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Figure 9. Influence of the height of the embedded concrete body on the stress–strain characteristics
of the rockfill. (a) Variations in rockfill settlement; (b) Upstream and downstream deformation
of rockfill.
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Figure 10. Influence of the height of the embedded concrete body on the stress–strain characteristics
of the concrete-face slab. (a) Deflection of the concrete-face slab; (b) Stress deformation of the
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However, as shown in Figure 11, the tensile stress, compressive stress, and deformation
along the river increased as the height of the embedded concrete body increased. Although
the deformation range and stress value of the embedded concrete body were within the
allowable range of the concrete material, the width of the main tensile stress zone was
less than 0.07 times the width of the bottom surface. However, when the height of the
embedded concrete body was greater than 60 m, the river valley at the dam site area
was open, the construction volume of the embedded concrete body and its contact area
with the cushion layer increased, and construction difficulties were minor. The improved
stress conditions and the degeneration limit of the concrete-face slab and rockfill also met
engineering requirements. Consequently, we recommend that the height of the embedded
concrete body in a dam with dimensions similar to those of the dam at the hydropower
station should be 60 m, which is 0.4 times the dam height.

4. Dynamic Deformation Analyses
4.1. Rockfill Dynamic Deformation Analysis

For the CCFRD and ECFRD schemes with an embedded concrete body height of 60 m,
when the bedrock exceeded the probability of 2% earthquake peak acceleration (0.304 g) in
100 years, the deformation of the rockfill was caused by static and dynamic superposition
that resulted in permanent deformation (Figure 12 and Table 5). The results indicate that the
maximum dynamic displacement of the CCFRD rockfill in the river and vertical directions
were 13.1 and 6.3 cm, respectively. Permanent deformation in the river direction manifested
as downstream deformation (maximum of 19.9 cm). Permanent deformation in the vertical
direction manifested as seismic subsidence (maximum of 27.7 cm). For the ECFRD, the
maximum dynamic displacements of the rockfill in the river and vertical directions were
17.1 and 7.5 cm, respectively, with corresponding permanent deformations of 21.6 and
31.3 cm, respectively.

Table 5. Rockfill deformation in the CCFRD and ECFRD (cm) under earthquake action.

Dam Type Displacement along
the River Vertical Deformation Permanent Deformation along

the River
Permanent Vertical

Deformation

CCFRD 13.1 6.3 19.9 27.7
ECFRD 17.1 7.5 21.6 31.3
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4.2. Dynamic and Static–Dynamic Deformation Analyses of the Concrete-Face Slab

The results of the dynamic and static–dynamic superposition of the concrete-face slab
under earthquake conditions are shown in Figures 13 and 14, respectively, and Table 6. The
results indicate that the tensile stress on the concrete-face slab was the main cause of its
cracking. Consequently, we focused only on the distribution law and superposition state of
the dynamic tensile stress under earthquake conditions. Figure 13 and Table 6 indicate that
the maximum deflection of the concrete-face slab in the CCFRD caused by the earthquake
was 29.85 cm, yielding a maximum deflection of 33.54 m after accumulating deformation
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during normal operations. For the ECFRD, the maximum deflection of the concrete-face
slab increased to 31.21 cm, yielding a maximum deflection of 35.72 m after accumulating
deformation during normal operations.

Figure 14 and Table 6 indicate that the maximum dynamic tensile stress along the
slope of the CCFRD concrete-face slab caused by the earthquake was 2.84 MPa, which
occurred on the left-hand side of the dam (at 2675 m elevation), while the maximum axial
dynamic tensile stress was 2.47 Mpa. After the superposition of static and dynamic stresses,
the tensile stress along the slope was 1.46 Mpa, which occurred at an elevation of 2695 m
on the left-hand side of the dam, while the maximum axial tensile stress was 2.83 Mpa.
For the ECFRD, the maximum dynamic tensile stress on the concrete-face slab along the
slope was 3.55 Mpa, with a maximum axial dynamic tensile stress of 3.75 Mpa. After the
superposition of static and dynamic stresses, the tensile stress along the slope was 1.34 Mpa
and the maximum axial tensile stress was 2.66 Mpa. The areas in which these maxima
occurred did not change significantly between the CCFRD and ECFRD cases.

Table 6. Maximum concrete-face slab deformation and strain in the CCFRD and ECFRD under
earthquake action.

Deformation and Strain CCFRD ECFRD Deformation and Strain CCFRD ECFRD

Deflection 29.85 31.21 Maximum axial dynamic tensile stress 2.47 3.75

Total deflection 33.54 35.72 Maximum dynamic tensile stress superposition in
the slope direction 2.83 2.66

Maximum dynamic tensile
stress in the slope direction 2.84 3.55 Maximum axial dynamic tensile stress superposition 1.46 1.34
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Figure 13. Calculated concrete-face slab deflection under earthquake conditions (cm). (a) Change in
deflection for the CCFRD concrete-face slab; (b) Change in deflection for the ECFRD concrete-face
slab; (c) Total change in deflection for the CCFRD concrete-face slab; (d) Total change in deflection for
the ECFRD concrete-face slab.
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permanent seismic subsidence of the rockfill accounted for approximately 0.2% of the 
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Figure 14. Stress results for the CCFRD and ECFRD concrete-face slab under earthquake condi-
tions (MPa). (a) Maximum dynamic tensile stress on the CCFRD concrete-face slab along the slope;
(b) Maximum dynamic tensile stress on the ECFRD concrete-face slab along the slope; (c) Maximum
axial dynamic tensile stress on the CCFRD concrete-face slab; (d) Maximum axial dynamic tensile
stress on the ECFRD concrete-face slab; (e) Maximum dynamic tensile stress superposition on the
CCFRD concrete-face slab along the slope; (f) Maximum dynamic tensile stress superposition on the
ECFRD concrete-face slab along the slope; (g) Maximum axial dynamic tensile stress superposition
on the CCFRD concrete-face slab; (h) Maximum axial dynamic tensile stress superposition on the
ECFRD concrete-face slab.

In contrast to the results obtained in the static analyses, the rockfill and concrete-face
slab deformations were slightly higher in the ECFRD under earthquake conditions. The
permanent seismic subsidence of the rockfill accounted for approximately 0.2% of the
maximum dam height, which was within the empirical range of the permanent seismic
deformation of a 150 m concrete-face rockfill dam. The maximum dynamic value of the
CCFRD was approximately 1.7 times that of the maximum static value, while the max-
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imum dynamic value of the ECFRD was approximately 2.9 times that of the maximum
static value. In addition, the locations of the maximum static values differed. The loca-
tion of the maximum static value was on the left-hand side of the dam at approximately
0.21–0.65 times the dam height. The influence of the permanent deformation of the rock-
fill dam on the maximum dynamic stress location occurred at the top of the left-hand
0 + 174.5 panel of the maximum cross-section of the rockfill dam. Simultaneously, the dy-
namic tensile stress on the concrete-face slab decreased owing to the effect of the embedded
concrete body. Overall, the embedded concrete body improved the static stress–strain
characteristics of the concrete-face rockfill dam at the hydropower station but was slightly
unfavourable for its dynamic stress–strain state. However, the dynamic stress–strain pa-
rameters were within the allowable engineering range, and reinforcement methods could
be used for the construction of ECFRD.

5. Conclusions

In this study, the ECFRD at a hydropower station in Qinghai Province, China was
used as a case study site for three-dimensional finite element static and dynamic analyses.
The influence of the embedded concrete body on the stress and strain characteristics of
the rockfill and concrete-face slab was also analysed. The advantages of the embedded
concrete body on the stability of the dam body were demonstrated, and the optimal height
of the embedded concrete body was determined to provide a new design concept for
the construction of 200–300 m concrete-face rockfill dams. The main conclusions can be
summarised as follows:

1. Compared with a CCFRD, an embedded concrete body under a static load inhibited
the static displacement of the rockfill along the river. When the height of the embedded
concrete body was 40 m, the maximum horizontal displacements of the upstream and
downstream rockfill were 2.1 and 0.6 cm less than those of the CCFRD, respectively.
Moreover, owing to the stress on the embedded concrete body, the tensile stress
along the slope of the concrete-face slab was completely eliminated, the axial stress was
greatly reduced, the maximum deflection of the concrete-face slab decreased by 5.21 cm,
and the area experiencing maximum stress shifted to 0.47 times the dam height.

2. Under the actions of dynamic and static–dynamic superposition, the deformation of
the rockfill and concrete-face slab increased slightly, whereas the tensile stress on the
concrete-face slab decreased slightly after setting the concrete-face slab. The perma-
nent seismic subsidence of the rockfill body accounted for approximately 0.2% of the
maximum dam height, the ratio of the maximum dynamic value to the maximum
static value of the concrete-face slab increased from 1.7 to 2.9, and the cumulative
static and dynamic value of the deflection of the concrete-face slab reached 35.72 m.
Overall, the dynamic results for the ECFRD were within the controllable range of a
150 m concrete-face rockfill dam.

3. The ECFRD at the hydropower station was technically feasible and could effectively
improve the static stress–strain characteristics of the dam body while shortening the
length of the concrete-face slab and the joint. Under earthquake conditions, local
reinforcement and other reinforcement measures could be applied to adapt the ECFRD
to a 200–300 m high dam. For related projects, considering the project cost and stability
of the embedded concrete body, we recommend that the height of the embedded
concrete body should be 60 m, which is 0.4 times the height of the dam in this study.
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