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Abstract: Improving the accuracy and stability of daily runoff prediction is crucial for effective water
resource management and flood control. This study proposed a novel stacking ensemble learning
model based on attention mechanism for the daily runoff prediction. The proposed model has a
two-layer structure with the base model and the meta model. Three machine learning models, namely
random forest (RF), adaptive boosting (AdaBoost), and extreme gradient boosting (XGB) are used
as the base models. The attention mechanism is used as the meta model to integrate the output of
the base model to obtain predictions. The proposed model is applied to predict the daily inflow
to Fuchun River Reservoir in the Qiantang River basin. The results show that the proposed model
outperforms the base models and other ensemble models in terms of prediction accuracy. Compared
with the XGB and weighted averaging ensemble (WAE) models, the proposed model has a 10.22%
and 8.54% increase in Nash–Sutcliffe efficiency (NSE), an 18.52% and 16.38% reduction in root mean
square error (RMSE), a 28.17% and 18.66% reduction in mean absolute error (MAE), and a 4.54%
and 4.19% increase in correlation coefficient (r). The proposed model significantly outperforms the
base model and simple stacking model indicated by both the Friedman test and the Nemenyi test.
Thus, the proposed model can produce reasonable and accurate prediction of the reservoir inflow,
which is of great strategic significance and application value in formulating the rational allocation
and optimal operation of water resources and improving the breadth and depth of hydrological
forecasting integrated services.

Keywords: daily runoff forecasting; machine learning; stacking model; attentional mechanism

1. Introduction

Runoff is a fundamental element of the hydrological cycle, and runoff prediction has
thus been one of the fundamental issues in hydrology. Runoff is usually influenced by
a combination of factors, such as precipitation, evaporation, solar radiation, and subsur-
face and atmospheric circulation, and shows high spatial and temporal variability and
nonsmoothness. The impact of climate change and human activities has exacerbated the
nonstationarity and nonconformity of runoff, leading to frequent extreme events such as
droughts and floods, which have great impact on the socioeconomic and personal safety
of residents. Enhancing accuracy in runoff forecasting is of great importance for water
resources regulation [1], flood control [2], power generation [3], and others. In the current
context of climate change and high human activity [4–6], runoff sequences exhibit volatility
and randomness, which pose significant challenges for runoff prediction [7]. Therefore,
it is necessary to search for more advanced runoff forecasting methods to provide higher
accuracy and more stable runoff prediction [8].
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In past decades, researchers have studied many methods and hydrological models
to obtain accurate runoff predictions. These models can be divided into two categories:
process-driven models and data-driven models [9,10]. Process-driven models, such as
the Xin’anjiang model [11] and numerical weather prediction (NWP) [12,13], have a well-
defined physical mechanism that simulates runoff based on the relationship between runoff
and influencing factors. Process-based models utilize rainfall, topographic, and geological
data as input parameters to forecast and simulate runoff through the development of
intricate mathematical models. Therefore, accurate runoff process simulation requires a
large number of hydrological data and fine underlying surface data [14]. Owing to the
complexity of the hydrological cycle processes, process-driven model genesis is difficult and
requires high computational costs. With the development of artificial intelligence and deep
learning technology, data-driven models are more popular for runoff prediction at present.
Data-driven models do not consider the physical mechanisms of hydrological processes and
make forecasts directly by constructing a mapping relationship between forecast factors and
runoff. These can be further partitioned into statistical models [15,16], machine learning
models [17–19], and deep learning models [20,21]. Statistical models employ techniques to
anticipate the progression of past runoff based on the temporal features of its time series.
Autoregressive models (AR) [22], autoregressive moving average models (ARMA) [23],
and autoregressive moving integrated average models (ARIMA) [24] have been widely
applied for hydrological time series prediction. Nonetheless, these models are unable to
adequately capture the intricate nonlinear correlations present in the runoff time series, thus
leading to inferior model performance. Because of the limitations of time series models,
various machine learning models and deep learning models have been applied to the
prediction of nonlinear hydrological series in recent years. Yang et al. [9] employed random
forest (RF), artificial neural network (ANN), and support vector regression (SVR) to predict
one-month-ahead reservoir inflows and compared their capabilities. The results show
that the prediction results obtained by RF have the best statistical performances compared
with the other two methods, and RF can interpret raw model inputs. Liu et al. [25] were
the first to apply the AdaBoost (adaptive boosting) ensemble technique to improve the
efficiency of rainfall–runoff models. They reported that the enhanced AdaBoost model
yielded more satisfactory results. Machine learning models have achieved substantial
advancements in both predictive accuracy and effectiveness, and they are extensively
employed in practical applications. Nevertheless, these models can be categorized as
“shallow” learning approaches [26]. Xiang et al. [27] proposed a prediction model based
on long short-term memory (LSTM) and sequence-to-sequence (seq2seq) structures and
applied them to estimate hourly rainfall–runoff. The results show that the proposed
model had sufficient predictive power and could be used to improve forecast accuracy
in short-term flood forecast applications. Chen et al. [28] incorporated short previous
time steps into LSTM and developed the self-attentive long short-term memory (SA-
LSTM). The results show that SA-LSTM delivers superior performance relative to the
most advanced benchmark models. From the above studies, it is clear that machine
learning models perform well in nonlinear simulations in hydrology and are widely used in
practical production.

Previous studies have generally performed simulated predictions based on individual
machine learning models, showing their respective superiority. Although a single forecast
model can improve the forecast accuracy by adjusting parameters and selecting forecast
factors in the process of forecasting, the single model has model structure uncertainty and
is difficult to adapt to different basins [29]. Numerous studies have shown that combin-
ing multiple single forecast models to build an ensemble forecast model can effectively
exploit the advantages of different models and improve the reliability and accuracy of
runoff forecasts [30–33]. Stacking is a popular ensemble learning technique that effectively
mitigates bias and variance by combining weaker models to create a stronger one and has
gained widespread use in the field of machine learning. Diks et al. [34] employed several
method-averaging methods for runoff forecasting and found that Granger–Ramanathan
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averaging (GRA) was superior to other methods. Sun et al. [35] utilized the stacking
ensemble learning method to predict the breakup dates of river ice. The results show
that the combined models generally outperformed all member models. Nevertheless, the
application of the stacking ensemble model for runoff prediction is still limited and there is
much potential to be explored.

To further improve the accuracy of daily runoff prediction, a stacking ensemble model
based on the attention mechanism called ATE is proposed in this study for daily runoff
forecasting. The RF, AdaBoost, and XGB models were selected as the base models in the
stacking model because they are representatives of the dominant ensemble models in
runoff prediction. In addition, these three models they have complementary advantages
and disadvantages that can be utilized in the stacking ensemble model. The improvement
performance of the ATE model on runoff forecast accuracy is demonstrated by comparing
the ATE model with common stacked models, such as simple average ensemble (SAE) and
weighted average ensemble (WAE). The model performance evaluation indicators, such as
root mean square error (RMSE), mean absolute error (MAE), correlation coefficient (r), and
Nash–Sutcliffe efficiency (NSE), are used to compare and analyze the simulation results of
the different models.

2. Methodology
2.1. Machine Learning Methods
2.1.1. Random Forest (RF)

Random forest (RF) is an ensemble learning method based on the aggregation of deci-
sion trees for classification or regression prediction. The first algorithm for random forest
was created by Ho [36] and was then developed by Breiman [37]. It has been widely used in
many applications such as rainfall forecasting [38], land cover classification [39], sensitivity
analysis [40], and solar radiation forecasting [41]. RF is a popular machine learning tool
that uses the bootstrap resampling method to extract multiple random subsets from the
training data, model the decision tree for each bootstrap subset, and then combine the
prediction results of multiple decision trees to average the final regression or classification
prediction results [42]. RF solves the problem of decision-tree performance bottleneck,
has good tolerance to noise and outliers, and has good scalability and parallelism for
high-dimensional data classification problems. RF can handle very large amounts of data,
and the so-called “dimensionality disaster” in big data often makes other models fail. At
the same time, it has almost the same error rate as any other method for most learning tasks
and has less tendency to overfit. RF is one of the best-known bagging algorithms and has
good performance in regression problems, so it was chosen as one of the base models for
the ensemble model in this study.

2.1.2. Adaptive Boosting

The AdaBoost algorithm, also known as adaptive boosting, was first introduced as an
iterative boosting-ensemble machine learning algorithm by Freund and Schapire [43]. The
principle of the AdaBoost algorithm is to train different learners (weak learners) with the
same training set, and then aggregate these weak learners to form stronger learners [44].
The algorithm divides the sample set into several parts and assigns the dataset to the base
learner for training according to the weight size. The coefficients of the base learners are
adjusted by calculating the error, and then the weight distribution of the sample set is
adjusted. After several iterations of training, all base learners are finally combined by
weighting to build a strong learner. Moreover, AdaBoost is a simple boosting algorithm
that can enhance the performance of weak learner algorithms. This algorithm is designed
to improve the classification ability of the data by reducing both bias and variance through
continuous training. In this study, AdaBoost was applied to boost the decision tree and
construct one of the submodels of the ensemble model due to the fact that the AdaBoost
algorithm has proven to be an effective and practical boosting algorithm.
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2.1.3. Extreme Gradient Boosting (XGB)

Extreme gradient boosting (XGB), proposed by Chen and Guestrin [45], is an advanced
supervised algorithm based on the gradient-enhanced decision tree. It has been employed
in many different fields such as hydrology [46], remote sensing [47], and medicine [48].
The algorithm develops a “strong” learner by combining all the predictions of a set of
“weak” learners through the additive training strategies. The algorithm is based on the
gradient-boosted decision tree (GDBT) algorithm with a second-order Taylor expansion of
the loss function and the addition of a regular term, which effectively avoids overfitting and
accelerates the convergence speed. The XGB algorithm improves the prediction accuracy
by continuously forming new decision trees to fit the residuals of previous predictions, so
that the residuals between the predicted and true values are continuously reduced. XGB
is the tool for the massively parallel boosting tree; it is currently the fastest and best open
source boosting tree toolkit, more than 10 times faster than the common toolkit. Owing to
XGB’s notable advantage over other gradient-boosting methods in terms of speed, it was
chosen as one of the base models for the ensemble model in this study.

2.2. Proposed Stacking Ensemble Learning

Stacking ensemble learning refers to the methods that take advantage of mutual com-
plementarity among the base models to improve performance and enhance generalization
ability [49]. In general, stacking ensemble learning consists of two phases: base models
training phase and meta model training phase [50]. In the first phase, the original data
are divided into training set and testing set, and the training set is trained using the k-fold
cross validation. The k-fold cross validation divides the training set into k pieces and each
piece uses the remaining (k − 1) pieces of the data for training the model and simulating
the predictions for that piece of the data. A diagram of the k-fold cross validation is shown
in Figure 1. In the second phase, the predictions dataset obtained after the k-fold cross
validation of the base model is reassembled, in the order of the original training dataset, to
obtain a new training set. The training set of the meta model is obtained by merging the
new training set of the multiple base models. Similarly, the predictions from the testing
set of the base models are combined to obtain the testing set of the meta model. The meta
model is trained based on the new dataset.
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In stacking ensemble learning, the choice of base model and meta model is crucial. As
mentioned above, three models, RF, AdaBoost, and XGB, were selected as the base models
for the ensemble model in this study. Then, this study constructed an attention ensemble
model (ATE) as the meta model based on the attention mechanism. The iterative training
processes of the ATE model are as follows (Algorithm 1).
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Algorithm 1 The iterative training process of the ATE model

Input: Training set D, Validation set D’, Attention-Based Stacking model.
Base models: Random Forest (RF), Adaptive Boosting (AdaBoost), Extreme Gradient
Boosting (XGB)
Evaluation criteria: Nash–Sutcliffe Efficiency (NSE), Root Mean Squared Error (RMSE), Mean
Absolute Error (MAE), Pearson Correlation Coefficient (r)
1: Initialize empty arrays F1 for predictions of base models on D’.
2: Initialize empty array P for actual values in D’.
3: For i = 1 to k do:

a. Split D into D_train and D_val for training and validation, respectively, using k-fold
cross-validation.

b. Train base models on D_train.
c. For each instance j in D_val do:

i. Generate predictions pi1, pi2, pi3 using RF, AdaBoost, XGB, respectively.
ii. Append pi1, pi2, pi3 to F1 for instance j.
iii. Append actual value yj to P.

4: Train Attention-Based Stacking model on F1 as input and P as target.
5: Initialize empty arrays F2 and P2 for predictions of base models on D’ and actual values

in D’, respectively.
6: For each instance i in D’, perform:

a. Generate predictions pi1, pi2, pi3 using RF, AdaBoost, XGB, respectively.
b. Append pi1, pi2, pi3 to F2 for instance i.
c. Append actual value yi to P2.

7: Generate predictions p using F2 and Attention-Based Stacking model.
8: Calculate evaluation criteria NSE, RMSE, MAE, and r using p and P2.
9: Repeat steps 3–8 for k-fold cross-validation and report average evaluation criteria.
10: Train final Attention-Based Stacking model on D using all instances.
11: Save the final model for future use.

The general flow chart of the construction of the proposed attention ensemble model
in this study is shown in Figure 2.
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In addition to the attention ensemble learning, the study applied the simple averaging
ensemble and the weighted averaging ensemble set as comparison methods.
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The simple averaging ensemble (SAE) model is founded on the principle of the
arithmetic mean. Suppose there are K base models in an ensemble model; the SAE model’s
output can be defined as

fSAE(x) =
1
K

K

∑
k=1

fi(x) , x = 1, 2, . . . , N. (1)

where fi(x) is the output of the kth base model and N denotes the length of the dataset.
As can be seen above, in the SAE model, the weights of the predicted values of each

base model are the same, which does not sufficiently consider the forecast variability of
each model. The weighted averaging ensemble (WAE) model is based on the difference in
the prediction accuracy of each base model, and the predictions are combined to improve
the accuracy of the ensemble model. The output of the WAE model can be defined as

fWAE(x) =
K

∑
k=1

ωi fi(x) , x = 1, 2, . . . , N. (2)

where ωi(x) is the weight of the kth base model when the input is x, and N denotes the
length of the dataset. The ωi(x) is determined by the following steps: first, find the sum
of squared dispersions of the predicted values of each base model, and then find the
corresponding weights of each model using Equation (3). The weight can be calculated as

ωi(x) =
Dk
−1(x)

K
∑

k=1
Dk
−1(x)

(3)

where Dk(x) is the square of the deviation of the kth model prediction.

2.3. Hyper-Parameter Optimization

In machine learning, hyper-parameters need to be set in advance before the model is
trained. For the RF, AdaBoost, and XGB algorithms, hyper-parameters have a significant
effect on the prediction accuracy of the model. Therefore, hyper-parameter optimization is
of great importance. The main strategies in the current optimization of hyper-parameters
are babysitting, grid search, random search, and Bayesian optimization [51]. Compared to
the other three strategies, Bayesian optimization is more generalizable over the test set and
requires fewer iterations, so it was utilized for fine-tuning the hyper-parameters for the
models employed in this study.

The hyper-parameters for the models are tuned and evaluated over the training dataset
using the Hyperopt library in Python combined with k-fold cross-validation. The specific
steps are as follows:

Step 1: Define the objective function. Define an objective function with the hyper-parameters
as inputs and the MSE as the model performance evaluation metric, and use k-
fold cross-validation to calculate the generalization error for each set of hyper-
parameters over k models, and apply its average as the output.

Step 2: Define the hyper-parameter space. A preliminary determination of the search
space of hyper-parameters was determined based on practical experiences of
previous research.

Step 3: Define the hyper-parameter optimization algorithm. The tree-structured Parzen
estimator algorithm was chosen to search the hyper-parameter space.

Step 4: Run hyper-parameter optimization. The ”fmin” function was chosen to run the
hyper-parameter optimization and set the maximum number of iterations to 1000
to finally obtain the optimal hyper-parameters for the model.

Table 1 presents a compendium of the main hyper-parameters for the three machine
learning models utilized in this study.
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Table 1. Summary of the hyper-parameters for the three machine learning models.

Model Model Hyper-Parameters

Random Forest (RF)

n_estimators = 600
criterion = squared_error
max_depth = None
min_samples_split = 2
min_samples_leaf = 1

Adaptive Boosting (AdaBoost)

n_estimators = 30
learning_rate = 0.08
base_estimator = DecisionTreeRegressor
max_depth = None
min_samples_split = 26
min_samples_leaf = 9

Extreme Gradient Boosting (XGB)

n_estimators = 200
learning_rate = 0.02
subsample = 0.22
colsample_bytree = 0.96

2.4. Model Performance Evaluation

When evaluating the predictive capacity of developed models, it is crucial to employ
a diverse range of metrics to measure errors. To compare the performance of the models,
the root mean square error (RMSE), the mean absolute error (MAE), the correlation coef-
ficient (r), and the Nash–Sutcliffe efficiency (NSE) were applied in this study. NSE can
be effective in evaluating the accuracy and stability of model forecast results, and r can
help evaluate the linear correlation of forecast results. RMSE and MAE are two of the most
commonly used metrics for measuring the accuracy of model predictions. RMSE measures
the average magnitude of the errors in the predictions, and is particularly sensitive to large
errors. MAE measures the average absolute magnitude of the errors, and is generally less
sensitive to outliers than RMSE. By using these four criteria, the performance of the model
can be evaluated in different ways, considering both the accuracy and the fit of the model.
The formulae for the four evaluation criteria are as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(yP,i − yO,i)
2 (4)

MAE =
1
N

N

∑
i=1
|yP,i − yO,i| (5)

r =

N
∑

i=1
(yP,i − yP,i)(yO,i − yO,i)√

N
∑

i=1
(yP,i − yP,i)

2 N
∑

i=1
(yO,i − yO,i)

2

(6)

NSE = 1−

N
∑

i=1
(yP,i − yO,i)

2

N
∑

i=1
(yO,i − yO,i)

2
(7)

where yO,i and yP,i are the observed and predicted runoff series, respectively; yO,i and yP,i
are the mean values of the series yO,i and yP,i, respectively; and N is the number of data.
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2.5. Significance Test for Model Performance Evaluation

In this study, the nonparametric Friedman test and Nemenyi test were mainly used
to compare multiple models used in this study [52]. The main steps in the nonparametric
Friedman test are summarized as follows:

Step 1: The prediction results of N models on k folds are calculated. The prediction results
in this study are assessed using the evaluation criteria of NSE, RMSE, MSE, and r.

Step 2: For each fold, the tested models are ranked and given sequential values based on
the merit of model performance of the prediction results.

Step 3: Find the average (Ri) of N models ranked on all folds.
Step 4: The Friedman test was used for comparison. The nonparametric Friedman statistic

τχ2 is expressed as follows:

τχ2 =
12k

N(N + 1)

(
N

∑
i=1

R2
i −

N(N + 1)2

4

)
(8)

In the nonparametric test, a p-value is used to determine the probability of rejecting
the original hypothesis. A p-value < 0.05 indicates that the original hypothesis should be
rejected, which indicates a statistically significant difference between the models.

If the results of the Friedman test indicate a “significant difference in model perfor-
mance”, the post hoc Nemenyi test is required. The Nemenyi test process is as follows:

Step 1: Critical difference (CD) is calculated according to the following equation,
where the critical values qα are 2.850 and 2.589 when the significance level is taken as 0.05
and 0.10, respectively.

CD = qα

(√
N(N + 1)

k

)
(9)

Step 2: The difference between the average rank difference (ARD) and CD of the two
models is compared, and if ARD > CD, there is a significant difference in the performance
of the two models.

3. Case Study
3.1. Study Area

The Fuchun River basin, located in the middle reaches of Qiantang River basin, was
selected for this study. The Qiantang River basin is located in eastern China, which is
one of the most economically developed regions in China. The basin has an area of about
55,600 km2 and is dominated by a subtropical humid monsoon climate, with abundant
rainfall [53]. Influenced by typhoons and plum rains, flooding is frequent in the Qiantang
River basin. In 2020, the Qiantang River basin suffered the strongest plum flood in history,
and the water level of Xin’an River Reservoir reached the highest level in history, which
greatly affected the socioeconomic and personal safety of residents. It is therefore of
significant importance to implement more accurate and stable runoff forecasting for local
water resource regulation and management.

For the daily runoff prediction, Fuchun River Reservoir (FCJ) located in the Fuchun
River basin was selected. The catchment area of the Fuchun River basin is about 31,700 km2

and the total length of the main stream is 102 km. The average annual precipitation is
approximately 1600 mm and the average temperature is 17.2 ◦C. Precipitation is mainly
concentrated in the flood season from March to June, and the peak flow usually occurs
during this period. Flow regulation in the Fuchun River basin is controlled by Xin’an
River Reservoir (XAJ), located at the downstream end of the Xin’an River, and Fuchun
River Reservoir (FCJ), located at the downstream end of the Fuchun River. Fuchun River
Reservoir is a daily regulation type, with a total storage capacity of 920 million m3. The
total power generation capacity is 297.2 MW, and the annual power generation capacity
is 923 million kWh. XAJ and FCJ hold significant strategic positions in the management
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and regulation of water resources in the Qiantang River. Figure 3 shows the location of the
Qiantang River basin and the two reservoirs.
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3.2. Data Sources

This study predicted the FCJ runoff for the following day, utilizing the antecedent
runoff and basin surface precipitation data from the two reservoirs. The data were acquired
on a daily time scale, covering a 42-year span ranging from 1970 to 2011.

To reflect the interannual variation in precipitation and runoff in the Qiantang River
basin, precipitation and runoff in the basin were used to plot a polyline or
histogram (Figure 4).
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3.3. Data Preprocessing

In this study, previous and current precipitation and reservoir inflow were used as
input data to predict the inflow to Fuchun River Reservoir. The model inputs were selected
based on rainfall and runoff correlation analyses, with a 3-day lagged runoff from Fuchun
River Reservoir and the rainfall of the day being chosen as the inputs. Since the runoff
from Fuchun River Reservoir is affected by the upstream reservoir, the outflows from
Xin’an River Reservoir upstream were chosen as model inputs. Specifically, the inputs for
predicting current daily inflow include: (1) previous inflow (1-day lag, 2-day lag, and 3-day
lag); (2) current surface precipitation; and (3) current upstream reservoir inflow. Before
input into the model, data were normalized to meet calculation requirements.

The data were divided into training and testing sets in chronological order, with 80%
and 20% of the total records being allocated to each set, respectively (shown in Figure 5).
The training set for the period 1970–2002 was used to train the model parameters and
optimize the ensemble model, and the test set for the period of 2003–2011 was used to
evaluate the model performance. In this study, k-fold cross-validation with a k of 10 was
used to train the three machine learning models: RF, AdaBoost, and XGB.
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4. Results
4.1. Comparison of Base Models

The performances of models were evaluated, and the results of the evaluation criteria
of the three models in the validation and testing periods are shown in Table 2 and Figure 6.
The performance of the three base models varies in terms of NSE, RMSE, MAE, and r. From
the results in Table 2 and Figure 6, it can also be seen that the RF model has the worst
comprehensive performance of all the models. In comparison to the RF and AdaBoost
models, which served to represent the machine learning ensemble model, the XGB model
performed the best during both the validation and testing phases. The NSE, RMSE, MAE,
and r of the XGB model are 0.767, 407.4, 205.5, and 0.880, respectively. Among all three
models, the XGB model attains the best performance across three metrics, achieving−1.32%
and −0.66% improvements in mean RMSE as compared to RF and AdaBoost, respectively.
In addition, the standard deviations of each criterion in the XGB model are the smallest,
indicating that the model performs stably.

Table 2. Evaluation criteria for three base models (the values of RMSE and MAE are in m3/s).

Period Models NSE RMSE MAE r

Validation
RF 0.690 (0.063) 559.8 (111.3) 267.6 (43.3) 0.836 (0.030)

AdaBoost 0.685 (0.066) 564.2 (118.2) 263.4 (45.7) 0.834 (0.032)
XGB 0.704 (0.057) 550.0 (121.9) 265.3 (43.3) 0.843 (0.031)

Testing
RF 0.757 (0.007) 416.3 (6.4) 204.4 (2.3) 0.870 (0.003)

AdaBoost 0.762 (0.014) 411.7 (12.1) 197.3 (2.4) 0.872 (0.007)
XGB 0.767 (0.005) 407.4 (4.0) 205.5 (2.2) 0.880 (0.003)

Note: The values in the table are means of 10 folds, with standard deviations in parentheses.
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Figure 7 displays the prediction results for the three base models throughout the testing
period. The solid lines and scatters on the left reflect the expected and observed values,
respectively, and the scatter plots are displayed on the right. The results demonstrate that
the prediction accuracy of the XGB model (r = 0.880) is higher than those of the other
models. In general, the three models exhibit high levels of predictive accuracy. Therefore,
the three machine learning models constructed are reasonable and effective and can be
used as the base model for the ensemble prediction.

4.2. Comparison of Base Models and Ensemble Models

The study compared the performance of the base models with that of the stacking
models. Table 3 shows the evaluation criteria of the three stacking models in the testing
period for the study region. From Tables 2 and 3, the NSE, RMSE, MAE, and r of the
optimal base model are 0.767, 407.368, 205.505, and 0.880, respectively, whereas the values
of the SAE model are 0.766, 408.042, 199.302, and 0.876, respectively. It is evident that the
SAE model, which is the simplest stacking model, did not outperform the optimal base
model in evaluation criteria, but it generally performed better than other base models. The
prediction of the SAE model was obtained by the weighted average of the predictions of the
base models, so the SAE model performance is generally at the average level. The other two
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stacking models both performed better than the base models in every respect. According to
the statistics, the NSE, RMSE, MAE, and r of the ATE model are 10.22%, −18.52%, −28.17%,
and 4.54% better than those of the XGB model. Similar improvements were also found in
the WAE model compared to the base models. This implies that by integrating machine
learning models with diverse structures, the stacking model has the potential to surpass
the performance of all its base models.
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Table 3. Evaluation criteria of three stacking models (the values of RMSE and MAE are in m3/s).

Models NSE RMSE MAE r

SAE 0.766 408.0 199.3 0.876
WAE 0.779 397.0 181.5 0.883
ATE 0.845 331.9 147.6 0.920



Water 2023, 15, 1265 13 of 19

4.3. Comparison of Ensemble Models

Figure 8 shows predicted and observed daily runoff scatter plots of three stacking
models, including SAE, WAE, and ATE. As shown in the figure, the fitting line of the ATE
model displays the smallest deviation when compared to the other stacking models. From
the detailed comparison of the different stacking models with ATE, it can be seen that the
four evaluation criteria of the ATE models were superior to those of the SAE and WAE
models. Compared with the SAE and WAE models, the ATE model has a 10.32% and 8.54%
increase in NSE, an 18.65% and 16.38% reduction in RMSE, a 25.93% and 18.66% reduction
in MAE, and a 4.97% and 4.19% increase in r. This outcome serves as evidence for the
effectiveness of the proposed ensemble model.
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stacking models.

The differences in predicted runoff amongst the various stacking models are shown in
Figure 9. As can be seen in Figure 9, the predicted values of the ATE model approximated
the observed values better than the SAE and WAE models, and the scatter points in
Figure 8 were more closely distributed around the regression line. Thus, it demonstrates the
superiority of the proposed stacking model based on the attention mechanism compared
to other models. Moreover, all of the models exhibited a tendency to underestimate
runoff during high runoff periods. Nonetheless, the ATE model demonstrated a smaller
prediction error compared to the other models. In summary, this finding further confirms
the superiority of ATE over the comparative models.
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4.4. Comparison of Model Performance in Significance Tests

In this study, 10-fold cross-validation was performed to obtain the ranking of six
ensemble models on different validation sets. The average ranking of each model under
different evaluation criteria is shown in Table 4. The p-values of the Friedman tests for NSE,
RMSE, MAE, and r are 1.03 × 10−5, 5.64 × 10−4, 2.54 × 10−5, and 6.92 × 10−7, respectively,
and they are all less than 0.001, indicating that the six ensemble models considered for
comparison are significantly different at the α = 0.1% significance level. In terms of NSE,
RMSE, and r, the average ranking of evaluation criteria was consistent across all models,
from best to worst for ATE, WAE, XGB, SAE, RF, and AdaBoost, respectively. It means that
the ATE and AdaBoost models are the best and the worst of the six models, respectively. In
terms of MAE, the two best performing models are ATE and WAE, but the worst model is
XGB, which outperforms in the other three metrics.

Table 4. The average ranking of each model in each fold for NSE, RMSE, MAE, and r.

Models Ranking (NSE) Ranking (RMSE) Ranking (MAE) Ranking (r)

RF 4.8 4.4 4.7 5.0
AdaBoost 5.2 4.7 3.4 5.3

XGB 3.3 3.8 5.1 3.3
SAE 3.7 4.0 3.8 3.9
WAE 2.9 2.7 2.8 2.4
ATE 1.1 1.4 1.2 1.1

τχ2 30.80 21.83 28.80 36.69
p 1.03 × 10−5 5.64 × 10−4 2.54 × 10−5 6.92 × 10−7

As significant differences were found among the six models, this study used a post
hoc test (Nemenyi test) to check whether the ATE model (the best model) is significantly
better than the other models. When the number of comparison models was 6 and the
dataset was 10, the CD at 5% and 10% significance levels were calculated to be 2.38 and
2.17, respectively. The average ranking of each model in Table 4 was subtracted from the
ranking of the ATE model separately to obtain the respective ARD (Table 5). At the 5% level
of significance, the ATE model was significantly different from that of RF, AdaBoost, and
SAE in terms of NSE, RMSE, and r, and significantly outperformed RF, XGB, and SAE in
terms of MAE. At the 10% level of significance, the ATE model was significantly different
from all other models except the WAE model.
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Table 5. The ARD of each model in each fold for NSE, RMSE, MAE, and r.

Models ARD (NSE) ARD (RMSE) ARD (MAE) ARD (r)

RF 3.7 3.0 3.5 3.9
AdaBoost 4.1 3.3 2.2 4.2

XGB 2.2 2.4 3.9 2.2
SAE 2.6 2.6 2.6 2.8
WAE 1.8 1.3 1.6 1.3

5. Discussion

The proposed stacking ensemble model for reservoir inflow is promising as it offers
improvements over each of the base models. However, it is worth exploring how the atten-
tion ensemble model combines the base models. To obtain a more intuitive understanding
of the mechanism of the attention ensemble model, the study summed the weights of the
three base models in the stacking ensemble models to obtain the attention level of each
ensemble model to each base model. Figure 10 shows the visualization results for the
weights of the ensemble model. As shown in the figure, the weights of the base models of
the ATE model are more concentrated whereas those for the WAE model are more discrete.
In the WAE model, since the base models’ weights are determined based on the square
of the deviation, the AdaBoost model, which had a smaller MAE score, obtains a higher
weight. The performance of the base models has a negative correlation with the weights
of the base models in the ATE model. The highest weights are assigned to XGB, which
has the best performance in the base model. In addition, the attention mechanism also
gives a certain weight to the poorly performing models compared to the normal stacking
ensemble model, which can better utilize the variability between the base models to correct
the prediction errors to generate more accurate predictions.
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This study demonstrates that improvements in prediction performance can be obtained
by combining various machine learning models. It is worth noting that even the simplest
ensemble model can bring an improvement to the prediction results of machine learning
models. Thus, the simple averaging method is effective and hard-to-beat in practice [54,55].
Tyralis et al. [56] proposed stacking of quantile regression and quantile regression forests
to postprocess hydrological model simulations, and the ensemble model outperforms



Water 2023, 15, 1265 16 of 19

simple averaging with the maximum obtained improvement approximately equal to 2%.
Granata et al. [57] proposed a stacking model based on elastic networks and found that the
model outperformed the bidirectional LSTM network model for peak flow prediction in
several cases. The attention ensemble model proposed in this study obtained a maximum
improvement of about 5% compared to simple averaging, confirming the validity of the
proposed model. The advantage of the ATE model is that it can adaptively learn the weights
of each base model to better take advantage of the base models. Specifically, the attention
mechanism can adaptively adjust the contribution of each base model according to the
situation of different data points, so that the performance of each base model can be better
utilized at different data points. In contrast, other meta models may require manually
specifying the weights of each base model or using a simple average or weighted average to
combine the predictions of the base models. These approaches may not take full advantage
of the characteristics and strengths of each base model, resulting in a limited improvement
in overall performance. Gu et al. [58] applied the stacking model based on multiple linear
regression to rainfall prediction and found that the ANN model generally outperformed
the stacking model, mainly because most machine learning models underestimated the
extreme precipitation, while the proposed stacking model in the study by Gu et al. [58]
did not give sufficient weight to the base model with good simulation results at extreme
points. Owing to the attention mechanism, the ATE model tends to give more weight to
the base model based on the model’s superior performance compared to other common
stacked models. Therefore, it performs better than other stacked models in extreme value
simulations. In addition, unlike the super ensemble learning proposed by Tyralis [59], the
ATE model can weight the output of the base models to highlight the important features.
This can avoid the influence of excessive noise and irrelevant features on the meta model,
thus improving the stability and accuracy of the model.

According to the results of the average ranking of the evaluation criteria, the ATE
model outperformed the WAE model, but the ATE model is not statistically significantly
different from the WAE model. It is possibly due to the fact that only 10-fold cross-validation
was selected in this study, and it is insufficient to reach a larger CD value. The advantages
of the ATE model over the traditional stacked model may be more evident if the dataset
used for significance testing is large enough.

However, it has been suggested that, as the number of base models increases, weight
optimization may not have a significant improvement relative to simple averaging [59]. A
large number of base models could result in overfitting that leads to degraded stacking
model performance [60]. Therefore, although the current research progress shows that there
is a general trend toward constructing ensemble forecasting, it is still important to improve
model accuracy through preprocessing and model evaluation improvements [61,62].

6. Conclusions

This study introduces a novel stacking ensemble model based on the attention mecha-
nism to enhance the performance of machine learning models in the prediction of reservoir
inflow, utilizing data from the Fuchun River basin in China. This study used three typical
ensemble machine learning models (RF, AdaBoost, and XGB) for prediction. The results
showed that the three machine learning models performed well enough to meet the require-
ments as base models in the stacking ensemble model and the XGB model outperformed
the other two models. To improve the generalizability and the performance of the machine
learning models, the study combined the outputs of the three models as inputs to the
proposed model. To verify the superiority of the proposed model, this study used four
evaluation criteria and two comparison models (SAE and WAT) to test model performance.
Compared with base models, the stacking ensemble models generally achieved better
prediction results. In addition, comparing the proposed model with the common stacking
ensemble models shows that the proposed model has significant superiority and enhances
the generalization ability of the machine learning model. Therefore, the proposed stacking
ensemble model can generate rational and precise forecasts for the reservoir inflow.
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Despite its promising performance, the proposed model has certain limitations that
must be acknowledged. Specifically, the study highlights the susceptibility of the model’s
superior predictive performance to disruption by models with inferior performance during
the daily runoff forecast ensemble process. As a result, there is a pressing need to devise
more effective methods of ensembling these models. Additionally, although the deep
learning ensemble models show promise, further research into more advanced ensemble
methods is warranted.
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