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Abstract: This study combines measurements of dissolved inorganic carbon (DIC), total alkalinity
(TA), pH, earth observation (EO), and ocean model products with deep learning to provide a good step
forward in detecting changes in the ocean carbonate system parameters at a high spatial and temporal
resolution in the North Atlantic region (Long. −61.00◦ to −50.04◦ W; Lat. 24.99◦ to 34.96◦ N). The in
situ reference dataset that was used for this study provided discrete underway measurements of DIC,
TA, and pH collected by M/V Equinox in the North Atlantic Ocean. A unique list of co-temporal
and co-located global daily environmental drivers derived from independent sources (using satellite
remote sensing, model reanalyses, empirical algorithms, and depth soundings) were collected for this
study at the highest possible spatial resolution (0.04◦ × 0.04◦). The resulting ANN-estimated DIC, TA,
and pH obtained by deep learning shows a high correspondence when verified against observations.
This study demonstrates how a select number of geophysical information derived from EO and
model reanalysis data can be used to estimate and understand the spatiotemporal variability of the
oceanic carbonate system at a high spatiotemporal resolution. Further methodological improvements
are being suggested.

Keywords: ocean acidification; ocean carbonate system; dissolved inorganic carbon; total alkalinity;
pH; North Atlantic; spatiotemporal variability; earth observation; deep learning

1. Introduction

The global oceans constitute an important component in the global carbon cycle. They
are also a major sink of human-induced emissions of CO2. When CO2 dissolves under
typical ocean surface conditions, 90% of this CO2 is formed as HCO3

−, 9% as HCO3
2−,

and only 1% as undissociated CO2 (aq) and H2CO3 [1]. The four important parameters that
are needed to understand the ocean carbonic acid system include the dissolved inorganic
carbon (DIC), the total alkalinity (TA), the pH, and the pCO2 in surface water.

In the past decades, most of our understanding of the ocean carbonate system is de-
rived from in situ observations. Now, thanks to global networking programs, observations
have increased widely and consistently, due to ship surveys, the ARGOS project, and
mooring and autonomous platforms; furthermore, due to the availability of ever more
complex biogeochemical models, the understanding of ocean global and regional carbonate
system has advanced considerably. These activities provide accurate, long-term time series
f CO2 datasets, such as those found in the Surface Ocean CO2 Atlas—SOCAT—[2,3] and
the Global Ocean Data Analysis Project (GLODAPv2.2022), consisting of data products of
biogeochemical data collected through the chemical analysis of water samples, including
TA, DIC, and many others [4]. This information now shows that surface ocean waters show
around a 26% increase in concentration of hydrogen ions since 1860, which is equivalent
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to a drop in pH from 8.2 to 8.1 [5]. This change has been mainly attributed to the rising
anthropogenic emissions of CO2 [5].

From a measurement point of view, changes in pH occur on a large spatial scale and can
be influenced by different environmental parameters, especially at the local scale. Due to their
very nature, direct field measurements are inherently limited in spatial (time series, moored
stations) and/or temporal resolution (ship surveys). Earth observation (EO), on the other
hand, offers an avenue for expanding observations and analyzing the temporal and spatial
variability of the global ocean and its properties. While EO has proved to be a difficult tool for
the direct monitoring of seawater pH and its impact on marine organisms, satellite remote
sensing can indirectly measure this by providing us with a range of related physico-chemical
and biological processes occurring at the ocean surface at an unprecedented spatiotemporal
scale. In addition, even though in situ surface measurements offer a geographically limited
representation of the entire oceanic volume and its contents, remote sensing observations of
the global ocean become very important for the study of the carbonate system, due to the
fact that the change in ocean chemistry arises first in the ocean surface. Thus, environmental
satellites have great potential in this field.

At the local level, coastal communities are most vulnerable to a lowering pH, espe-
cially where the ocean chemistry is changing most rapidly due to multiple stressors. These
communities have the potential of being the worst hit, both economically and socially, espe-
cially those who derive benefits from calcifying organisms and other vulnerable species [6].
This explains the need for the rapid monitoring of such coastal waters.

This study asks the following research questions: (1) how can we provide information
on the state of ocean carbonate information (such as pH and other important carbonate
chemistry parameters) at suitable geographical scales that are useful for the management
of marine resources? and (2) how can a more robust monitoring of the ocean carbonate
system be made available; one that is chemically, biologically, and physically linked to a
good number of environmental drivers instead of a much smaller number of parameters,
such as salinity, temperature, and chlorophyll? [7].

In seeking to address these research questions, this study moves away from others
that have modeled ocean carbonate parameters at coarse temporal [8] and spatial scales
(around 500–1500 km; [9]). Instead, it aims to provide ocean carbonate system parameter
information at an unmatched high spatial (4 km) and temporal (such as daily) level via
gridded ocean maps, with the opportunity of assimilating this into daily operational
monitoring and forward the modeling that is used by a wide variety of ocean end users.
This goes perfectly in line with NOAA-SOCAN’s top research priorities, i.e., “to monitor key
ocean parameters across various spatial and temporal scales that will provide information
on mechanistic drivers of acidification and input parameters for predictive model algorithm
development” (known as ‘priority 1′) by developing “operational and qualitative models
that can transition to end users and adapting existing models to understand acidification”
(known as ‘priority 3′) from a “regional perspective as well as in specific systems” [10]. The
end-user sectors of this data may range from artisanal and small-scale or semi-industrial
fisheries and bivalve aquaculture [11] to coastal managers and policy makers whose actions
need to become more adaptive in the short term.

To resolve this challenging aim, this study uses the artificial neural network (ANN)
method to fix those specific, inter-related environmental conditions that can lead to partic-
ular states of the ocean carbonate system. It does so by following the approach that has
been taken by the latest ocean research that uses time-finite, individual-ship-based transect
measurements that cross extended oceanic areas such as the North Atlantic Ocean [12], the
northwest European shelf seas [13], and the North Pacific Ocean [14], among others.

The calculations that have been carried out in this study were performed at a very
high spatiotemporal resolution of a so-far unique list of environmental drivers that, in
combination, are able to describe and model the much-needed detailed spatiotemporal
variation of surface DIC, TA, and pH. This approach can lead to the prediction of a unique
set of high-resolution, daily DIC, TA, and pH regional ocean surface grid maps, with
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potential applications in future studies focused on the local dynamics of the carbonate
systems in both coastal and oceanic areas.

Now, the vast availability of daily EO data and related ancillary data are ideally suited
for the ANN’s model-free estimators and for predictive data mining. In this study, the
ANN allows the processing of different chemical, biological, and physical ocean values
by estimating the most probable field values on the basis of their previous patterns, as
observed out in the field. Depending on the algorithmic architecture, the ANN is able
to perform its estimations through association, clustering, and prediction of the required
output variables. While keeping in mind the practicality and the feasibility of this study, it
is very important to create an ANN architecture that is able to learn, and ultimately model,
the association between the ocean carbonate parameters and the largest possible number of
oceanic physicochemical and biological processes. The potential use of such a tool can be
extremely important for the validation of numerical ocean modeling and the prediction of
changes in ocean carbonate chemistry.

2. Materials and Methods
2.1. Study Area

The study area covers part of the Atlantic Ocean, comprising part of the Iberian Plain,
with the Canary basin on the east side and the North American basin on the western side,
reaching to the Puerto Rico trench.

Time series measurements show that the North and Central Atlantic constitutes the
largest reservoir of anthropogenic CO2 [15–17] and displays a surface ocean pH decline [18].
Moreover, a strong correlation between the pCO2 and the surface water pH was identified
by Bates et al., 2012 [19], with the latter showing a definitive decrease in the North Atlantic
Ocean between 1984 and 2012. Furthermore, in its 2015 and 2016 State of the Climate, NOAA
reported a world record in terms of large sea surface temperature and upper ocean heat
content anomalies in large swaths of the western North Atlantic Ocean [20,21]. This extreme
event can offer an interesting opportunity to continue studying the changes in DIC, with
respect to pH, TA, and sea temperature [22], whilst making use of the novelty of this study.

2.2. Field Data

This study made use of the best surface underway data available over the study area
for the period of 2015–2016. The Ocean Carbon and Acidification Data Portal of the National
Centers for Environmental Information provides only one set of surface underway data (NCEI
Accession 0154382) that contains the three core study variables of DIC, TA, and pH over
the study area covering the period of analysis (https://www.ncei.noaa.gov/data/oceans/
ncei/ocads/metadata/0154382.html (accessed on 20 February 2023)). Additional surface
underway datasets are available; however, these consist of an increasingly limited number of
observations (such as NCEI Accession 0157237, 0157352, 0157312, and 0110259), for which
suitable co-located and co-temporal satellite and model reanalysis data are not available.

2.2.1. In Situ Observations of the Carbonate System

From 7 March 2015 to 6 November 2016, the M/V Equinox (ID: MLCE) sailed across
the North Atlantic Ocean three times. Discrete surface underway measurements of seawater
DIC, TA, and pH were performed on all cruises (Figure 1). The details of the laboratory
methods onboard the M/V Equinox are well documented [23] as NCEI Accession 0154382.
This research was conducted in support of the coastal monitoring and research objectives of
the NOAA Ocean Acidification Program (OAP) and the Climate Program Office. The research
cruise covered an area from −78.9797◦ W to −10.3998◦ E and from 38.4622◦ N to 19.2893◦ S.

In addition to DIC, TA, and pH, M/V Equinox also collected sea surface tempera-
ture and sea surface salinity measurements with a documented uncertainty of ±0.001 ◦C
and ±0.005%, respectively (see https://www.ncei.noaa.gov/data/oceans/ncei/ocads/
metadata/0154382.html (accessed on 20 February 2023)). The range of the values collected
during the cruise mission is shown in Table 1.

https://www.ncei.noaa.gov/data/oceans/ncei/ocads/metadata/0154382.html
https://www.ncei.noaa.gov/data/oceans/ncei/ocads/metadata/0154382.html
https://www.ncei.noaa.gov/data/oceans/ncei/ocads/metadata/0154382.html
https://www.ncei.noaa.gov/data/oceans/ncei/ocads/metadata/0154382.html
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Figure 1. Sampling periods of in situ discrete underway samples of DIC, TA, and pH measured
by M/V Equinox (source: NCEI Accession 0154382) overlaid over bathymetry (source: GEBCO) for
Longitude −80◦ to −10◦ and Latitude +18◦ to +40◦. Inset: Winter 2015: Validation dataset 1; Autumn
2016: Validation dataset 2; Spring 2015: Validation dataset 3; Spring 2016: ANN training dataset. The
observations along the red transect were used to train the ANN for the prediction of DIC, TA, and pH.
The surface underway measurements shown in brown, yellow, and green were used to validate the
ANN algorithm against other independent datasets.

Table 1. Data value range and difference ∆ along the transects M/V Equinox (ID: MLCE NCEI
Accession 0154382) for the entire cruise period.

Parameter Range ∆

SST (◦C) 15.2–27.5 12.3

SSS (PSU) 35.46–36.95 1.49

DIC (µmol.kg−1) 2025–2126 101

TA (µmol.kg−1) 2350–2439 89

pH 7.964–8.142 0.178

2.2.2. Remote Sensing Data and Reanalysis Data

Co-temporal and co-located met-ocean parameters that are considered to be somehow
connected with the ocean carbonate system were derived from independent sources using
earth observation satellite remote sensing (BD 1–7; PD 1–5), model reanalyses (PD 10),
and empirical algorithms (PD 6–8) (Table 2). The GEBCO bathymetry (PD 9) was derived
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from a mix of ship track soundings, with the interpolation between soundings guided by
satellite-derived gravity data.

Table 2. Co-temporal and co-located environmental drivers derived from independent sources that
range from satellite remote sensing and model analyses to empirical algorithms were collected.

Parameter Code Source Resolution Reference

Biological drivers

Water-leaving surface reflectance (Rrs)
at 412, . . . 555 nm) BD 1 MODIS (Aqua, Terra) 0.042◦, daily, global [24,25]

Rrs 443/555 BD 2 MODIS (Aqua, Terra) 0.042◦, daily, global [24,25]

Rrs 531/555 BD 3 MODIS (Aqua, Terra) 0.042◦, daily, global [24,25]

Rrs 443/488 BD 4 MODIS (Aqua, Terra) 0.042◦, daily, global [24,25]

Chlorophyll-a BD 5 MODIS (Aqua, Terra) 0.042◦, daily, global [26]

Particulate Inorganic Carbon (PIC) BD 6 VIIRS 0.042◦, daily, global [27]

Particulate Organic carbon (POC) BD 7 VIIRS 0.042◦, daily, global [28,29]

Physical drivers

Sea surface salinity PD 1 SMOS 0.05◦, daily, global [30]

Sea surface
temperature PD 2 OISST 0.25◦, daily, global [26]

Wind speed PD 3 ASCAT 0.25◦, daily, global [26]

Wind direction PD 4 ASCAT 0.25◦, daily, global [26]

Wind stress PD 5 ASCAT 0.25◦, daily, global [31]

Transfer velocity (W) PD 6 Based on ASCAT 0.25◦, daily, global [32]

Transfer velocity PD 7 Based on ASCAT 0.25◦, daily, global [33]

Transfer velocity PD 8 Based on ASCAT 0.25◦, daily, global [34]

Bathymetry PD 9 GEBCO 0.083◦, global [35]

Mean layer depth PD 10

Global ocean 1/12◦ physics
analysis and forecast updated
daily. Copernicus marine en-

vironment monitoring service.

0.083◦, daily mean,
global analyses,
50 depth levels

[36,37]

2.2.3. Justification for the Selection and Use of Environmental Drivers

Figure 2 shows the linkage between the various environmental drivers used in this
study and how these were used to model the target ocean surface DIC, TA, and pH. The
environmental drivers can be seen to represent the following three proxies of oceanic
processes:

1. Kinetic forcing, by looking at atmospheric stability (proxies, such as transfer velocity,
that affect the partial pressure of CO2 (pCO2), wind speed, wind direction, and wind
stress on the ocean surface);

2. Thermohaline forcing, by looking at proxies such the sea surface temperature and the
sea surface salinity;

3. Biological forcing, by looking at proxies such as chlorophyll-a, surface reflectance and
its ratios, and particulate organic and inorganic carbon and its ratios;

4. Water-side convection and upwelling, by looking at proxies such as mixing layer
depth and bathymetry.
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Figure 2. Linkage between the various groups of environmental drivers and how these were used to
model or predict the three target parameters of surface DIC, TA, and pH. The environmental drivers
can be seen as representing some of the main met-ocean processes influencing these three target
variables (based on [38]).

These four processes were used to closely represent as much as possible the forcing
that leads to the derivation of DIC, TA, and pH using our algorithm. Native resolution
grids of all of the environmental drivers considered for this study, including PD1, were
resampled to a common 0.04◦ × 0.04◦ global raster grid for a suitable retrieval of all co-
located data. Table 3 provides a summarized justification for the inclusion of these drivers
into the predictive algorithm.

Table 3. Justification of the use of the biological and physical drivers of surface DIC, TA, and pH
used for this study.

Environmental Driver Summary Reference

Transfer velocity

The transfer velocity describes the efficiency exchange
of CO2 across the air–sea interface and dissolution in
water on the basis of ∆pCO2 between the water and
the atmosphere.

[32–34,39–45]

Wind speed (U10) and direction (DD)

The wind speed determines the structure and fluxes at
the air–sea interface. It has an important effect on the
magnitude and direction of the CO2 flux across the
air–sea interface, which differs according to the
prevalent wind and turbulence regimes.

[46–53]

Mean layer depth

This is the depth at which the density difference from
the surface reaches 0.02 kg m−3. Within this layer, the
properties of density, temperature, and salinity are
more uniform, due to the mixing. When this layer is
well-defined, a significantly enhanced transfer velocity
within it is observed.

[36,37,54–57]
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Table 3. Cont.

Environmental Driver Summary Reference

Wind stress Wind stress is able to affect the vertical transport of
dissolved gases, such as CO2. [31]

Sea surface salinity

Sea surface salinity has been used as a proxy indicator
for pCO2 using statistical analysis and artificial neural
networks. CO2 solubility is a function of temperature
and salinity.

[31,58–61]

Sea surfacetemperature
Sea surface pCO2 depends on the SST, such that when
the SST increases by 1 ◦C, the surface pCO2 increases
4-fold.

[26,62–68]

Depth

The depth and structure of the sea bottom can
influence the intensity of upwelling. High levels of
CO2 from deep water can be brought to the surface
through upwelling and released into the atmosphere.
This can be enhanced in the case of an existing
deep-water circulation.

[69]

Biological activity
Photosynthesis acts to bind CO2 into organic matter
and can affect DIC concentration. Studies show that
chlorophyll-a correlates well with pCO2.

[26,67,70]

Particulate Organic carbon (POC)

POC is a proxy of coccolithophore production, which
in turn is often used as a measure of net productivity.
The phenomenon of sinking POC is part of the
biological pump, which provides a mechanism for the
sequestration of carbon in the deep ocean.

[25,71]

Particulate Inorganic Carbon (PIC)

PIC is used as a measure of net calcification by
coccolithophores. The PIC:POC ratio is considered to
be an important term for modeling carbon cycling in
the oceans and, therefore, is a good indicator of
changes in seawater CO2.

[72–74]

2.3. Algorithm Development and Validation
2.3.1. Training of the ANN

For this study, a back propagation neuron (BPN) algorithm was trained by supervised
learning by providing it with values of the co-located and co-temporal environmental
drivers (Figure 3) and the corresponding DIC, TA, and pH (Figure 2) that constitute the
final output for this study. Since the BPN algorithm is central to much current work on
learning in NN, and has been independently invented several times (e.g., [75,76]), we used
this algorithm to perform our desired task. The BPN algorithm feeds forward the input
training pattern, which is then followed by the back propagation of the associated error,
and which is finally expressed as a weight adjustment.

In order to supply training power to the BPN algorithm, the in situ Spring 2016 dataset
(i.e., 16–24 April 2016) measurements (Table 1) were used as the values of the output
neurons, while their corresponding (i.e., co-located and co-temporal) physico-chemical
and biological drivers (Table 2), which were obtained independently, were used as the
values of the input neurons. The location of the sampling points spanned across the entire
North Atlantic Ocean, and thus presented the desired wide-ranging variability in both
the physico-chemical and the biological conditions, which in turn led to the value range
of DIC, TA, and pH observed during that period (Table 1). This process was carried out
to optimize the BPN weights, such that the error function became minimal. The choice
of the input (predictors) and output (predictands) dataset was targeted towards having
a BPN algorithm that was able to model the output variables under different physical
environmental conditions within the area of interest.
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During this algorithm training, the net output was compared with the target value and
the resultant error was calculated. It was here that the error factor was distributed back to the
hidden layer, and the weights were updated accordingly. The error factor was calculated in a
similar manner for all of the units, and their weights were updated simultaneously.

The ultimate objective here was to reduce this training error for the BPN algorithm
until the ANN learned on the basis of the training data. The weights were gradually
adjusted by means of a learning rule until they were capable of optimizing the predictive
modeling of DIC, TA, and pH, as shown in Equation (1), as follows:

f (DIC, TA, pH) = (U10, DD, wind stress, transfer velocity, depth, SSS, chlorophyll-a, SST,
Rrs 412, Rrs 443/555, Rrs 531/555, Rrs 443/48, PIC, POC, MLD)

(1)

Multi-source, geo-located EO and model reanalysis datasets (Level 4, SMI format)
covering the period of 16–24 April 2016 were derived (Figure 3) from the co-located and
co-temporal values (corresponding to BD 1–7 and PD 1–10) at the points shown in red
(i.e., Spring 2016: ANN training set) in Figure 1. Choosing the right number of hidden
neurons is usually performed through trial and error [77]. The ANN optimal topology
hinges on the complexity of the relations between inputs and outputs. In this study, two
sets of hidden neurons were tested: n = 5 and n = 10, where the assumption was that the
greater the number of nodes, the smaller the error on the training set. However, at a certain
point, the generalization began to increase, and the first structure (i.e., n = 5) was chosen on
the basis of the smallest value for RMSE that was achieved during the training phase. The
best topology found in this study consisted of an input layer with 17 neurons, 5 neurons in
the hidden layer, and an output layer consisting of 3 neurons whose output gave the scaled
DIC, TA, and pH (Figure 4). The training algorithm adjusted the bias and weighting factors
according to the negative gradients of the error cost function [58] for the final training
pattern.

The ANN training process algorithm for DIC, TA, and pH is shown in Figure 4
as follows:

1. The collection of co-located and co-temporal input (i.e., independent environmental
drivers) and co-located and co-temporal output (i.e., cruise measurements of DIC, TA,
and pH) datasets;

2. The data were normalized and scaled to the range of 0 to 1 to suit the transfer function
in the hidden (sigmoidal, discrete; logistical implementation) and output layer (linear):
Â = (A − Amin)/(Amax − Amin), where Â is the normalized value and Amin and Amax
are the minimum and maximum values of A, respectively;

3. Neural network designing and training;
4. The testing of the ANN topology.

The training of the BPN algorithm started by using a small, random weight. It
propagated each input pattern to the output layer, compared the pattern in the output
layer with the correct one, and adjusted the weights according to the back propagation
learning algorithm. After the presentation of around 10,000 patterns, the weights converged,
i.e., the network picked up the correct pattern, and the error-correction learning stopped.
In so doing, the network systematically reduced and/or reinforced the weights of the
connection architecture and all of the ‘knowledge’ in the BPN was then contained in the
weights. Naturally, the magnitude of this error depended on the choice, relation, quality,
and accuracy of the inputs (predictors).

The predictive power of the BPN algorithm was maximized by means of the follow-
ing steps:

1. A large number of iterations was used (circa 10,000) in order to minimize the process-
ing error of the training set as much as possible. The training was stopped when a
very small and stable training error was achieved (circa 0.0007);

2. The number of learning samples consisted of entire sets of measurements spanning
the northwestern Atlantic, with its inherent physical (including bathymetry, surface
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salinity, winds, wind stress, temperature, and mixed layer depths) and biological
(chlorophyll-a, dissolved organic carbon, and surface-leaving reflectance) parameters,
in order to model the highest possible scenario for appropriate learning under a wide
range of variability. This training procedure can be further improved by including
input and output variables with a greater degree of variability, such as measurements
covering other regional areas and time periods;

3. An optimal number of hidden units (n = 5) was found with the sigmoid activation
function and a liner output unit to derive an optimal ‘expressive’ power of the network.
The present training set presented a ‘smooth’ function and therefore the number of
hidden units needed was kept to a minimum (n = 5). For strongly fluctuating functions,
more hidden units are generally needed, which does not seem to be a requirement for
our study.
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Figure 4. The network architecture of the BPN model (left) showing 5 neurons in the hidden layer
and the respective weights (in red and blue) of each connection. The values in each of the neurons
is a scaled down value (1 decimal place) of the input, hidden, and output neurons, corresponding
to one possible solution between the proxy environmental drivers (predictors) and the values for
DIC, TA, and pH (predictands). Layer 1 (input): 17 neurons (see Table 1 for a list of input neurons).
Layer 2 (hidden): 5 neurons. Layer 3 (output): 3 neurons: DIC, TA, and pH. Steps involved in the
development of the BPN model (right).

2.3.2. Performance of the BPN Algorithm
Entire M/V Equinox cruise transect datasets were reserved and used as independent

datasets to validate the performance of the BPN training method. This is a common practice
that ensures that the model can produce reliable estimates outside the range of the learning
data (generalization capabilities) [78]. Thus, by assigning the trained BPN algorithm with
the values of the fixed set of co-located and co-temporal input neurons as the physico-
chemical and biological drivers, the resulting ANN-output-modeled DIC, TA, and pH were
validated against the assigned datasets (Table 1).
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The precision of the machine learning approach was evaluated, which was based
on the trained BPN model, through a comparison with the M/V Equinox dataset using
the mean bias (MB; Equation (2)) and the root mean square error (RMSE; Equation (3)),
as well as the slope of the linear regression between the ANN-retrieved values and the
corresponding in situ measured values, as follows:

MB = Σn,i = 1(xi − yi)/n (2)

RMSEfo =

∑N
i=1

(
z fi
− zoi

)2

N


1/2

(3)

where the mean bias is how far the model is from the ground truth data and RMSE
determines the error on the test set (or generalization error). The objective of the best BPN
model topology was based on the lowest possible metrics for the entire test data.

2.4. Construction of Gridded DIC, TA, and pH Gridded Data for 30 October 2016

Finally, the ability of the trained BPN algorithm to process and generate a huge number
of DIC, TA, and pH data points was applied to a 1.1 million km2 subset area located in the
mid-North Atlantic Ocean, represented by a total number of 63,360 gridded data points
(each encompassing the full set of 17 environmental drivers when available). In view of
the extensive retrieval and processing requirements, these data points were based on the
validated ANN algorithm and initiated by the physico-chemical and biological drivers that
were retrieved on 30 October 2016.

The geographical extent of this area was west −61.00◦; east −50.04◦; west–east 10.96◦;
south 24.99◦; north 34.96◦; and south–north 9.96◦. This area was chosen on the basis of its
interesting hydrodynamics, as well as on its inter-annual trends in CO2 concentrations. The
large temporal and spatial gradients of pCO2, as well as its variability driven by a diversity
of physical and biological processes, make the analysis of the carbonate chemistry over the
region both interesting and challenging [79]. The study’s region of interest is influenced
by the North Atlantic gyre and has a seasonal surface temperature variation of about 8 to
10 ◦C, occurring alongside a fluctuation in the MLD between the Northern Hemisphere’s
winter and summer seasons. On average, the MLD deepens to 200 m in winter up to about
10 m in summer. Generally, nutrients remain below the euphotic zone for most of the year,
resulting in low primary production. During winter convective mixing, nutrients penetrate
the euphotic zone, causing a short-lived phytoplankton bloom in the spring. All of these
seasonal changes ultimately influence the total amount of CO2 in the seawater.

All of the grid-point predictor variables were inserted in the BPN algorithm and the
values of DIC, TA, and pH were modeled for that day for the entire area, with a native
grid size of 0.04167◦. On 30 October, there was a total of 7897 empty grid cells in this area
that were attributed to cloud cover and, therefore, the lack of optically retrieved remotely
sensed predictors (i.e., chlorophyll-a, Rrs, PIC, and POC).

3. Results and Discussion
3.1. Validation between Remotely Sensed- and Cruise-Derived SST and SSS Data

Table 4 shows a strong correlation between SST and SSS derived from the full cruise-
segmented datasets (see Figure 1) and the remotely sensed PD1 and PD2.

3.2. Performance of the BPN Algorithm

By means of the independent validation datasets, we evaluated the performance
of the algorithm by comparing the BPN-retrieved values of DIC, TA, and pH with the
measurements that were taken by M/V Equinox (NCEI Accession 0154382) elsewhere,
during the different time periods.
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Table 4. Correlation between same variables obtained remotely and by M/V Equinox [ID: MLCE;
7 March 2015 to 6 November 2016] cruise-segmented datasets. Their p-value is <0.00001 and all of
the correlations are significant at p < 0.05.

Sampling
Period

Pearson
Correlation R–Sea Surface

Temperature

Pearson
Correlation R–Sea Surface

Salinity

7–8 March 2015 0.78 0.93

28 April–6 May 2015 0.99 0.69

16–24 April 2016 0.98 0.90

3.2.1. M/V Equinox—7–8 March 2015

Figure 5 shows the distribution and the statistical significance of the data points
within the range that is shown by both in situ and ANN-estimated values, as well as the
existence of outliers. The co-located, ANN-estimated DIC, TA, and pH values were in very
good agreement with the surface underway measurements given that the BPN algorithm
was trained on the data that were collected during 28 April–6 May 2015 along the entire
North Atlantic width. The results show that the mean biases for DIC, TA, and pH are
−2.5 µmol.kg−1, −3.2 µmol.g−1, and 0.0048, respectively. Compared to the range of DIC,
TA, and pH that is shown by the surface underway measurements along all of the transects
(Table 1), the values for the mean bias show low variations and a good ANN algorithm
performance. Importantly, apart from the fact that no outliers were detected, the overall
dispersion of the ANN-estimated values is well within the range of those shown by the
M/V data. Some skewness is shown by the ANN-estimated pH and, to a lesser extent, for
DIC. The similarity between these three sets of data is statistically significant at the 99%
confidence level.

These results point to an effective BPN algorithm that is able to capture the information
provided by the chosen environmental drivers. It is important to note that for oceanic and
coastal regions with a different matrix of environmental drivers (such as for areas with
high chlorophyll-a, where the net productivity is likely to perturb the carbonate system
more, or in areas where there are river inputs), further learning of the BPN algorithm is
therefore recommended.
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Figure 5. Median and variability of ANN-estimated values fall within those shown by discrete
underway measurements (Winter 2015 cruise transect). The means of the two datasets are similar at
the 99% C.L.

3.2.2. M/V Equinox—30 October to 6 November 2016, North Atlantic Ocean (20◦ N to
40◦ N; −80◦ W to −10◦ W)

Similarly, Figure 6 shows the resultant statistical evaluation when the ANN-estimated
values were compared against the corresponding in situ data. As for the previous validation
set, the predictions for the October–November 2016 dataset were in good agreement with
the co-located and co-temporal M/V Equinox data. Overall, the ANN-estimated data show
less dispersion than the in situ values and that the spread of the former is well within that
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shown by the data from M/V Equinox. The few ANN-estimated outliers are well within
the interquartile range of the M/V Equinox data.
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Figure 6. Median and variability of ANN-estimated values fall within those shown by discrete
underway measurements (Autumn 2016 cruise transect). The means of the two datasets are similar at
the 99% C.L.

The performance indicators between the modeled and the validation dataset 1 (i.e., the
7–8 March 2015 in situ dataset) point to a stronger estimation than in the case of the second
validation dataset. This is most likely because dataset 1 is based on the same seasonal
variations of the carbonate chemistry when compared to the second validation sample
that was collected during the Autumn of 2016. The mean bias values generally show a
non-Gaussian distribution and spread, with the exception of TA for both of the validation
datasets, and pH for the Spring 2015 dataset (Figure 7). In the latter case, the residuals are
skewed toward lower modeled values.

The uncertainties that were inherent in the in situ measurements were not included
in the metadata information within NCEI Accession 0154382, and therefore this element
of uncertainty attributed to the surface underway observation could not be evaluated.
Overall, however, the results’ metrics are very comparable to the validation metrics that
were obtained by Fourrier et al., for their neural network estimation of pH and total
alkalinity in the Mediterranean [80]. It is rather complex to identify the main sources of
the observed metric errors in view of (1) the procedure that was used by this study and
(2) the uncertainty embedded in the in situ data that were used for both the BNP algorithm
training and its validation; however, this bias could be expected to decrease if the following
steps are taken:

1. The further training of the BNP algorithm. In so doing, the training process of the
BNP algorithm should allow for further ‘learning’ from the local/regional variability
of both the predictors and predictands;

2. Although the neural networks have the ability to ‘generalize’, the additional retrieval
of in situ measurements of surface DIC, TA, and pH from cruises can be carried out
during other seasons over the same area, and combining this with the training set that
was used for the BNP algorithm might prove useful;

3. Expand the range of predictors (i.e., environmental drivers; see Section 3.3.2 below).
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Figure 7. Histogram reporting the distribution of the mean bias values for DIC, TA, and pH.

3.3. Model Applications: ANN-Derived Ocean Variability of DIC, TA, and pH over the Mid-North
Atlantic Ocean

Based on the previous two validation studies that span different time periods and
geographical areas (where each area manifests its own variability in terms of the magnitude
of the environmental drivers), we were able to apply the validated ANN topology to model
DIC, TA, and pH within the ROI described in Section 2.4 at a resolution of 0.04167◦. The
final product was a set of gridded, time-specific geophysical maps of these predictands
(i.e., surface DIC, TA, and pH). The resolution of these maps took on the native resolution
of the input (i.e., predictor) datasets (i.e., 17 environmental drivers). If needed, these
raster outputs can be subsequently re-gridded to coarser resolutions in order to (1) further
understand the spatiotemporal variability of the carbonate system over specific oceanic
regions, (2) comprehensively map the carbonate system components in support of the
cruise data, and (3) input the predicted values into numerical modeling systems (such as
ocean forecasting models).

Figure 8a–d represents the gridded output of DIC, TA, and pH maps for the area
of interest that were produced by the ANN algorithm. The data gaps represent that no
ocean surface data are available whenever clouds obstruct part of the field of view of the
optical satellite sensors, at which points the ANN algorithm nullifies the predictions. These
high-resolution data representing the carbonate system of the area can be exploited by other
modeling activities, including data assimilation for general circulation models [81] and
improved model reanalyses [82], as well as the identification of daily trends over sensitive
marine areas [83].
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Figure 8. Modeled, gridded (a) DIC, (b) TA, and (c) pH maps for the ROI produced by the ANN
algorithm. The spatial resolution is 0.04◦ × 0.04◦, which corresponds to the native spatial resolution
of some of the predictands. The (d) pCO2 map valid for 30 September until 31 October 2016 has been
inserted for reference [78]).

Figure 8d shows how the co-temporal spatial distribution of pCO2 that has been
derived by the Landschützer et al., dataset [84] and grid-resampled over our exact area
of study is similar to the way that the ANN-estimated pH is distributed. It clearly shows
higher pCO2 levels over areas with a lower pH estimate (Figure 8c). This relationship
corresponds with the results that were obtained by Sutton et al., (2014) and by Bates et al.,
(2012) when they studied the variability between pCO2 and pH over the Pacific Ocean
and the Atlantic Ocean surface, respectively [19,85]. In our study, the subtle gradient in
pCO2 from east to west at around 27◦ N in Figure 8d is well captured by the modeled
spatial variation of the pH high resolution field over the same area (Figure 8c, including
the relatively lower pH values corresponding to the northerly pCO2 ‘tongue’ originating
from around −58◦ W, 26◦ N (Figure 8d).
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3.3.1. Validation of the Modeled Data over the Mid-North Atlantic Ocean

In Situ Cruise Data

The results of the data validation against the in situ datasets available over the same
area using validation dataset 3 are shown in Table 5. The in situ cruise transect (comprising
StationIDs 1120000–1160000) did not include any pH measurements along the way. The
linear regression analysis shows that the correlation between the TA datasets is statistically
significant (p < 0.05; 95% C.L.). Moreover, the regressed observations and ANN-estimated
DIC and TA values fall within the predicted 95% confidence level of the regression line.

Table 5. Corresponding ship-based and ANN-estimated values for DIC, TA, and pH. In situ pH
measurements were not collected by M/V Equinox during part of the transect of 28 April–6 May 2015
(Validation dataset 3). (n/a: not available). The location of the individual StationIDs is as follows:
1120000: (31.1390◦ N, −60.5765◦ W); 1130000: (31.3795◦ N, −59.3347◦ W); 1140000: (31.7085◦ N,
−57.6472◦ W); 1150000: (32.1818◦ N, −55.2020◦ W); 1160000: (32.7458◦ N, −52.2730◦ W); 1200000:
(34.0460◦ N, −45.4433◦ W); and 1330000: (27.5105◦ N, −78.8207◦ W).

Discrete Underway
Measurements ANN Estimation Mean Bias

StationID DIC
(µmol·kg−1)

TA
(µmol·kg−1) pH DIC

(µmol·kg−1)
TA

(µmol·kg−1) pH DIC
(µmol·kg−1)

TA
(µmol·kg−1) pH

1120000 2074 2387 n/a 2064 2385 8.111 10 2 n/a

1130000 2078 2397 n/a 2066 2378 8.105 12 19 n/a

1140000 2076 2404 n/a 2071 2368 8.099 5 36 n/a

1150000 2081 2400 n/a 2066 2375 8.104 15 25 n/a

1160000 2083 2392 n/a 2062 2384 8.112 21 7 n/a

1200000 2078 2382 8.073 2075 2378 8.096 3 4 −0.023

1330000 2095 2390 8.073 2073 2388 8.099 21 1 −0.025

Hindcast Biochemistry Data

In order to extend the validation of our BPN algorithm, additional independent sources
of daily and/or monthly 2016 oceanic surface pH maps were sought; however, this type of
dataset proved to be scarce, whilst 2016 daily/monthly gridded oceanic TA and DIC data
are non-existent. As of now, the Copernicus Marine Service (CMEMS) makes available the
following three datasets: (1) the Global Ocean Biochemistry Hindcast, which consists of
both daily and monthly gridded maps (however, the geographic information about pH is
only available at a monthly temporal resolution at 0.25◦ by 0.25◦ grid resolution); (2) the
Global Ocean—in situ reprocessed carbon observations—SOCATv2021, which provides
point measurements of DIC, TA, and pH, such as NCEI Accession 0154382; and (3) the
Global Ocean Surface Carbon database, which provides pH data on a monthly basis at 1◦

by 1◦ grid resolution.
The correlation between the modeled pH (for 30 November 2016) and that derived

from the Global Ocean Biochemistry Hindcast (16 October–15 November 2016 at 00:00 h
UT) over the area of study is shown in Figure 9. This hindcast database provides monthly
data starting as of the 16th day of each month, and therefore this data represents the average
value for an entire month. In spite of their slight temporal difference, the two datasets are
shown to be strongly correlated together, with an R2 of 0.81 (Figure 9c), indicating a good
statistical similarity, as well as an impressive spatial similarity for pH (Figure 9a,b). From
an atmosphere–ocean dynamical point of view, this correlation points to a slowly changing
pH distribution for the study area over a monthly scale.
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Figure 9. pH distribution map (a) ANN-estimated pH valid for 30 October 2016; (b) ex-

tracted from the Global Ocean Biochemistry Hindcast valid for 16 October–15 November 

2016, and (c) scatterplot between (a) and (b) (R2 = 0.81). 
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3.3.2. Caveats and Recommendations

This study is limited to the estimation of some elements of the carbonate chemistry
for the mid-latitude of the North Atlantic Ocean based on their variability during the late
winter, spring, and autumn of 2015 and 2016. Whether this neural network algorithm is
applicable to other regions of the global oceans and/or for other time periods needs further
investigation. The further development and training of the ANN algorithm is therefore
recommended. This can be carried out by incorporating (1) a larger scalar variability of
the same environmental drivers that are used at the highest spatiotemporal resolution
possible in order to improve the learning of the BPN model, and (2) new environmental
drivers, such as daily air–sea surface heat fluxes, 2 m air temperature, and air pressure
at the highest spatial resolution possible. These may include freshwater influx through
precipitation and conditions of the air–sea interface, such as heat fluxes (latent and sensible)
and related physical values (such as the sub-layer depth [46]). The atmospheric conditions
at sea level are an important parameter that influence the solubility of CO2 in a unit volume
of liquid [86]. Increasing the range of EO-based environmental drivers is now becoming
more technically feasible, thanks to cloud servers and computing. Equally important
would be the derivation of pCO2 as another predictand from our artificial neural network
algorithm [87]. Due to the limited time available in obtaining high resolution atmospheric
and ocean modeled data, the inclusion of these additional environmental drivers was
beyond the scope of the present study. The incorporation of (3) dynamical adjustments
made to numerical ocean models [88] on the basis of chosen environmental drivers may
further enhance the accuracy of the BPN algorithm. For example, it is necessary to take
time-dependent temperature variations into account whenever the wind stress is estimated
since it varies by more than a factor of two between 0◦ and 30 ◦C because of its dependence
on temperature (the Schmidt number).

It is expected that the demand for high resolution DIC, TA, and pH maps, as estimated
by deep learning, will, for many reasons, increase in the future. One important use is their
support in the monitoring of proposed Ocean Acidification Refugia (OAR), such as the
likes of extensive seagrass meadows and dense algal beds [89,90], and algal boundary
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layers [91,92], slow-flow habitats [93], deep-sea mounts [94], and areas that are isolated
from ocean upwelling [95,96]. These are examples of highly localized areas that can vary
dramatically across spatial scales from few millimeters (in the case of algal boundary layers)
to hundreds of meters squared (such as in the case of extensive seagrass beds), with no
clear criteria as to what makes each area a potential OAR other than the observed transient
increases in seawater pH relative to the surrounding waters. Kapsenberg and Cyronak
(2019) point out the lack of clear, agreed-upon functional criteria for OAR in the context of
climate change, which makes it difficult for managers, legislators, and scientists to assess
where to invest management efforts [97]. In this regard, this study becomes promising as a
way to provide a means by which the daily determination of carbonate chemistry can be
made available across multiple spatial scales down to at least a 4 km2 horizontal resolution.
In doing so, new target refugia can be proposed for research and management purposes.

4. Conclusions

Changes in ocean carbonate chemistry are a large spatiotemporal scale phenomenon
that certainly needs to be monitored at the local scale. This study addresses its first research
question by showing a way to produce high resolution, accurate, gridded maps of DIC, TA,
and pH that are ideally suited for more localized ocean carbonate studies and applications.

Ship-based sampling remains subjected to limited ship time and human resources,
costs, and weather conditions that prevent sampling in specific areas or at certain times of
the year. Yet, they remain fundamental for numerical model validation and initialization
tasks. This study shows a way to generate very-high-resolution gridded maps of ocean
surface DIC, TA, and pH using an ANN approach in a robust and efficient way. This was
carried out by addressing the second research question of this study. The future availability
of more EO products hosted by cloud-serving computing environments and deep learning
will soon be a determining factor towards the future automation of the synthesis of similar,
highly detailed, daily carbonate chemistry maps for the global oceans. This technology
will definitely help various ocean-related communities to better mitigate and adapt to the
expected long-term changes. This is why we feel that high resolution EO products, coupled
with deep learning, will provide us with an indirect way to monitor the chemical changes
in seawater at an unprecedented resolution.
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