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Abstract: The electrochlorination (E-Cl) process has attracted much attention as it is a highly efficient
method for treating organic compounds in hypersaline wastewater. In this study, the E-Cl process
was utilized for the removal of antibiotics. The optimal experimental conditions were determined to
be a NaCl concentration of 100 mM, a current density of 1.5 mA/cm2, a pH of 7.0, and a plate spacing
of 1 cm, with a levofloxacin (LEV) degradation efficiency reaching as high as 99% using this setup.
The effects of the presence of other ions and humic acid on the E-Cl process were investigated, and it
was found that the degradation of LEV was not significantly affected by the presence of coexisting
substances. In addition, free chlorine was identified as the primary active species for the degradation
of LEV by means of a quenching experiment. It was demonstrated by 3D EEM and TOC that LEV
was not completely mineralized and that intermediate products may be present. In order to reveal
the degradation pathways of LEV, its degradation products were also analyzed via LC-MS, and some
possible pathways of LEV degradation in this system were proposed. The successful degradation of
LEV demonstrated that the E-Cl process is an efficient and promising technique for the treatment of
organic pollutants in high-salinity wastewater.

Keywords: electrochlorination process; levofloxacin; high-salinity wastewater; active chlorine

1. Introduction

High-salinity wastewater (>1% salt), such as that generated by mining, oil production,
and chemical manufacturing, poses significant challenges for the treatment and application
of wastewater [1]. The volume of high-salinity wastewater produced has dramatically
increased [2]. Pharmaceutical wastewater contains a high concentration of recalcitrant
organic pollutants, a large amount of inorganic salts and different kinds of pharmaceutical
residues. Therefore, the development of the pharmaceutical industry and the production of
high-salinity wastewater are closely related. Jiang et al. [3] used collected pharmaceutical
wastewater at a salinity of 2.5% from a pharmaceutical manufacturing plant in Singapore.
People are becoming more dependent on the use of antibiotics, and the application of
antibiotics in various fields, such as medical care and animal husbandry, among others, has
become increasingly extensive. Fluoroquinolones (FQs), including levofloxacin (LEV), mox-
ifloxacin, norfloxacin and ciprofloxacin [4], are highly concentrated in the environment [5]
and pose a high risk to both ecosystems and public health [6]. Among them, levofloxacin
(LEV) is widely overused as an anti-inflammatory agent and is discharged into the envi-
ronment mainly through the effluent of wastewater treatment plants [7]. Hanna et al. [8]
investigated the presence of antibiotic residues in twelve villages in Shandong Province,
China. Their results showed that levofloxacin was detected at concentrations ranging
between 0.3 and 3.9 ng/L in river water, 1.3 and 12.5 ng/L in wastewater, 0.5 and 21.4 ng/L
in drinking water and 0.5 and 2.5 µg/kg in soil. The long-term existence and accumulation
of LEV in water bodies pose a significant threat to human beings, aquatic organisms and
the ecosystem [9]. Therefore, it is hoped that an efficient, convenient, environmentally
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friendly, and safe wastewater treatment method can be found to reduce the environmental
and health hazards posed by LEV [10].

Many technologies have been developed to treat high-salinity organic wastewater,
such as advanced oxidation processes [11], membrane separation [12], and osmosis tech-
nologies [13]. Among these technologies, advanced oxidation processes (AOPs) represent a
promising method for the removal of emerging organic pollutants from water [14]. These
processes involve the generation of highly reactive hydroxyl radicals (e.g., •OH, Cl•, and
SO4

•−) through the use of various oxidizing agents, such as ozone [15], UV radiation [16],
Fenton reactions [17], and electrochemical oxidation [18]. Wang et al. [19], using meso-
porous MnO@MnOx microspheres with peroxymonosulfate (PMS), successfully achieved
the degradation of LEV. In particular, the MnO@MnOx catalyst achieved 98.1% degradation
and 81.4% mineralization of LEV after being irradiated for 30 min. In addition, the stability
of the catalyst, its reaction kinetics and the degradation mechanism were also systemati-
cally studied. Li et al. [20] developed a novel catalyst (MS-N3H) prepared directly from
electrolytic manganese slag, and MS-N3H could be applied for the efficient degradation
of LEV with a broad pH range from 2.0 to 10. In the MS-N3H/PMS system, after PMS
(0.4 g/L) had been added, the concentration of LEV decreased obviously within 60 min
with a degradation efficiency of 82.6%. It was demonstrated that while non-radical 1O2
was the dominant contributor, the MS-N3H/PMS was stable for the degradation of LEV
in different water matrixes and maintained high recyclability even after four recycling
processes. In addition, unlike membrane filtration technologies, AOPs can decompose
hazardous substances directly rather than simply transferring the pollutants [21]. However,
conventional AOPs may not be efficient at removing organic pollutants from high-salinity
wastewater. Due to the presence of high concentrations of chlorides, sulfates, nitrates,
phosphates, bicarbonates, carbonates, and so on in wastewater, the free radicals are largely
scavenged [22].

The electrochemical oxidation (EO) process is able to degrade organic pollutants
through the electrogenesis of reactive radicals and direct electron transfer [23]. In high-
salinity wastewater, when a voltage is applied, the presence of large amounts of Cl− can lead
to the in situ generation of reactive chlorine species (RCS), which act as reactive oxidants to
degrade organic pollutants [24]. Moreover, the in situ generation of RCS and free chlorine
is less materially restricted and is more cost-effective than the generation of •OH [25].
Kuang et al. [26] proposed a new bipolar-membrane-integrated electrochlorination (BPM-
EC) process for removing biorefractory organic pollutants in landfill leachate. This BPM-
EC process is efficient for the generation of ClO•, which significantly accelerates the
oxidation of ammonium in landfill leachate and its selective transformation into nitrogen.
Using this method, it was found that 100% of the NH4

+-N present was removed within
3 h, demonstrating the superiority of this method in promoting ammonium oxidation.
Huo et al. [27] coupled electroporation with electrochlorination to establish an efficient
method of water disinfection. Electroporation is sub-lethal to microorganisms, resulting in
limited efficiency of microbial inactivation. However, the electrogenerated active chlorine at
the anode causes more lethal damage. This process completely disinfected water (>6.0-log)
under a high water flux of 2.4 × 104 L/(m2·h) and an applied voltage of 2.0 V, removing
bacteria and viruses.

In this study, the electrochlorination (E-Cl) process was applied to treat high-salinity
wastewater containing LEV. In the E-Cl system, a Ti/RuIr electrode was first selected as
the anode, and a Ti/Pt electrode was selected as the cathode. Next, the effects of several
experimental parameters, such as the NaCl concentration, current density, pH, and plate
spacing between the electrodes, were investigated. Additionally, the effects of the presence
of other substances on the system were explored, and the reactive chlorine species in the
system were identified through quenching experiments. Lastly, the possible pathways
and intermediates of LEV degradation were hypothesized. The aim of this study was
to investigate the optimal degradation conditions and the degradation effect of the E-Cl
process on antibiotic LEV and to analyze the degradation mechanism and degradation
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pathway. Another type of wastewater, high-salinity wastewater, was efficiently utilized to
establish an efficient method for the removal of antibiotics from water, providing a new
perspective on the treatment of organic pollutants in high-salinity wastewater.

2. Materials and Methods
2.1. Chemicals

Levofloxacin, sodium chloride, methanol, tert-butyl alcohol, sodium thiosulfate, ni-
trobenzene, sodium sulfate anhydrous, sodium bicarbonate, sodium nitrate, sodium phos-
phate dibasic (Sinopharm Chemical Reagent Co., Ltd., Shanghai, China), humic acid,
triethylamine, and acetonitrile (Titan Scientific Co., Ltd., Shanghai, China). Ti/RuIr and
Ti/Pt electrodes were purchased from Suzhou Schulte Industrial Technology Co., Ltd.,
Suzhou, China.

2.2. Electrochlorination Experiments

Experimental setup: A Ti/RuIr electrode was used as the anode and a Pt electrode was
used as the cathode, both of which were 50 × 100 mm in size and 1 mm in thickness. A total
of 300 mL of synthetic LEV wastewater (10 mg/L) was treated, and the required constant
current density was provided using an IT6302 DC power supply (ITECH, Shanghai, China).

Experimental method: The experiment was carried out for 60 min, and samples were
collected every 10 min. Magnetic stirring was performed at 300 rpm, and the pH of the
solution was adjusted using HCl or NaOH.

2.3. Experimental Instrument

The concentration of LEV was measured using high-performance liquid chromatogra-
phy (HPLC; Shimadzu, Kyoto, Japan). Total organic carbon (TOC) was used to detect the
degree of mineralization of LEV, which was analyzed using a TOC-L analyzer (Shimadzu,
Japan). The excitation–emission matrix (EEM) fluorescence spectra were measured using
a fluorescence spectrophotometer (Hitachi, Japan). Liquid-phase chromatography/mass
spectrometry (LC-MS; Agilent 1290 Infinity, Shanghai, China) was used to detect the
intermediate products during the degradation of levofloxacin.

2.4. Analytical Methods

High-performance liquid chromatography (HPLC) with a symmetrical C18 column
(150 mm × 4.6 mm i.d., 5 µm) was used to determine the concentration of LEV. The pH of
1% triethylamine was adjusted to 3.0 using phosphoric acid. A mixture of 1% triethylamine
and acetonitrile at a volume ratio (86:14, v/v) was used as the mobile phase. The separation
was set up at a column temperature of 40 ◦C. The detection wave lengths for LEV were
set at 294 nm. The flow rate was set to 1.0 mL/min. The excitation–emission matrix
(EEM) fluorescence spectra was used to investigate the degradation process. The LEV
solution displayed fluorescence peaks in the Ex/Em = 200–300/400–550 nm range and the
Ex/Em = 300–350/400–500 nm range. The width of the excitation and emission slits was
fixed at 5 nm and the scan speed was 12,000 nm/min. The experimental conditions for
LC-MS were as follows: a mixture of 0.1% formic acid and acetonitrile at a volume ratio of
2:3 was used as the mobile phase, and the column was a Waters BEH C18 (2.1 × 100 mm
i.d., 1.7 µm). A volume of 5 µL of the reaction sample was extracted. The flow rate was set
to 1.0 mL/min.

3. Results and Discussion
3.1. Effects of Key Operational Parameters on LEV Degradation
3.1.1. Effects of Cl− Concentration

Cl− is a common anion in water bodies, and the magnitude of its concentration has a
direct effect on the generation of RCS in the E-Cl process. As shown in Figure 1, without
the addition of NaCl, the degradation efficiency of LEV was only 62.92% after 60 min.
With the addition of NaCl, the degradation efficiency increased significantly as the NaCl
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concentration increased. In the first 10 min, when the concentration of NaCl increased from
25 mM to 200 mM, the degradation efficiency of LEV increased from 41.96% to 87.53%,
respectively. As the reaction time increased, the degradation efficiency of LEV further
increased; when the reaction time reached 60 min, the degradation efficiency tended to
be around 99% if the NaCl concentration was over 50 mM, which is approximately 36%
higher compared to the degradation efficiency when no NaCl was added. The experimental
results proved that the concentration of chloride is important for pollutant degradation in
the E-Cl process; when the chloride concentration reached 100 mM, nearly complete LEV
degradation was achieved.
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3.1.2. Effects of Current Density

In the E-Cl process, generally, as the current density increases, more reactive chlorine
species will be produced, which can accelerate the reaction and improve the degradation
efficiency [28]. Therefore, it is of great significance to study the effect of the current density
on the degradation of LEV in the E-Cl process.

As depicted in Figure 2, generally, the LEV degradation efficiency increased with
the increase in current density. In the first 10 min, the difference in the LEV degradation
efficiency was obvious with the variation in current density. The LEV degradation efficiency
was only 17.26% when the current density was 0.5 mA/cm2; when the current density
increased from 1 mA/cm2 to 2.5 mA/cm2, the LEV degradation efficiency increased from
34.76% to 92.95%, respectively. When the reaction time reached 20 min, the LEV degradation
efficiency was close to 94% as the current density increased above 1.5 mA/cm2. Therefore,
considering the cost-effectiveness of LEV degradation, a current density of 1.5 mA/cm2

was selected for further research.

3.1.3. Effects of pH

The pH level is also important to consider. It has been reported that pH determines
the form of reactive chlorine species—Cl2 (acidic), HOCl (neutral), or OCl− (alkaline) [29].
Therefore, the effect of pH on the degradation of LEV via the E-Cl process was studied.

As depicted in Figure 3, within 10 min, as the pH value decreased, the efficiency of LEV
degradation increased. However, the efficiency of LEV degradation at pH levels ranging
from three to nine tended to be consistent when the reaction time reached 20 min, and the
degradation efficiency was only obviously suppressed when the pH was eleven. The LEV
degradation efficiency also decreased to 78.33% at a reaction time of 60 min and a pH of
eleven. Although there was an obvious degradation effect, the degradation rate became
slower. Therefore, a pH of seven was chosen as the optimal condition in this experiment.
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Meanwhile, the experiment showed that the E-Cl process, which has a wide range of
applicability in acidic and alkali conditions, had an inhibitory effect on the efficiency and
rate of LEV degradation under a strong alkali pH of 11 or more, demonstrating good
application prospects.
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3.1.4. Effects of Plate Spacing

Plate spacing is also an important conditioning factor in this type of study, and it
exhibits an effect on the degradation of LEV in this system; thus, we investigated it in the
present work.

As shown in Figure 4, as the electrode plate spacing increased, the efficiency of LEV
degradation significantly decreased. The smaller the electrode plate spacing was, the
more efficient the LEV degradation was. The efficiency of LEV degradation within 60 min
increased from 80.14% to 96.64% when the electrode plate spacing decreased from 3 cm
to 1 cm. Considering that the best degradation results were obtained at a plate spacing of
1 cm, this spacing was chosen as the optimal condition.
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3.1.5. Effects of Coexisting Substances

In AOPs, the presence of other substances affects the degradation efficiency. These
coexisting substances, which are mainly inorganic anions (including SO4

2−, PO4
3−, HCO3

−,
and NO3

−) and natural organic matter (NOM), may compete with active species and
decrease their degradation efficiency. In high-salinity wastewater, there may be several
coexisting substances that compete with active chlorine species and decrease the efficiency
of LEV degradation. For this reason, the effects that coexisting substances had on the system
were investigated. In order to reveal the specific effects of coexisting substances on E-Cl,
their effects on the degradation of the pollutant were investigated. Figure 5a shows the
effect of SO4

2− on the E-Cl process. When the reaction time reached 60 min, the efficiency
of the degradation of LEV from the solution reached 97%, regardless of whether SO4

2−

had been added or not, proving that sulfate had little effect on the E-Cl process. The same
phenomenon can be observed in Figure 5b; when the reaction time reached 60 min, the
efficiency of LEV degradation reached 98%, regardless of whether NO3

− had been added
or not, indicating that NO3

− had virtually no effect on the process. As shown in Figure 5c,
in the first 10 min, the presence of HCO3

− had an inhibitory effect on the degradation
efficiency of LEV. The degradation efficiency decreased from 82.6% to 60.47% when the
concentration of HCO3

− increased from 0 mg/L to 400 mg/L. After 60 min, the efficiency
of LEV degradation reached 95% regardless of the HCO3

− concentration. As shown in
Figure 5d, in comparison with the abovementioned coexisting ions, PO4

3− exerted a more
significant effect within 20 min, especially in the first 10 min, during which the degradation
efficiency was hindered and decreased from 82.6% to 50.74% as the PO4

3− concentration
increased from 0 mg/L to 50 mg/L. After 60 min, the degradation efficiency reached 96%.
A likely reason for this is that PO4

3− causes a change in the pH of the solution, thus altering
the equilibrium of HClO and ClO− conversion and inhibiting the degradation efficiency in
the first 20 min.

In conventional AOPs, HA scavenges the free radicals that compete with organic
pollutants and reduces the degradation efficiency. A similar phenomenon exists in the E-Cl
process. As shown in Figure 5e, the degradation efficiency was inhibited during the first
10 min, and as the concentration of HA increased from 0 mg/L to 50 mg/L, the efficiency
of LEV degradation decreased from 82.6% to 47.7%. The reason for this phenomenon
was that HA consumed the RCS and •OH in the system and interacted with the active
chlorine species to inhibit the degradation of LEV. However, as the reaction time reached
20 min, regardless of the HA concentration, the LEV degradation efficiency reached 93%,
and eventually reached 96% after 60 min.
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Considering the above results, the degradation of LEV via the E-Cl process was not
significantly affected by the presence of coexisting substances, indicating that the E-Cl
process is more robust to variations in water properties compared with conventional AOP
processes, making it more applicable in actual practice.

3.2. Identification of Reactive Species

In EO wastewater treatment, anodic oxidation can produce active species, such as
superoxide anions (O2

•−), hydroxyl radicals (•OH), sulfate (SO4
•−), chlorine (Cl•), and

oxychloride (ClO•) [30].
When wastewater contains a high concentration of salt, a large amount of Cl− is

converted into reactive chlorine species. The identification of reactive chlorine species is
essential in order to reveal the mechanism of LVE degradation in the E-Cl process [31].

Firstly, Na2S2O3 has been reported to be capable of quenching free radicals such as
•OH, Cl•, Cl2•−, ClO•, and free chlorine [32]. As shown in Figure 6, the efficiency of LEV
degradation was reduced by 75% in comparison with that when Na2S2O3 was absent,
proving that the degradation of LEV did not occur due to electrochemical oxidation alone,
but required free radicals and free chlorine.
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MeOH is widely applied to quench •OH and Cl2•− [33]. In the first 10 min following
the addition of 50 mM MeOH, the efficiency of LEV degradation decreased by 15.08%.
However, after 60 min of the reaction, the efficiency of LEV degradation reached 99%. This
result demonstrated that the scavenging of •OH and Cl2•− delayed LEV degradation but
did not affect it in the long run. TBA is generally used to quench •OH, ClO•, and Cl• [34].
In the first 10 min after the addition of TBA, the LEV degradation efficiency reduced by
11.46%, but when the reaction time reached 60 min, the efficiency of LEV degradation
reached 97%. Moreover, NB has been shown to quench •OH [35]. Although the addition
of NB reduced LEV’s degradation efficiency by 7.95% in the first 10 min after its addition,
the efficiency of LEV degradation ultimately reached 97%, indicating that •OH was not the
prominent active substance in the system. The above results suggest that free chlorine may
be the RCS contributing to the degradation of LEV in the E-Cl process.

3.3. Possible Pathways of LEV Degradation

Three-dimensional EEM can be used to characterize and analyze organic compound
species and observe their changes [36]. To better understand the degradation of LEV,
3D EEM fluorescence spectra of the LEV samples were observed before and after the
reaction. As shown in Figure 7a, the initial LEV solution displayed fluorescence peaks
at Ex/Em = 200–300/400–550 nm and Ex/Em = 300–350/400–500 nm [37]. As shown in
Figure 7b, after 60 min, no fluorescence signals could be detected, indicating that the
functional group of LEV was destroyed [38] and that LEV had been degraded via the
E-Cl process.

However, the degradation efficiencies of LEV when studied using TOC and HPLC
are quite different. As shown in Figure 8, the degradation efficiency of LEV determined
using HPLC was 99%, but when detected using TOC, the degradation efficiency of LEV
dramatically dropped to 57.17%, Similarly, Wang et al. [32] used the E-Cl process to treat
atrazine (ATZ) in pesticide wastewater. Although the degradation efficiency of ATZ reached
98.66% after 60 min, the chemical oxygen demand (COD) removal efficiency was 86.43%
and an obvious gap was observed between the results obtained from different analysis
methods. It can be deduced that the mineralization of organic pollutant by E-Cl was
incomplete and the products of LEV’s degradation must be urgently studied.

To reveal the degradation pathway of LEV, LC-MS was also applied to analyze
the degradation products. Some possible pathways of LEV degradation in this system
are proposed.
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As shown in Figure 9, in pathway I, the piperazine in LEV is attacked by •OH, open-
ing the piperazine ring to form P1 (m/z = 336); then, P1 (m/z = 336) is converted into P2
(m/z = 279) through deamination and dealkylation reactions. P3 (m/z = 239) is generated
from P2 (m/z = 279) by opening the cycloxazine ring and via dealkylation reactions [39,40].
In pathway II, LEV is converted into the intermediate product P4 (m/z = 318) via a decar-
boxylation reaction, and P4 (m/z = 318) is oxidized into P5 (m/z = 338); P5 (m/z = 338)
is converted into P6 (m/z = 262) through defluorination, decarboxylation, and demethy-
lation reactions [41,42]. In pathway III, LEV is converted into P8 (m/z = 348) via the
demethylation of the piperazine ring, and P8 (m/z = 348) is degraded into P9 (m/z = 364)
through dehydroxylation reactions. The byproducts generated in AOP-based water treat-
ment are attracting increasing attention. Wang et al. [32] developed the E-Cl process and
treated high-salinity wastewater containing atrazine (ATZ). To compare the variations
in the acute toxicity of wastewater before and after treatment, a method was employed
using a bio-toxicity assay with bioluminescent bacteria. The results showed that the ATZ
showed a 37.53% inhibitory effect on bioluminescence at high concentrations, and the
bioluminescence was restored to 77.49% with the decomposition of ATZ by the E-Cl pro-
cess. He et al. [43] prepared a ZnnCoOx anode for electrocatalytic generation of RCS to
remove 4-chlorophenol (4-cp) from wastewater containing Cl−. The potential ecotoxicity
of 4-cp and its degradation intermediates was assessed with the ECOSER procedure. The
results showed that the acute and chronic toxicity of the treated wastewater containing
4-cp decreased in all four pathways of degradation after treatment. When AOPs were
applied to LEV degradation, the byproducts of P3, P6, and P9 could often be detected, and
these byproducts were able to further convert into small molecules [44–46]. Although LEV
degradation by the E-Cl process generates a number of intermediate products, they are
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expected to be further degraded with a longer reaction time; therefore, the environmental
risks of the byproducts can be limited.
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4. Conclusions

The E-Cl process was successfully performed for the treatment of LEV, and efficient
degradation was achieved. The optimal conditions for E-Cl were determined by selecting
a NaCl concentration of 100 mM, a current density of 1.5 mA/cm2, a pH of 7, and a
polar plate spacing of 1 cm. The degradation efficiency of LEV via the E-Cl process is not
significantly limited by the presence of other substances in the water matrix, demonstrating
that the E-Cl process possesses a potentially higher applicability than conventional AOP
processes. When wastewater contains high concentrations of Cl−, this Cl− can be converted
into reactive chlorine species; among these, free chlorine was identified as the dominant
reactive species. Despite a nearly complete degradation of LEV being achieved using the
E-Cl process, a number of intermediate products were detected using LC-MS. Therefore,
the mineralization efficiency of LEV should be further increased. In conclusion, the E-Cl
process provides a new solution to treating organic pollutants in high-salinity wastewater,
which is especially advantageous over traditional AOP processes due to its resistance to
the presence of coexisting substances in the water matrix.
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