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Abstract: Micro- and nano-plastics are pervasive pollutants in global ecosystems, yet their interactions
with aquatic wildlife and abiotic factors are poorly understood. These particles are recognized to
cause subtle detrimental effects, underscoring the necessity for sensitive endpoints in ecotoxicological
exposure studies. We investigated the effects of particle uptake, size, and temperature on Hyalella
azteca. Organisms were exposed to blue fluorescent polystyrene beads (500 nm and 1000 nm in
diameter) at 0.43 mg/L for 96 h at temperatures mirroring climate predictions (21 ◦C, 24 ◦C, 27 ◦C).
Besides survival and growth, particle uptake, visualized via confocal microscopy, and swimming
behavior were analyzed. Mortality rates increased at 27 ◦C, and particle presence and temperature
affected organism growth. Particle treatments influenced various behaviors (thigmotaxis, cruising,
movement, acceleration, meander, zone alternation, and turn angle), with hypoactivity observed
with 1000 nm particles and hypo- as well as hyper-activity responses with 500 nm particles. Particle
uptake quantities were variable and increased with temperature in 500 nm treatments, but no
migration beyond the gut was observed. Particle size correlated with uptake, and relationships
with behavior were evident. Elevated temperatures exacerbated particle effects, highlighting the
urgency of addressing plastic pollution in light of climate change for aquatic organism welfare and
ecosystem health.

Keywords: locomotion; fluorescent microplastics; uptake; confocal microscopy

1. Introduction

The first actual synthetic, mass-produced plastic called “Bakelite” was developed by
Leo Baekeland in 1907 [1]. According to the OECD outlook for 2060, plastic leakage to the
environment is projected to double to 44 million tonnes per year, while the build-up of
plastics in aquatic environments will more than triple, exacerbating environmental and
health impacts [2]. This waste can undergo further degradation into smaller particles
(microplastics: MPs < 5 mm; nanoplastics: NPs < 1 µm; both categories: MNPs). Plastic
particles of various sizes are considered a global pollution problem, though their environ-
mental effects are often unknown. Primary MPs (e.g., those designed for commercial use)
and secondary MPs (those resulting from degradation) are present ubiquitously across
various environmental compartments, encompassing aquatic and terrestrial ecosystems
and atmospheric and geographically isolated areas [3,4]. NPs represent a category of debris
that remains relatively understudied and poorly characterized. However, paradoxically,
they may pose the highest risk compared to other types of aquatic litter. This heightened
risk stems not only from their capacity to penetrate biological barriers, but also from their
extensive surface area, which could significantly influence the mechanisms of bioaccumu-
lation and bioamplification of other pollutants [5]. Plants, for example, can function as
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sinks for anthropogenic litter [6], and aggregation of plastic particles increases with rising
temperatures and particle concentrations, deeming them either more or less accessible to
certain taxa [7].

One of the earliest publications identifying plastic pollution as a “worldwide oceanic
problem” was published in 1984 [8], depicting the detection of plastic materials during the
1970s in several aquatic, benthic, and planktonic samples, as well as describing impacts
on seabirds and seals. Seasons and weather shifts influence litter accumulation [9], while
plastic breakdown is driven by environmental conditions such as temperature, pH levels,
ultraviolet ray exposure, and the effects of friction with rocks and sediment, wind action,
and animal interactions; on being ingested by animals, enzymatic activity can result in
further fragmentation into smaller particles [10–12]. Besides size, plastic particles can
be categorized by shape, such as fiber, rod, ellipse, oval, sphere, quadrilateral, triangle,
free-form, and unidentifiable [13]. In aquatic environments, the concentration, size, and
shape of MNPs are the main properties influencing the uptake and consequential effects on
organisms [14–16].

Synthetic MPs can exhibit pronounced adverse impacts relative to natural particles,
with varying sensitivities observed across taxonomic groups [17]. Exceptions may oc-
cur, as evidenced by natural fiber types like hemp, which have been demonstrated to
exert greater oxidative stress on mysid shrimp Americamysis bahia compared to synthetic
fibers [18]. Among those effects, mortality is not a commonly observed effect of MP in-
gestion, presuming low risk at environmentally realistic concentrations [19]. However,
sublethal effects have been described to include altered swimming behavior (Daphnia
magna, [20]), development (Xenopus laevis, [21]), innate immune function (Pimephales prome-
las, [22]), liver inflammation (Danio rerio, [23]), effects on reproduction (D. magna, [24]), and
growth (Chironomus tepperi, [25]). Thus, there can be indirect and potentially high risks
at the population level. The factors mentioned above can further degrade MPs into NPs.
NPs carry elevated ecological implications due to their augmented surface-area-to-volume
ratio, leading to amplified vector effects for pollutants and bacteria, with smaller parti-
cles capable of passive membrane permeation and larger ones requiring active transport
mechanisms [26,27]. MNPs can accumulate in the digestive tract, with particle size and
shape influencing retention time and distribution within tissues [28,29]. Prior research
indicates that larger particles, even those in the low-micron size range, can translocate
the gastrointestinal tract, fillet, and livers of wild fish [30], bioconcentrate, and remain in
tissues such as the gastrointestinal tracts, even after an extended period of depuration [31].

Fish and benthic macroinvertebrates exhibit complex ecological interactions within
aquatic ecosystems, influencing nutrient cycling, trophic dynamics, and habitat struc-
ture [32]. Benthic macroinvertebrates are a group of organisms highly susceptible to the
presence of MNPs in aquatic ecosystems. They are particularly vulnerable because they
can readily ingest plastic particles in the sediment, an environmental compartment with
high MP levels [33]. Amphipods and isopods are especially effective models for evaluating
the potential toxicity of contaminants and pollutants because they serve as intermediaries
between primary producers and higher-level consumers [34,35]. Consequently, their role
as prey for fish introduces the potential for scale and magnification effects in the transfer
of MP through the food web. Hyalella azteca (HA; Saussure, 1858) is widely distributed in
aquatic ecosystems and can be easily cultured in laboratories [36,37]. They are epibenthic
detritivores and a model test species recognized by the United States Environment Pro-
tection Agency (USEPA). HA are approximately 1 mm long and 0.04 mg in weight upon
hatching, eventually attaining a maximum length of around 7 mm and 8 mg at maturity [38].
Given its ecological niche within the food web, HA is inherently predisposed to actively
uptake and consume MNPs when present in its natural habitat. Studies using HA have
demonstrated a gut retention of 24 to 28 h (tire wear particles, [39]).

Diverse plastics originating from industrial activities are introduced into natural
ecosystems, notably aquatic environments. Polystyrene (PS), a thermoplastic polymer,
was the first synthetic polymer shown to occur in coastal waters in 1970 [40], and is
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now commonly found in aquatic environments, alongside polyethylene, polypropylene,
and polyvinylchloride [41,42]. PS is a high molecular weight synthetic aromatic polymer
derived from the monomer known as styrene, and commonly used for producing foam,
cups, and containers [43]. Studies using HA have confirmed that PS fragmentation during
ingestion and egestion is significant, while its ingestion also led to changes in enzymatic
oxidative stress biomarkers [44,45].

Rising temperatures associated with global warming have significant implications
for aquatic organisms and ecosystems. Temperature fluctuations can affect crustaceans’
lipid, protein, and overall energy status [46,47]. Temperature and MNP effects can interact,
thereby modulating their toxicity through diverse mechanisms. Studies have demonstrated
that exposure to PS at varying temperatures can produce compounded adverse effects on
Artemia franciscana, with higher temperatures resulting in reduced growth and increased
mortalities [48]. Furthermore, an elevated temperature was shown to intensify the bio-
concentration, immobilization, and oxidative stress effects of polyethylene MPs on D.
magna [49].

In addition to traditional endpoints such as survival and growth, which are exten-
sively utilized in ecotoxicological studies, recent publications have highlighted the use
of photomotor assays measuring parameters involved in behavior (e.g., [50,51]). The be-
havioral assessment holds significant promise as a powerful tool in the field of aquatic
toxicology and water quality monitoring [52,53]. Behavior, shaped by biotic and abiotic
factors, enables organisms to respond to environmental changes, including contaminant
exposure [54]. Stressors, whether acute or chronic, can adversely affect various behavioral
aspects, such as feeding, which can ultimately influence survival and population dynam-
ics [55,56]. Jacob et al. [57] reviewed differences in behavioral, sensory, and neuromuscular
function indicators between control and fish exposed to virgin (not artificially aged or
loaded) MNPs and revealed that the majority of endpoints demonstrated significant effects;
boldness, exploration, activity, and locomotion were especially affected.

The objective of this study was to determine whether the experimental parameters of
particle size (500 nm vs. 1000 nm) and water temperature (21 ◦C, 24 ◦C, 27 ◦C) influence
survival, growth, and swimming behavior (video-based tracking), and to which extent
MNPs uptake (fluorescence) might contribute to adverse effects. We primarily aimed to
evaluate whether the quantity of PS uptake would affect locomotion, as PS exposure was
previously shown to influence the feeding and swimming behavior of mysid shrimp Neom-
ysis japonica [58]. The selection of the two bead sizes was based on their representation of
both micro- and nano-categories, with limited existing literature on studies involving these
particular sizes. Because temperature can change the uptake, elimination, and resulting
effects on an organism, there is a need to study particle effects at different temperatures,
especially in the context of global warming. We use HA, a species recognized for its sensi-
tivity to environmental changes, and a model organism for assessing the risks associated
with pollution, thereby indicating ecosystem health.

We hypothesized that (i): elevated temperatures influencing metabolic rates are pre-
dicted to increase particle uptake, leading to growth reduction and the manifestation of
stress-related swimming behaviors; and (ii): due to the altered translocation ability of
smaller particles, they are anticipated to demonstrate prolonged retention times, thereby
exacerbating their detrimental effects.

Echoing proposals that knowledge derived from engineered nanoparticle toxicity
research can inform risk assessments of PS particles [59], PS studies could prove invaluable
in identifying knowledge gaps and research needs by providing a baseline for future
toxicity investigations [60].

2. Materials and Methods

Animal husbandry and toxicity assessments were conducted following USEPA guide-
lines [61,62], with some adaptations.
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2.1. Animal Source and Acclimation

Hyalella azteca were obtained from Aquatic BioSystems Inc. (Fort Collins, CO, USA)
at age 4–5 days and placed, on arrival, in a 2 L beaker containing 1 L of the water they
were shipped in, which was mixed with 1 L culture water (with 0.22 micron filtered well
water diluted by 50% using MilliQ). They were then maintained at 24 ◦C in temperature-
controlled chambers (Thermo Scientific Precision Model 818 and VWR, Thermo Fisher
Scientific, Marietta, OH, USA) under a 16:8 h light/dark cycle. Following an initial 24 h
habituation, individuals were separated into three 1 L beakers (120 individuals in each)
for a further 24 h to increase the culture water content. Then, they were transferred to
500 mL of 100% culture water and brought to treatment temperatures (21, 24, and 27 ◦C) at
a rate of 1 ◦C/day over a period of three days. Animals were maintained in water (culture
water) so as to adjust water hardness to 180 mg/L CaCO3. The resulting physicochemical
parameters measured using a multi-meter (MultiLab 4010-3W, YSI Inc., Yellow Springs,
OH, USA) were: pH 8.83, conductivity 946 µs/cm, dissolved oxygen 98.0% DO, salinity
0.4%, Total Dissolved Solids TDS 944 mg/L, Oxidation-Reduction Potential U −105.6 mV.
Beakers were aerated using glass pipettes and covered with parafilm to avoid atmospheric
contamination. Any dead organisms were removed daily. During acclimation, animals
were fed daily with 3 mL/L YCT (Aquatic BioSystems Inc., Yeast, Cereal Leaves, Tetramin,
produced in accordance with EPA recommendations [63], 1850 mg/L average total solids).

2.2. Particle Source, Particle–Food Preparation, and Concentration Determination

Polystyrene beads with a density of about 1.03 g/cm3 were purchased from Applied
Microspheres GmbH (formerly BS-Partikel GmbH, Mainz, Germany) at a concentration of
5% m/m (see spectral absorption and emission graph of blue fluorescence in Figure S1).
The surface composition of these unmodified PS beads consists of unaltered polystyrene
without surface functionalization, potentially featuring negatively charged sulfonic acid
end groups. These particle solutions were also used by Götz et al. [64,65]. Particle mean
diameters were 519 nm (NPs) and 1294 nm (MPs) with blue fluorescence. Particle stock
solutions consisted of 50 mL MiliQ water, 50 mL YCT food, and 100 µL of PS particles;
gentle shaking for 10 min and vortexing were used to homogenize the solution before
adding the calculated volume to each beaker of 100 mL culture water (Table S1) and either
500 nm or 1000 nm PS beads at a single concentration of 0.43 mg/L. In order to prioritize
the assessment of uptake quantities, our experimental design excluded leachate devoid
of particles. This decision was additionally informed by the lack of observed fluorescence
translocation from the gut to surrounding tissue during our range-finding study.

At present, there is a lack of adequate quantitative analytical methods to evaluate
NP concentrations in environmental settings. However, it is theorized that secondary
NP concentrations are likely to escalate due to their release via fragmentation and degra-
dation processes of larger particles in marine and freshwater environments. Based on
mass conservation principles, estimates suggest that NP concentrations could reach levels
1014 times higher than those currently measured for MPs [66]. Relative to total plastic
weight instead of PS particle counts, worst-case scenarios showed higher concentrations
in the environment: in playa wetlands, USA, 5.51 mg/L [67]; Southwest Europe and East
Asia, 0.32 mg/L to 1.89 mg/L [68–70]; and Taihu Lake, China, 30–50 mg/L [71,72]. Studies
indicate that the transport and distribution of plastic particles are governed by solution
chemistry, particle size, and mineral surfaces [73]. Consequently, variations in particle
sizes potentially influence the formation of PS conglomerates, resulting in localized yet
elevated PS concentrations. As suggested by Lee et al. [7], NP aggregation should increase,
correlating with both particle concentration and temperature.

2.3. Exposure and Water Physicochemical Parameters

After acclimation, ten individuals were transferred into each 100 mL exposure beaker
(3 beakers/treatment/temperature, N = 30 individuals/temperature/treatment). All surviv-
ing animals were used for growth measurements and uptake quantification. For locomotor
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assays, a total of 9 × 24-well plates were run sequentially on a single day to evaluate
behavioral responses of 6 individuals/beaker, N = 18 individuals/temperature/treatment.
During exposure, the three environmental chambers were used to regulate water tempera-
ture. The means ± SEM for the exposure duration were 20.7 ± 0.1 ◦C, 23.9 ± 0.1 ◦C, and
27.1 ± 0.1 ◦C, respectively, measured using HOBO loggers (Onset, MA, USA) placed in
additional beakers in each chamber (Figure S2).

Conductivity, dissolved oxygen, salinity, and pH were tested daily (Table S2); ammonia
(RedSea, Houston, TX, USA) reached a maximum of 0.8 µM, nitrite 0 ppm, and nitrate
40 ppm (API, Philadelphia, PA, USA) by the end of the exposure. Air samples did not show
relevant MP contamination across the exposure time in the chambers. HA exposed to a
single particle dose of 0.43 mg/L (500 nm: 64,000,000 p/mL; 1000 nm: 8,000,000 p/mL
of the micro size 1000 nm) at the beginning of the 96 h exposure, i.e., there was no water
renewal during the exposure, and continuous aeration contributed to oxygen supply and
particle suspension homogeneity. The exposure concentration was determined with a prior
range-finding study starting with the environmental relevance with the tested endpoints
survival, growth, swimming behavior, and uptake at medium temperature (Table S1). Our
objective was to identify a concentration capable of eliciting behavioral responses and
observable particle uptake. Although the chosen concentration does not reflect ecological
conditions directly, it allowed for a detailed examination of the mechanistic relationships
among endpoints and revealed differences from controls compared to lower concentrations.
Additionally, food particles were introduced in the primary investigation to enhance uptake
further. Reported PS concentrations are nominal due to particle–food mixture interference
with fluorometric and light microscopy evaluation.

During exposure, mortality, along with water physicochemical parameters, was
recorded daily. At the conclusion of the exposure, specific groups of organisms were
transferred using a transfer pipette into individual wells of a 24-well plate, ensuring careful
handling, with three biological replicates (i.e., organisms were taken from three replicate
beakers of each treatment) and six replicates (animals) from each beaker to (A) run behavior
trials or (B) run behavior trials with subsequent individual confocal imaging for fluores-
cent particle uptake quantification via fluorescent pixel counting (three biological, three
technical replicates). After the behavior trials, animals were euthanized on ice and stored
in 3% paraformaldehyde for subsequent analysis.

2.4. Growth: Total Length, Capsule Length, and Dry Weight

Total length, defined as the length along the dorsal edge from the tip of the rostrum to
the telson tip, and capsule length, defined as the distance from the tip of the rostrum to the
posterior margin of the cephalon [74], were measured via image analysis using Fiji version
ImageJ 1.53t [75,76]. Images were taken on a ruler using a Leica S8APO stereomicroscope
(Leica Microsystems, Chicago, IL, USA) and Canon EOS Rebel T6 SLR camera (Canon,
Tokyo, Japan).

For dry-weight measurements, empty and opened 1.5 mL microcentrifuge tubes
were dried at 60 ◦C for a minimum of 2 h and were subsequently allowed to cool for at
least 30 min within a desiccator at room temperature. After measuring the tube weights
(Sartorius Quintix, Goettingen, Germany, with a readability of 0.01 mg), all organisms that
were not utilized for individual confocal microscopy (later called Group (B)) were pooled
from each respective beaker and relocated into the tubes to dry them for 24 h at 60 ◦C with
the caps removed. After cooling down within the desiccator, the total weight was measured
and divided by the number of individuals.

2.5. Locomotor Behavior Assay

Behavioral studies were conducted using a DanioVision Observation chamber (Wa-
geningen, The Netherlands) and integrated steady flow of water set to treatment temper-
ature via chiller (TECO-US, Terrell, TX, USA). A 35 min LD (Light:Dark) cycle test was
performed with alternating light and dark cycles of 5 min, following protocols described
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in Siddiqui et al. [77,78]. After the exposure, HA was pipetted into randomized wells of
24-well plates (Corning Costar, Corning, NY, USA, 24-well Clear, Product Number 3524).
Organisms were habituated for 30 min in the climate-controlled exposure chambers of their
treatment temperature before being transferred into the Noldus system for evaluation. The
LD cycle protocol consisted of an acclimation time of 5 min, following three alternating
light and dark cycles of 5 min durations. During behavioral trials, a recirculating water
system was used to keep HA at the treatment temperature. It was observed that some
individuals remained in the center close to the water surface without moving. These
individuals were still analyzed, as no mortality was detected, and were active following
mechanical stimulus. EthoVision XT 14 software (version 14, Noldus, Wageningen, The
Netherlands) was used for video tracking. For correlation analysis, standard endpoints
TDM (total distance moved) and thigmotaxis (“wall hugging”, avoidance indicator), which
describes the ratio of staying in the outer (“hiding”) to inner (“boldness”) behavior as
described before by Segarra et al. [51], and velocity were used. The further behavioral
endpoints used were defined before [50,77,78].

2.6. Internalization

After 96 h of exposure, animals were euthanized on ice and stored in paraformalde-
hyde until whole bodies were transferred on a microscope slide with a cover slip. Flu-
orescent visualization was used to quantify the uptake of the PS beads. This approach
is commonly used to make fluorescent particles visible and screen their location in a
non-invasive way [79–85]. For this study, we used a Leica TCS SP8 STED 3X microscope
(Wetzlar, Germany) and the LAS X software (Advanced Imaging Facility UC Davis, version
3.5.7.23225). Internalization of particles was measured using Image J 1.53t. However,
particle uptake was evaluated through two different approaches.

2.6.1. Group (A): Imaging in 2D

To obtain preliminary insights into the overall PS uptake patterns and variability
among individuals, specimens from each beaker were recorded. These recordings were
conducted using the Leica microscope set to specific parameters (excitation wavelength:
405 nm, emission wavelength: 500 nm), capturing layered merged tiff images. This ap-
proach allowed for a comprehensive visualization of PS uptake across the sampled popula-
tion (500 nm: 21 ◦C: N = 18, 24 ◦C: N = 11, 27 ◦C: N = 13; 1000 nm: 21 ◦C: N = 15, 24 ◦C:
N = 10, 27 ◦C: N = 14). Using the ROI (region of interest) Manager, areas of interest were
drawn around the gut region of each individual to measure positive pixels after setting up
a color threshold (threshold color settings: Red 0 and 255, Green 0 and 255, Blue 0 and 254;
method: Default, Threshold color: Black, Color space: RGB, with Dark background) and
transforming the pictures to binary images.

2.6.2. Group (B): Imaging in 3D

A subset of samples, distinct from those utilized in the previous analysis (A), under-
went in-depth analysis to deepen the understanding of uptake dynamics. We aimed to
uncover potential associations between the quantity of particles internalized by a single or-
ganism and its respective locomotor activities. Therefore, high-resolution images recorded
with the Leica microscope were used to assess the quantity of ingested particles in the gut
region following locomotion assays. This allows us to assign effect results to one individual
and analyze their correlation. With this subsample, which had already gone through the
behavioral assays, three individuals from each beaker (N = 9) were investigated via confocal
microscopy. An excitation wavelength of 405 nm and an emission wavelength of 500 nm
were used to make blue, fluorescent PS beads visible, producing 8-layered z-stack images
through their body. In ImageJ, pixels above a threshold were counted with the following
settings/procedure: (1) image-zstack-maxprojection, (2) threshold-otsu-red and 81 to 255,
(3) transformation to binary, otsu dark, tick black background and make new stack, (4) draw
ROI around the gut region, (5) ctr + h to create a histogram, and (6) note 255 value from the
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list. These images were also used to measure individuals’ total and capsule length for the
correlation analysis.

2.7. Statistics

To assess whether there were any significant differences across various treatments, we
employed two-way ANOVA analyses along with subsequent Tukey multiple comparison
tests. The normality of the endpoint data was examined using Shapiro–Wilk tests, while
Levene’s tests were utilized to assess the equality of variances. In cases where these assump-
tions were not met, particularly in instances involving mortality, behavior, and fluorescence
data, non-parametric KW (Kruskal–Wallis tests) paired with Dunn’s multiple comparison
tests were employed. To evaluate survival outcomes comprehensively, we utilized Kaplan–
Meier survival curves in conjunction with the Logrank (Mantel–Cox) test, which are widely
recognized statistical tools for analyzing time-to-event data, particularly for survival times.
The Kaplan–Meier method enables the estimation of survival probabilities over time while
accounting for censored observations, providing a clear visualization of survival trends
among experimental groups. Additionally, the Logrank test used assesses the equality of
survival distributions between groups, allowing for the detection of significant differences
in survival rates [86]. These statistical approaches were selected due to their robustness in
handling survival data and their ability to yield meaningful comparisons and trend assess-
ments within our experimental context. To investigate associations between nonparametric
data endpoints, we employed a Spearman correlation analysis. Unless otherwise indicated,
data are presented as mean ± standard error (SEM); differences were called significant at
p < 0.05; analyses and graphs were run with GraphPad Prism (Version 10.1.2, © 1992–2021
Graphpad Software, LLC) and Jamovi (Version 2.3.16.0).

3. Results
3.1. Survival and Growth

Survival of control organisms not exposed to particles at 96 h and at 21, 24, and 27 ◦C
was above 95%. While temperature significantly influenced overall survival (KW, χ2 = 6.68,
p = 0.035), it was not affected by particle treatment (KW, χ2 = 5.06, p = 0.08; Figure 1a,b).
However, at 27 ◦C, both the 500 nm treatment (p = 0.033) and the 1000 nm treatment
(p = 0.043) exhibited significantly lower survival rates than their respective controls, indi-
cating some combination effect of temperature and particle. Additionally, at 500 nm, there
was a significantly lower survival at 27 ◦C relative to 500 nm at 21 ◦C (p = 0.033). Simi-
larly, the 1000 nm treatments at 24 ◦C showed significantly higher survival than at 27 ◦C
(p = 0.0430). The combination of the highest temperature of 27 ◦C plus the exposure to PS
particles was consequently shown to have adverse effects on survival. This adverse effect
was supported by Kaplan–Meier survival curves, which were shown to be significantly
different (Logrank Mantel–Cox test: χ2 = 19.44; p = 0.0127) with a significant trend (Logrank
test χ2 = 10.11; p = 0.0015). Especially the survival curve of 500 nm treatments at 27 ◦C
differed in comparison to controls (χ2 = 5.008; p = 0.0252).

Total length was significantly influenced by temperature (ANOVA, F = 6.24, p = 0.003)
and particle treatment (ANOVA, F = F = 6.93, p = 0.001) (Figure 2a). Specifically, at 21 ◦C
(p = 0.008), 24 ◦C (p = 0.008), and 27 ◦C (p = 0.008), the animals exposed to 1000 nm
particles were shorter in total length compared to the respective controls. In contrast,
500 nm treatments were not different in total length compared to respective controls. In
all treatments, however, animals were significantly (p < 0.05) longer at 24 ◦C compared to
21 ◦C. There were no differences in dry weight and capsule length (Figure 2b,c).
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significantly different, with a significant trend. Survival curves differed at 27 ◦C between controls
and 500 nm particle treatments (χ2 = 5.008; p = 0.0252). (b): Final survival rate at test termination in
percent (y-axis) * p < 0.05, N = 30. (Mean ± SEM).
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Temperature influenced cruising (p < 0.001), moving (p = 0.02), acceleration (p = 0.03), and 
meander (p = 0.04) significantly. Interestingly, 1000 nm exposures led to hypoactivity, 
while 500 nm exposures led to decreased and increased behavioral activity endpoints. A 
Spearman correlation revealed that temperature was significantly correlated with TDM (p 
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Figure 2. Growth of H. azteca: Total length (a), capsule length (b), and dry weight (c) (y-axis)
(Ndry weight = 2–3) following 96 h treatments control, 500 nm PS particles, and 1000 nm PS particles
(x-axis) and three temperatures 21 ◦C, 24 ◦C, and 27 ◦C. * p < 0.05, ** p < 0.005; Nlengths = 11–21. Total
length was affected by particle treatment (F = 6.93, p = 0.001) and temperature (F = 6.24, p = 0.003).
(Mean ± SEM).

3.2. Locomotor Behavior Assay

The particle treatment significantly affected thigmotaxis, cruising, moving time, ac-
celeration, meander, zone alternation, and turn angle (p < 0.001 for all endpoints; Table 1).
Temperature influenced cruising (p < 0.001), moving (p = 0.02), acceleration (p = 0.03),
and meander (p = 0.04) significantly. Interestingly, 1000 nm exposures led to hypoactivity,
while 500 nm exposures led to decreased and increased behavioral activity endpoints. A
Spearman correlation revealed that temperature was significantly correlated with TDM
(p = 0.03 in dark, p = 0.01 in light) and velocity (p = 0.03 in dark, p = 0.01 in light) in controls,
but not in treatments of animals exposed to particles (Table S3). Changes from dark to light
cycles did not result in significant alterations to the behavioral parameters tested.
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Table 1. Locomotor behavior assay of eight endpoints across PS particle treatment (control, 500 nm,
1000 nm), temperature (21 ◦C, 24 ◦C, 27 ◦C), and cycle (dark, light) after a 96 h exposure on H. azteca.
A significant increase (↑) or decrease (↓) in comparison to the corresponding control treatment is
marked in bold (Kruskal–Wallis, p < 0.05; N = 18). (Mean ± SEM).

Treatment Temperature Cycle Thigmotaxis TDM
(mm)

Velocity
(mm/s)

Cruising
Mean

Moving
Mean

Acceleration
Mean (mm/s2)

Meander Min
(deg/mm)

Zone
Alternation

Controls

21 ◦C

Dark
Mean 0.17 648.17 16,200.01 0.16 0.09 32.48 548,707.01 41.74

SEM 0.04 77.73 1942.64 0.01 0.00 14.92 154,155.45 6.40

Light
Mean 0.14 665.36 16,629.49 0.19 0.09 62.44 447,422.19 35.65

SEM 0.03 80.66 2016.02 0.02 0.00 22.39 72,998.12 5.83

24 ◦C

Dark
Mean 0.20 501.83 12,526.44 0.15 0.09 71.83 41,3407.62 56.02

SEM 0.04 61.83 1543.29 0.01 0.00 18.13 67,852.27 7.44

Light
Mean 0.20 528.67 13,196.59 0.15 0.08 26.67 568,502.63 58.46

SEM 0.04 55.91 1395.66 0.01 0.00 9.78 130,905.13 7.16

27 ◦C

Dark
Mean 0.33 447.96 11,172.90 0.17 0.10 56.47 510,822.34 77.50

SEM 0.05 84.81 2115.36 0.01 0.01 20.02 269,753.60 10.82

Light
Mean 0.28 495.26 12,352.93 0.19 0.09 75.39 775,993.28 74.13

SEM 0.05 81.29 2027.59 0.01 0.01 30.74 263,831.07 10.38

500 nm

21 ◦C

Dark
Mean ↑ 0.32 ↓ 394.47 ↓ 9859.24 0.14 0.10 ↑ 81.01 ↓ 321,832.86 ↑ 75.52

SEM 0.05 44.41 1109.99 0.01 0.01 21.92 91,097.54 8.93

Light
Mean ↑ 0.33 420.62 10,512.77 0.14 ↑ 0.10 91.31 ↓ 337,481.7 ↓ 81.69

SEM 0.05 54.43 1360.34 0.01 0.00 24.56 92,749.78 8.74

24 ◦C

Dark
Mean ↑ 0.40 548.34 13,687.72 0.15 0.09 85.23 ↓ 131,648.31 ↑ 94.84

SEM 0.05 88.12 2199.78 0.01 0.01 26.31 16,606.04 8.44

Light
Mean ↑ 0.40 606.83 15,147.97 0.16 ↓ 0.09 ↑ 162.32 ↓ 222,524.87 ↑ 94.63

SEM 0.05 101.73 2539.74 0.01 0.00 46.82 58,640.33 9.38

27 ◦C

Dark
Mean 0.27 ↑ 645.79 ↑ 16,107.80 0.21 0.08 79.04 78,552,518.10 59.93

SEM 0.04 84.73 2113.20 0.02 0.00 27.67 50,329,114.99 6.37

Light
Mean 0.22 663.80 16,557.51 0.20 0.08 38.31 52,073,199.65 53.63

SEM 0.04 85.59 2134.75 0.02 0.00 11.29 38,954,708.05 6.06

1000 nm

21 ◦C

Dark
Mean 0.26 ↓ 460.38 ↓ 11,506.56 0.15 0.09 90.86 288,840.77 56.74

SEM 0.05 62.18 1554.11 0.01 0.01 27.82 46,682.69 8.55

Light
Mean 0.27 ↓ 475.73 ↓ 11,890.01 0.14 0.09 77.79 ↓ 307,032.33 61.56

SEM 0.05 64.43 1610.24 0.01 0.01 24.39 48,446.12 8.92

24 ◦C

Dark
Mean 0.21 642.22 16,030.16 0.13 ↓ 0.08 55.44 368,102.43 47.63

SEM 0.04 79.95 1995.47 0.01 0.00 14.53 68,938.96 7.91

Light
Mean 0.21 697.79 17,417.42 0.14 0.08 53.18 ↓ 316,204.54 51.54

SEM 0.04 88.89 2218.80 0.01 0.00 14.26 65,979.64 7.84

27 ◦C

Dark
Mean 0.28 487.30 12,156.83 ↓ 0.14 ↓ 0.08 54.77 566,070.12 58.57

SEM 0.05 69.85 1742.71 0.01 0.00 17.89 257,837.42 7.38

Light
Mean 0.28 508.36 12,682.07 ↓ 0.13 0.09 57.39 332,440.14 61.65

SEM 0.05 77.09 1923.03 0.01 0.01 18.50 67,763.56 8.43

Sign.
category

effect

Particle treatment <0.001 0.82 0.82 <0.001 <0.001 <0.001 <0.001 <0.001

Temperature 0.47 0.34 0.34 <0.001 0.02 0.03 0.04 0.28

Cycle 0.49 0.47 0.47 0.81 0.60 0.48 0.59 0.96

3.3. Internalization
3.3.1. Group (A)

There was a notable variability in uptake across individuals within a single beaker.
The guts of some individuals of the same replicate were filled entirely with PS beads, while
others barely showed any fluorescence. Despite high uptake variability, treatments were
shown to influence the measured fluorescence in the gut. Temperature (χ2 = 7.47, p = 0.024)
and particle size (χ2 = 17.7, p < 0.001) had significant effects on uptake (Figure 3a), and
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uptake at 21 ◦C was significantly higher in the 1000 nm particle treatments compared to
500 nm (p = 0.0128). Generally, it was observed that fluorescence in 500 nm treatments
was lower compared to 1000 nm treatments, and that uptake variability was higher in
1000 nm treatments. The average range in 500 nm across all temperatures was 7.1%, and
in 1000 nm treatments it was 26.3%. Linear regression revealed that the overall slopes of
500 nm and 1000 nm treatments, however, were not different (F = 0.83, p = 0.46), and the
slope of 500 nm treatments was non-zero (F = 162.8; p = 0.0498), indicating increased uptake
with temperature. Observationally, animals treated with 1000 nm particles also appeared
to exhibit enhanced uptake with rising temperatures (Figure S3).
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Figure 3. (a) Group (A): PS uptake comparison between the two investigated particle sizes of H.
azteca by the percentage of positive pixels (y-axis) in relation to total pixel number in the ROI around
the gut region. n = 3, * p < 0.05; 500 nm (N = 11–18), 1000 nm (N = 10–15). The increasing slope of
500 nm (arrow, Y = 0.35 × X − 6.99) across temperature treatments is non-zero (F = 162.8; p = 0.0498).
(b) Group (B): Logarithmic PS uptake of H. azteca: Pixels above threshold data (y-axis) across treatments
control, 500 nm particles, and 1000 nm particles (x-axis) and three temperatures 21 ◦C, 24 ◦C, and 27 ◦C.
* p < 0.05. Control (N = 3–6), 500 nm (N = 8–9), 1000 nm (N = 9). (Mean ± SEM).

3.3.2. Group (B)

For animals that were maintained in clean water for 30 min acclimation and the
duration of the behavioral assays, no significant differences in particle uptake quantity
were observed in terms of temperature (KW, χ2 = 2.38, p = 0.31); in contrast, uptake quantity
differed significantly between the particle sizes (KW, χ2 = 34.56, p < 0.001; Figure 3b).
Consistent with the findings from (A), there were higher fluorescence signals in the 1000 nm
particle treatments compared to 500 nm particle treatments. In total, 500 nm particle
treatments at 24 ◦C (p = 0.011) and 27 ◦C (p = 0.025) exhibited significantly lower signals
than the 1000 nm treatments at the same temperature. Examples of exposed animals
are shown in Figure S4. Particle translocation from the gut was not observed in any
surrounding tissues in any individual (Figure 4).

3.4. Correlations between Uptake, Particle Size, and Tested Endpoints

The strongest correlation was found for particle size and uptake (Figure S5). A
Spearman correlation analysis was performed specifically for individuals which underwent
the locomotion assay and the confocal analysis according to (B). Particle size and uptake
demonstrated a rs-value of 0.67 (p < 0.01). Furthermore, uptake correlated with TDM (dark)
(rs = 0.35; p = 0.01), thigmotaxis (dark) (rs = −0.28; p = 0.04), velocity (dark) (rs = 0.35;
p = 0.01), TDM (light) (rs = 0.30; p = 0.03), and velocity (light) (rs = 0.30; p = 0.03). Total
length was related to particle size (rs = 0.28; p = 0.049) and temperature (rs = 0.02; p < 0.01).
The other endpoints were not correlated with the uptake quantity.
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Figure 4. Internalization of fluorescent PS beads: control (A) and after exposing H. azteca to fluorescent
PS beads with a diameter of 500 nm (B) and 1000 nm (C) for a duration of 96 h. Observations revealed
a notable uptake in these beads distributed throughout the gastrointestinal tract of the organism.

4. Discussion

This study investigated impacts from exposure to micro- and nano-sized PS beads on
uptake, locomotion, growth, and survival of the amphipod model species H. azteca. It also
determined whether temperature would influence the measured effects. We hypothesized
that elevated temperatures would lead to increased particle uptake, in turn leading to
reduced growth and altered swimming behavior. This holds particular significance for
smaller PS beads characterized by prolonged retention times, potentially attributed to fac-
tors such as increased probability of biodistribution and accumulation. Results confirmed
our hypothesis (i) that elevated temperatures would increase particle uptake, resulting in
decreased growth and survival. PS beads of 500 nm were not conclusively demonstrated to
be more detrimental than 1000 nm beads in the context of survival and growth (hypothesis
ii). The highest tested temperature of 27 ◦C, combined with 500 nm and 1000 nm PS beads
at a concentration of 0.43 mg/L, led to harmful effects on HA. Besides survival curves
exhibiting discernible temperature-dependent trends, total length exhibited significant
alterations due to temperature and particle size. HA exposed to 1000 nm particles across
all temperatures was shorter in total length compared to respective control groups. These
results confirm findings in A. franciscana, which showed that besides higher PS concentra-
tions, warmer water temperatures led to decreased survival and growth [48]. However, no
differences in total length were determined between the 500 nm treatments and controls.
The reasons might be that the larger-sized particles resulted in higher uptake due to a
higher likelihood of confusion with food sources of similar size, such as yeast of 5 µm [87],
which is part of the YCT food combination on which they were fed. It is interesting that
although an apparent decline in dry weight was observed with increasing temperatures
in the control group, this trend appeared to be absent in the exposure treatments involv-
ing 500 nm and 1000 nm PS beads. This discrepancy might indicate that the presence of
these MNPs could potentially mitigate the effects of temperature on dry weight. Results
also indicated that uptake increased with temperature and that behavioral effects differed
depending on particle size.

Bead uptake could have reduced energy supply, leading to reduced total body length
in 1000 nm treatments. Studies have demonstrated that D. magna reduces feeding rates
when exposed to MPs [88]. The inhibition of metabolic rates due to exposure to MPs
has been documented in various aquatic organisms [89,90], underscoring the capacity of
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these minute pollutants to hinder physiological functioning. It also has been shown that
microbiomes can be influenced by PS size in shrimp (Litopenaeus vannamei; [91]), which
might further explain differences in growth and even in survival. However, it is worth
mentioning that feeding rates have been reported to remain unaltered or even increase in
freshwater amphipod Gammarus fossarum exposed to MPs [92] and that feeding rates can
also vary over time [93]. Consequently, species’ differences and adaptation mechanisms
to food sources contribute to case-specific outcomes and can differ between our static
exposure with no regular feeding and studies with regular feeding.

Both factors, temperature, and particle size, significantly influenced uptake quantities.
Considering the correlation analysis of particle size, temperature, uptake, and total length,
our results indicate that higher temperatures caused higher uptake and, ultimately, reduced
growth and increased mortality. This result was confirmed by elevated temperatures
demonstrating augmentation of the buildup of MPs within fish, consequently influencing
the activity of metabolic enzymes [90]. Results are also supported by findings in the
detritivores Gammarus pulex metabolic and feeding rates rising with larger body mass
and higher temperatures, while MPs negatively impacted metabolic rates but not feeding
rates [94]. As we observed high variability of particle quantities in the guts of HA, these
differences between individuals of the same beaker could have led to high variability
of growth and behavior responses. Per the manufacturer’s specifications, an equivalent
mass ratio of fluorescent dye to styrol was employed for both particle sizes. However,
while the polymer weight was equal between 500 nm and 1000 nm treatments, the mean
fluorescence intensity of PS beads was observed to scale approximately linear with the bead
surface area, indicating that the brightness of spots declines as the bead size decreases [95].
Additionally, the ratio of volume to surface area might have influenced the signal, which
could have further been affected by the number of particles (64,000,000 vs. 8,000,000 p/mL)
and possible breakdowns in the organisms.

Elevated temperatures impose biological limitations on ectothermic organisms’ metabolic
and cellular processes [96,97] and increase metabolic rate, reaching the thermal optimum
for a given organism, which can subsequently change individual feeding rates and induce
modifications in interactions between consumers and resources [97–99]. Metabolic and
feeding rates of G. pulex both demonstrated an increase in response to elevated temperature
and body mass, in alignment with predictions from the Metabolic Theory of Ecology [96,98].
Based on the temperature coefficient or Q10 effect, biological reactions are influenced by
temperature and, therefore, the energy status of organisms [46,47], leading to higher
feeding demands at 27 ◦C, which could have caused higher uptake of particles. Increased
mortality at 27 ◦C could have ultimately resulted from higher energy demand and PS beads,
providing no nutritional value.

Studies suggest that HA has the capability to induce particle fragmentation attributed
to its digestive system, characterized by a gastric mill for food crushing [45,100]. Higher
metabolic rates and feeding demands at 27 ◦C might have caused particles to break down
faster, which was not investigated in this study. However, this breakdown of PS beads could
have led to a modification of effects over time due to particle dimension changes. For other
organisms, smaller particle uptake has been shown to cause higher bioconcentrations and
longer retention times [101], which could indicate higher stress-related effects of smaller
PS particles. Similar to results on zebrafish showing that 250 and 700 nm particles barely
passed the intestinal tract and outer epidermis [102], we did not observe apparent translo-
cation into adjacent tissue leading to physical obstruction. Previous studies describe the
necessity to add dye/leachate controls to the experimental design to determine if particles
themselves, or the unrestricted movement of the dye molecule through cellular barriers,
lead to fluorescence (e.g., [103,104]). However, we did not see fluorescence penetrating the
gut wall, indicating that free leachate was absent.

Due to distinctive properties, such as hydrophobicity, plastics can adsorb contaminants
(commonly called “vector” effect) of specific chemical properties, including persistent or-
ganic pollutants, amplifying the toxic effects on organisms [105]. Modified size-dependent
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vector effects can explain growth and behavior differences between 500 nm and 1000 nm
treatments. In this context, the volume-to-surface area ratio must be considered. Larger
beads have a reduced surface area relative to their volume, and vice versa. As such, the
larger surface of smaller particles would increase the likelihood of metabolites, bacteria,
or other molecules conglomerating with 500 nm particles over 1000 nm. While the mass
of PS was equal between the two size fractions, the particle count of 500 nm beads was
also eight times higher than the 1000 nm beads. This would implicate an increased vec-
tor effect in 500 nm treatments, which could explain particle size dependent differences
such as hyperactivity. Elevated temperatures may have facilitated bacterial growth, which
could have further influenced vector effects. When PS was first detected in coastal waters,
researchers found that the sampled particles had a high abundance of bacteria on their
surface [40]. Growth rates of Escherichia coli, for example, exhibit a continuous increment
from approximately 5 ◦C to its optimal temperature of around 37 ◦C [106], suggesting that
bacterial growth or the metabolic byproducts thereof may have played a role in shaping
the temperature-influenced outcomes.

Avoidance behavior might have been a reason for the high variability in particle
uptake. For example, gastric filters of Atlantic ditch shrimp (Palaemon varians) can prevent
significantly larger microparticles from reaching the midgut gland because they can filter
and finally egest them [107]. The extent to which HA can accomplish this remains unclear.
Still, some filter mechanisms and avoidance behavior are likely, which could explain
individuals with little particle uptake supported by considerable variability in individual
feeding rates, which has been described before [108]. Measured uptake quantities after
locomotion assays did not increase with temperature. Locomotion assays, which took place
in clear water, could have contributed to egestion, which can happen within two hours [79].
The process of removing animals from the exposure beaker, acclimation time, behavior
trials, and euthanization spanned approximately 90 min, during which handling and light
stimuli potentially heightened levels of activity and clearance.

In the context of behavioral characteristics, particle treatments, and temperature have
demonstrated significant effects on various behavioral endpoints. Of the eight investigated
behavioral endpoints, six were significantly influenced by particle treatment, four by tem-
perature, and none by light:dark cycle change. Interestingly, exposure to 1000 nm particles
elicited only hypoactivity-related locomotion, while exposure to 500 nm particles yielded
an intricate interplay of hypo- and hyper-activity. The 500 nm treatments additionally led
to 10 more significant behavioral effect differences to corresponding controls than 1000 nm
treatments. This result can lead to the conclusion that the mode of toxic action is particle
size dependent. Behavioral differences might furthermore be connected to non-significant
but lower average survival rates of 500 nm treatments (76.7 ± 8.8%) compared to 1000 nm
(83.3 ± 3.3%) treatments at 27 ◦C (across all temperatures 89 ± 4.2% and 91 ± 2.6%, respec-
tively). In the treatment with the highest mortality (500 nm, 27 ◦C), TDM and velocity were
significantly higher than in the corresponding controls, indicating hyperactivity. Hyperac-
tivity represents an escape response, functioning as a form of avoidance that serves as an
adaptive reaction to evade stressful circumstances [109]. In contrast, in 1000 nm treatments
at 27 ◦C, cruising (fraction spent at a speed of >0.5 mm/s and <20 mm/s) and moving time
(fraction spent actively swimming) were reduced in darkness, indicating hypoactivity. This
result, combined with reduced total length in 1000 nm treatments, corresponds with a reduc-
tion in body length (and oxidative stress), standing out as the primary factor contributing
to hypoactivity in zebrafish [110]. Links between growth and reduced swimming activity in
response to 15µm PS beads have also been described for jacopever (Sebastes schlegelii, [111]).
The reasons for particle-size and temperature-dependent locomotion differences can be
various. According to several studies [112,113], physical stress is the primary factor con-
tributing to MP toxicity if the plastics do not contain additives or adhere to contaminants on
their surface. This stress arises from the additional effort required to digest inert material
and maintain physiological homeostasis [114,115]. Another hypothesis proposes that MPs
may cause microscale abrasions in the internal tissues of organisms, rendering them more
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vulnerable to other contaminants in the aquatic environment [115,116]. Metabolic rates can
also be impacted by adverse effects from MPs, arising from their ability to hinder oxygen
uptake [89], which can ultimately affect swimming behavior.

The interplays of experimental parameters and measured endpoints, uptake quantity,
and particle size showed the strongest correlation. Although the strength of the relationship
between locomotion, growth, and uptake was mainly weak, statistically significant p-values
indicated that the association between the variables was unlikely to be coincidental. Con-
sequently, uptake may have led to TDM, thigmotaxis, and velocity alterations. Given
that behavior acts as a pivotal connector between biological scales, bridging subcellular
processes measurable in laboratories with ecological reactions to contaminants in natural
settings, the interaction of MNPs with temperature has the potential to influence behaviors
such as feeding, predator avoidance, and reproductive success. Additional investigations
are necessary to explore the indirect consequences of MNPs exposure, especially in the
context of climate change and further abiotic factors.

It is important to recognize that our study possesses certain limitations. One notable
limitation pertains to the size, shape, and polymer of the particles used, as well as their
concentrations. We recognize that the plastics employed may not reflect the diverse array
of materials found in natural aquatic systems, where various types and sizes of plastics
coexist at varying concentrations. Detecting NPs in the field remains challenging; however,
future studies could explore strategies to do so and evaluate their impact on aquatic sys-
tems. In order to establish a robust foundation for risk assessment, future experimental
methodologies should not only consider the ability to differentiate between the impacts of
food scarcity and particle toxicity, but also ascertain whether MNPs elicit effects distinct
from those induced by naturally occurring particles [117]. Knowledge gaps underscore the
need for further research encompassing a broader spectrum of plastic characteristics and
environmental conditions to provide a more comprehensive understanding of the complex
interactions between plastics and aquatic ecosystems. It is imperative to conduct additional
investigations on the role of the food chain as a conduit for the distribution of plastic
debris, particularly MPs, among aquatic organisms spanning from the primary to higher
trophic levels [118]. The investigation of excretion and uptake dynamics over time was
not within the scope of this study; however, these aspects represent significant knowledge
gaps warranting exploration in future research endeavors. Future studies should also
investigate the combined effects of MNPs and temperature on oxidative stress. Exposures
of HA to polyethylene terephthalate were shown to influence oxidative stress indicators
(Superoxide dismutase, Malondialdehyde, and Glutathione S-transferase), enzymes, which
are crucial components of the primary antioxidant defense system against reactive oxygen
species [119]. Despite these limitations, our study offers valuable insights into the potential
impacts of rising temperatures on plastic pollution dynamics and highlights avenues for
future investigations to bridge the gap between laboratory experimentation and real-world
ecological contexts. Building upon our findings, future investigations should explore the
interactive effects of temperature and plastic pollution on broader ecological processes,
such as species interactions, nutrient cycling, and ecosystem functioning. Furthermore,
the insights gleaned from our study could inform the development of innovative miti-
gation strategies and policy interventions geared towards curbing plastic pollution and
safeguarding vulnerable aquatic ecosystems. Interdisciplinary approaches, and advances
in technology and analytical techniques could be used to find solutions for mitigating the
impacts of plastic pollution while following sustainable management practices.

5. Conclusions

This study illustrates how variations in environmental temperature can modify the
effects of micro- and nano-sized PS beads. Our results show that the combination of PS par-
ticles and higher temperatures can cause a risk to HA. Elevated temperatures augmented
particle uptake in treatments involving 500 nm particles, whereas growth was diminished in
treatments with 1000 nm particles. Swimming behavior exhibited disparities across particle
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sizes, while survival rates decreased for both particle sizes at 27 ◦C. However, understand-
ing how plastic particle effects intertwine with abiotic factors like temperature remains
limited to this day. Employing model organisms such as HA, prominent amphipods within
aquatic food webs can facilitate in assessing these impacts and identifying potential risks
of MNPs such as polystyrene. We also aimed to explore the impact of particle uptake on
the behavior of HA, presently lacking in the MNPs literature. Our results highlight the
significant influence of exposure on behavioral endpoints, thus improving our ability to
assess risk through the identification of indicators. This toolkit can aid in determining the
risks associated with plastics by employing a USEPA epibenthic model.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w16101360/s1, Figure S1. Spectral absorption and emission
graph of polystyrene beads. Blue fluorescent beads with a mean diameter of 519 and 1294 nm were
ordered from Applied Microspheres GmbH (formerly BS-Partikel GmbH, Mainz, Germany) at a
concentration of 5% m/m (Surface: not-modified polystyrol, no surface functionalization, sulfonic
acid end group). Table S1. Tested polystyrene concentrations in the range finder study (*). “Conc. 5”
was used in the main exposure study. Figure S2. Temperature logger data from each climate chamber
set to 21, 24, and 27 ◦C during the 96 h exposure starting on 10/21. Table S2. Water parameters were
measured via YSI during the 96 h exposure of H. azteca to polystyrene particles at three temperatures
(21 ◦C, 24 ◦C, 27 ◦C). The three temperatures were regulated in climate chambers (Ch1-3). Table S3.
Correlation between H. azteca behavioral parameters (either TDM or thigmotaxis) and the polystyrene
particle treatment (control, 500 nm, 1000 nm), or the temperature (21 ◦C, 24 ◦C, 27 ◦C) in the dark
and light period. Spearman correlation matrix: * p < 0.05 are marked in red. Figure S3. Uptake
across particle (500 nm or 1000 nm sized polystyrene particles) and temperature treatments of
pooled H. azteca (N = 14–19) by ranking: 1 = minor fluorescence (only stomach and mouth parts),
2 = fluorescence additionally in parts of the guts, 3 = fluorescence in the majority of the gut. Figure S4.
Examples of confocal images for quantifying fluorescent 500 nm or 1000 nm polystyrene particle
uptake by H. azteca at 24 ◦C: Maximal intensity of z-stack layers. Figure S5. Correlation between
PS uptake and endpoints: Spearman correlation (rs values) between H. azteca uptake and further
endpoints. Strongest correlation: Uptake vs. particle treatment (rs = 0.67; p < 0.001). The r values of
0–0.19 are commonly regarded as very weak, 0.2–0.39 as weak, 0.40–0.59 as moderate, 0.6–0.79 as
strong and 0.8–1 as very strong.
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