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Abstract: The hydrodynamic model, based on the strict conservation of momentum and continuity
equations, can accurately simulate the distribution of a flow field. However, significant computing
time and storage space requirements limit real-time prediction. Machine learning is well known for
its fast computing speed and powerful learning ability, but its accuracy depends on an abundance
of training data, hindering its wider use in locations without sufficient measurements. Application
restrictions in data-deficient areas can be addressed through transfer learning, provided that two
areas share common characteristics. In this study, a machine learning method based on a deep super-
resolution convolutional neural network (DSRCNN) and transfer learning is proposed, validated,
and applied to model two bend flows and one realistic test case. Firstly, the hydrodynamic model
was established and validated against measured data. The validated model was considered to have
the ability to generate real data and was used to generate a comprehensive data set for training
and validating the machine learning model. Three different methods were compared and tested,
with Realizable k-ε performing better than the others in predicting the outer bank flow distribution.
DSRCNN was compared to a plain SRCNN (PSRCNN), as well as Bilinear, Nearest, and Bicubic
methods, and the results showed that DSRCNN had the best performance. We compared Raw, RT,
and TL methods, finding that the TL method performed the best overall. Therefore, the research
results showed that the developed super-resolution convolutional neural network can provide more
reliable predications and serve as an ideal tool for simulating flow field distribution in bends.

Keywords: deep learning; convolutional neural network; super-resolution; transfer learning

1. Introduction

The temporal and spatial distribution of river flow has both positive and negative
effects on human beings. Studying the characteristics of the temporal and spatial distribu-
tion of river flow can help us reduce disadvantages, such as flooding or riverbed scouring,
and potentially transform them into advantages for effective utilization [1–3]. The curved
streamway is one of the most common waterway patterns in nature, and even straight
rivers will transition to curved under the influence of various special factors in the natural
environment [4]. The plane shape of a natural stable bend of a river is similar to a sine curve.
Under the constraint of boundaries, the flow is simultaneously affected by non-uniform
centripetal forces, wall shear stress, and pressure gradients generated by water surface gra-
dients, which cause the flow field to be redistributed and form a complex three-dimensional
spiral flow. This complex flow structure leads to sediment movement, riverbed evolution,
channel deformation, etc. [5]. Therefore, the study of bend flow is significant.

River flow characteristics have been investigated by numerous researchers using
physical experimental approaches. For instance, Shen and Haas [6] conducted a 3D model
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experiment to calculate river age. Jun et al. [7] studied the phenomenon and mechanism of
ice accretion in a curved channel under different flow and ice flow conditions. Huang [8]
carried out a physical simulation study on the height, propagation velocity, tidal current
velocity, front gradient, and bore shape of a tidal bore in a rectangular flume. Zhang
et al. [9] performed an experimental study on the sediment transport and changes in
riverbed morphology caused by the asymmetric confluence of tributaries in the upper
Yellow River. Van Dael et al. [10] utilized an experimental flume to examine the effect
of water flow velocity and sediment Fe/P ratio. Stelzer et al. [11] employed the scaled
physical model to simulate riverbed sedimentation in its natural state. As an integral
part of nature, water flow exhibits diverse hydraulic characteristics under the influence
of various natural factors [12]. The regularity of water characteristics can be determined
through model experiments and extrapolated into the actual production environment using
various specialized methods [13]. However, physical experiments are subject to numerous
uncontrollable factors, impacting accuracy and requiring additional time, manpower, and
material resources for experiment replication. Hence, alternative methods that can mitigate
these disadvantages are necessary.

With the continuous advancement of computer storage, calculation, and programming,
and the measurement of hydraulic and hydrological data [14], it has become feasible to
employ numerical simulation technology for studying physical and mechanical properties
of water characteristics. For example, Chang et al. [15] investigated the freezing process of
water droplets on different hydrophobic surfaces through experiments and simulations.
Patsinghasanee et al. [16] carried out an experimental and numerical study on the impact
of a tidal bore on a sheet pile spur dike at Qiantang River. Mouri et al. [17] explored the
characteristics of a sand-retaining dam affecting sediment regulation function in the river.
Cai et al. [18] investigated tidal impact by integrating a flume experiment with software
prediction. In recent years, hydrodynamic numerical models have been widely employed
to study hydrodynamic characteristics. These models can be categorized into 1D, 2D, and
3D, with extensive research and progress made in addressing 2D and 3D problems [19].
However, the calculation accuracy of a 2D hydraulic model is not as high as that of a 3D
hydraulic model [20]. The significant computational time and storage space required make
the 3D numerical model calculations expensive [12], and the prediction lag restricts its
ability to provide real-time results for hydraulic elements during disasters. These factors
impose limitations on the utilization of 3D hydraulic numerical models.

Machine learning can serve as a supplementary to address the problem of expensive
calculation [21]. This method has been applied in many fields [22–26], and has shown that
these methods, such as convolutional neural networks, are effective tools to generate 3D
flow field elements [27]. In addition, machine learning can adaptively compute implicit
relationships through a certain amount of input and the numerical value [28], reducing the
impact of various factors assumed artificially in advance, and improve the accuracy of the
model [29]. However, the improvement of this accuracy relies on having sufficient data [30].
This dependency makes it impossible to use this method for rivers with insufficient data [12].
The amount of available data is often related to the development of a river, and a river
with insufficient development may contain great value with respect to potential power and
water resources [31].

To solve the above-mentioned problems, this article proposes a super-resolution deep
learning method, using the ground truth data generated by OpenFOAM and Telemac, and
evaluates its applicability and effectiveness. This research was carried out under the current
lack of efficient and accurate numerical simulation results. The developed AI model can
carry out super-resolution processing and obtain the data research content of this research
area based on a small number of observation point data. In this study, the developed
model was compared with the traditional model, and the results were found to be superior
for the developed model. To further prove the practical applicability, the Xiaosi River
was simulated using hydrodynamic software, and a comprehensive data set was obtained
through numerical simulation experiments. Finally, the whole method framework was
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combined and applied to a real river case using transfer learning to simulate the flow field
distribution in the actual environment. The performance of the Xiaosi River via the transfer
learning method showed a good simulation result.

The structure of this paper is as follows. Section 2 introduces the research area, the
governing equations of the numerical model, and the performance metrics of the model.
Section 3 introduces the simulation performance. Section 4 discusses the applicability and
limitations of transfer learning, and the findings are summarized in Section 5.

2. Methodology
2.1. Overall Research Strategy

Figure 1 presents the overall flow chart of the study, which illustrates the detailed
process of algorithm establishment and verification. The relevant operational steps involved
in this study are listed as follows:

Step 1: Establish the hydrodynamic model;
Step 2: Carry out the physical experiments under 135◦ bend flow and verify the

applicability of the model;
Step 3: Carry out numerical simulation experiments to obtain the comprehensive data

set of flow velocity field in a 135◦ bend with different flow rates;
Step 4: Use the comprehensive data set of the velocity field to train the deep learning

model;
Step 5: Use three different super-resolution methods to model 30◦ bends and compare

performance metrics;
Step 6: Establish a flow field deep learning model of the Xiaosi River.
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Figure 1. The detailed process of algorithm establishment and verification.

In the following content, we will introduce the implementation methods of laboratory
experience in Section 2.2, realistic case and fieldwork in Section 2.3, and numerical models
in Section 2.4 (including Delft3D and OpenFOAM). Section 2.5 will cover datasets and data
processing, while Section 2.6 will introduce machine learning methods. Lastly, Section 2.7
will cover performance metrics.
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2.2. Laboratory Experiment

Figure 2 shows the 135◦ bend used in this case. The channel consists of two straight
channels connected by 135◦ bends. The straight pipe at the inlet section is 12.19 m long,
and the straight pipe at the outlet section is 2.44 m long [32]. The curvature ratio (Rc/b)
is 1.5. The cross section of the channel is a rectangle with a length of 1 m and a width of
0.9 m. The material of the side wall is high vertical acrylic plate. A layer of quartz sand
(with a median grain diameter of 0.689 × 10−3 m) was laid on the ground and hardened
with Plaster of Paris and spar urethane to simulate the sedimentary riverbed. The water
depth was controlled to be 0.15 m at 2 m upstream of the interface between the inlet straight
pipe and the 135◦ elbow. In the experiment, two parameters, flow and flow velocity, were
measured. The flow was measured at the 90◦ V-notch weir at the outlet section, and the
accuracy of the results was verified through the ADV measurement of the straight pipe
section at the inlet. The three-dimensional velocity was measured using Nortek Vectrino
ADV at equidistant points along the pipeline, which were located 0.083 m, 0.250 m, 0.417 m,
0.584 m, 0.751 m, and 0.918 m away from the outer bank.The measuring point was 0.012 m
to 0.092 m above the river bed, and the points were taken once every 0.01 m. The method
of measuring flow parameters and the data processing process has been well documented
elsewhere in the literature [33–35].
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2.3. Realistic Case and Field Work

In this study, we selected a segment of the Xiaosi River as the study area, and obtained
the required field data through a field survey. The Xiaosi River, which is located within the
county boundary in Liaoning Province, is 32 km long with a drainage area of 241 km2. Its
location map can be seen in Figure 3. It is a natural drainage basin originating from Sanjiao
Mountain, with an elevation of 87.9 m and an average river gradient of 1.27‰. Because
it is a river course in Zhuanghe City, flooding there will cause great losses; thus, it is of
great significance to quickly predict its water flow. The highly representative bend section
upstream of the rubber dam of the Xiaosi River is selected as the research case. In this study,
the two types of data required are elevation and velocity. The elevation data were provided
by the relevant competent department, and the velocity data were measured by the research
group using an LS300-A Portable Velocity Measuring Instrument. On 8 October 2022, a
roughly zigzag route survey was carried out, and flow velocity and water depth data at
118 points were collected. The average value of velocity values at five different depths was
taken as the depth averaged flow velocity. The upstream flow was 15.87 m3/s and the
downstream water level was 4 m.
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2.4. Numerical Models

OpenFOAM and Delft3D models were used for the numerical simulation (DELFT3D
FM, OPENFOAM 2.3.1). The laboratory test case was based on OpenFOAM, the fluid
model frame of the open source software platform for lab-wide three-dimensional high-
precision numerical simulations. Delft3D, which better fits the real situation, was selected
for simulation in the case study of the Xiaosi River. To some extent, OpenFOAM has been
applied to various developments, such as the exploration of applicable environments and
the improvement of application methods. Many studies have demonstrated the feasibility
of OpenFOAM in flow structure velocity simulation [36–38].

The simulation conditions and schemes for OpenFOAM are introduced as follows:
Table 1 shows the methods we have selected for the discretization of different items. These
selected algorithms demonstrated superior performance in numerical stability and accuracy
compared to alternative methods. The linear method was chosen for interpolation schemes.

Table 1. Method for discretizing different items.

Term Scheme

Temporal term Euler scheme
Gradient and Laplacian term Gauss linear scheme

Divergence term Combined Gauss linear, Gauss vanLeer, and Gauss upwind
scheme

Pressure field
Preconditioned conjugate gradient (PCG) method, combined with

a diagonal incomplete Cholesky (DIC) pre-conditioner, with a
specified tolerance of 10−7

In the simulation process, a default time step interval of 0.01 s was initially chosen.
This default value, however, was not rigid and allowed for dynamic adjustments based
on a carefully defined numerical stability criterion. To maintain stability in the simulation,
the maximum Courant number was set to 1. Sensitivity simulations were conducted to
assess the impact of varying the default time step and Courant number. Remarkably, these
analyses revealed that reducing these parameters did not lead to significant alterations
in the simulation outcomes. The system achieved a state of near-steadiness after approxi-
mately 40 s of simulation time. However, to ensure a comprehensive understanding and
account for any potential long-term trends or behaviors, all simulations were conservatively
extended up to 120 s.

Delft3D, a unique, fully integrated computer software, has a multidimensional sim-
ulation program capable of computing non-steady flow. The main advantage over other
hydrodynamic models is the ability to better simulate shallow water and sinuous complex
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boundaries and to generate orthogonal networks quickly. The calculation of the model
was solved based on explicit and implicit alternating numerical integration in a finite
difference method. It has high stability, fast calculation speed, and a flexible framework,
which can obtain a better simulation effect, and can be transferred and used in software
such as Arc GIS and MATLAB. Meanwhile, the flow module is able to build a straight or
curvilinear grid of different scales to calculate the nonstable flow, and it provides rich open
boundary conditions and initial conditions in the calculation. Delft3D has been widely
used. For instance, Geng et al. [39] used Delft3D to simulate the spatial distribution of
sediment particle size; Li et al. [40] used Delft3D to conduct a process-based modeling
study to separate the effects of hydrological control on fracture morphology dynamics; and
Lei et al. [41] applied the Delft3D model with PM to Shenzhen Bay, China, to verify the
effectiveness of PM.

The simulation conditions and schemes for Delft3D are introduced as follows: the
Conveyance-2D type utilizes R = HU, the Advection type employs Perot q(uio-u) fast, the
advection velocity limiter type relies on monotone central, and the solver type is chosen as
sobekGS + Saadilud.

2.4.1. Governing Equations for OpenFOAM

Three-dimensional Reynolds–averaged Navier–Stokes equations are the governing
equations for three-digit high-precision simulations, which are the main methods for
simulating complex viscous fields. The flow solution in the 3D region is mainly controlled
using the continuity equation and momentum equation [42]:

The continuity equation is expressed as:

∂

∂x
(ux) +

∂

∂y
(
uy
)
+

∂

∂z
(uz) = 0 (1)

The momentum equation in the x-direction is expressed as:
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+

∂
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ρuyux
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The momentum equation in the z-direction is expressed as:
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+
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where ρ = density; t = time; ux, uy, and uz are velocity components; p = pressure; τij = the
force along the j direction on the i coordinate plane; and gx, gy, and gz are gravitational
acceleration components.

2.4.2. Governing Equations for Delft3D

The model is mainly controlled by the continuity equation and the momentum equa-
tion in the horizontal direction [43].

The continuity equation is expressed as:

∂ζ

∂t
+

1√
Gξξ

√
Gηη
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√

Gηη ]
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= (d + ζ)Q (5)
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udσ (6)

V =
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∫ ζ

c
vdz =

∫ 0

−1
vdσ (7)
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Q =
∫ 0

−1
(qin−qout)dσ + P− E (8)

where U and V are depth average velocities; Q is water, precipitation and evaporation per
unit area; qin and qout refer to the inflow and outflow of unit volume of water, respectively;
P is non-local precipitation; and E is non-local evaporation.

The momentum equation in the ξ- and η-directions is expressed as:

∂u
∂t +

u√
Gξξ

∂u
∂ξ + v√

Gηη

∂u
∂η + v

d+ζ
∂u
∂σ −

v2√
Gξξ

√
Gηη

∂
√

Gηη

∂η + uv√
Gξξ

√
Gηη

∂
√

Gξξ

∂η

− f v = − 1
ρ0
√

Gξξ
Pξ + Fξ +

1
(d+ζ)2

∂
∂σ (νv ∂u

∂σ ) + Mξ

(9)

∂v
∂t +

u√
Gξξ
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Gηη

∂v
∂η + v

d+ζ
∂v
∂σ + uv√

Gξξ

√
Gηη

∂
√

Gηη

∂ξ − u2√
Gξξ

√
Gηη

∂
√

Gξξ

∂η

− f u = − 1
ρ0
√

Gηη
Pη + Fη +

1
(d+ζ)2

∂
∂σ (νv ∂v

∂σ ) + Mη

(10)

The vertical eddy viscosity coefficient is defined by:

νv = νmol + max(ν3D, νbackv) (11)

Density variations are neglected, except in the baroclinic pressure terms. Pξ and Pη

indicate the pressure gradient; the forces Fξ and Fη indicate the imbalance of the horizontal
Reynolds stress. Mξ and Mη indicate the change caused by external momentum. νmol
indicates the kinematic viscosity of water.

2.5. Datasets and Data Processing

Comprehensive data sets are needed for training and validating a model. In this study,
three comprehensive data sets were established for a 135◦ bend, a 30◦ bend, and the Xiaosi
River bend. The high-precision OpenFOAM was used to conduct the simulation study of
the laboratory curve situation. Our group established 20 cases under different upstream
flows for this method. Delft3D was used for the simulation of the Xiaosi River bend. This
method only required 8 cases for training, and each case corresponded to an upstream
flowrate condition. The model must prepare high-resolution data and low-resolution data.
The high-resolution data were provided by the hydrodynamic model and extracted, using
ParaView and MATLAB R2021a, from the outputs of the hydraulic models. We used
ParaView to import simulation data into an Excel file and then utilized MATLAB to extract
and process the data. MATLAB is more convenient for matrix processing as it does not
require the import of additional packages by the authors. The low-resolution data were
extracted using the decimate function of MATLAB, and the data scaling ratio was set to 8.

2.6. Machine Learning Methodology
2.6.1. Deep Super-Resolution Convolutional Neural Network

Super-resolution processing is used to estimate high-resolution images or video se-
quences based on low-resolution ones [44]. Deep learning algorithms build models for
network analysis and learning to simulate the mechanism of the human brain to interpret
data information. Super-resolution technology based on deep learning can improve image
resolution under existing hardware conditions [45].

The super-resolution algorithm is based on a convolutional neural network trained by
traditional gradient descent method to establish an end-to-end mapping model between
a low-resolution image block and a high-resolution image block. The training process
essentially involves learning the mapping between low-resolution images and real high-
resolution images. When the error between the reconstructed image and the actual image
reaches the expected value, the trained mapping can improve the resolution of additional
images. On the basis of the classical PSRCNN model, we improved it to form the DSRCNN
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model. The new model has more network layers, resulting in better performance for the
simulation. Figure 4 illustrates how the DSRCNN operation works.
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By using bicubic interpolation, a single low-resolution image is zoomed three times
to obtain a characteristic image, and then the output is obtained through network model
processing. The goal of network training is to obtain accurate outputs, that are close to the
original high-resolution image. The steps of network mapping include feature extraction,
non-linear mapping, and reconstruction. Specifically, the low-resolution feature map is first
obtained by convolving the low-resolution image, then the low-resolution feature map is
mapped to the high-resolution feature block through non-linear mapping, and finally, the
high-resolution feature block is reconstructed to obtain the high-resolution image.

After feature extraction from low-resolution images using the convolution operation,
the size of output results usually becomes smaller, which is not conducive to subsequent
calculation and processing. The size of the input matrix can be restored by mapping the
image from low to high resolution, which is called up-sampling. Conv2DTranspose is a
method of up-sampling, an incomplete inverse process of convolution operation, and a
component of non-linear mapping operation. Figure 5 illustrates the operation mode of
the transpose convolution operation. The input quantity is a 2 × 2 matrix, the convolution
kernel size is 3 × 3, the stride is set to 2, and there is no padding. The elements in the
input quantity are multiplied by the kernel, and four intermediate tensors are generated by
sliding the kernel in steps of 2 on the input quantity. Finally, by summing the four middle
tensors, the output size of 4 × 4 is obtained. This significantly reduces the number of
network layers, the computing costs, and the disk storage required. We utilized TensorFlow
package and Keras to build a network, executed it in the Python 3.9 environment, and used
NVIDIA GeForce RTX 3060 GPU (NVIDIA Corporation, Santa Clara, CA, USA) for the
network training.
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2.6.2. Transfer Learning

Traditional machine learning models have a strong dependence on the accuracy and
representativeness of data, and are generally limited by the conditions of on-site data
collection. This is because these technologies all rely on the common assumption that the
source domain and the target domain have the same spatial characteristics and underlying
distribution [46]. Inadequate data and unbalanced samples will greatly impair the accuracy
of training results. Once the feature space and underlying distribution of the target domain
change, it is necessary to recollect training data to train the model, which is costly in terms
of computing cost resources [47].

Transfer learning is a machine learning method that uses the similarities between the
old and the new domain to transfer the knowledge learned in the old domain to the new
domain [48]. The old domain, the source domain, is a data set with a large number of
training samples. The new domain, i.e., the target domain, is the object to be studied. The
knowledge transfer from the source domain to the target domain completes the migration.
New domains can be used when they are similar to the old ones; i.e., transfer learning
allows source domains to be different from target domains [49]. Therefore, transfer learning
can eliminate the limitations of the learning model and alleviate model over-fitting to
improve the accuracy [50–52] and enhance the generalization ability of the model.

This study uses the Finetune method to transfer the model. When transferring the
deep neural network, the front layer parameters of the neural network are fixed, the later
layer parameters are pre-trained in the source domain, and the pre-training results are used
as the basis to adjust the target domain. Because the parameters of the front layers of the
new network model are determined by the source domain, the Finetune function will not
change the front layers. The demand for data is greatly reduced, which solves the problem
of insufficient training samples. We established a baseline model at the experimental scale
and then applied it to real-world data using the transfer learning approach. Figure 6
represents the framework of transfer learning used in this study.

In this study, a 135◦ bend was established as the basic laboratory model. Then, the
method of transfer learning was used to build a model of a 30◦ bend. Finally, the model of
the real case (Xiaosi River) was established by using transfer learning.

2.7. Performance Metrices

The model fitting performance is represented using the root-mean-squared error
(RMSE) and the coefficient of determination (R2), which can be expressed as

RMSE =

√
1
N

ΣN
i=1( f (x)− y)2 (12)

R2 =

∣∣∣∣∣∣∣∣∣∣∣∣
N

N
∑

i=1
( f (x) · y)−

N
∑

i=1
( f (x))

N
∑

i=1
(y)√√√√[ N

∑
i=1

(y2)−
(

N
∑

i=1
y
)2
][

N
∑

i=1

(
f (x)2

)
−
(

N
∑

i=1
f (x)

)2
]
∣∣∣∣∣∣∣∣∣∣∣∣

2

(13)

where y are the ground truth data, f (x) are the predicted data, and N is the number of data
pairs.
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3. Results
3.1. Validation of the Hydraulic Models

The vertical profiles of measured and simulated streamwise and transverse velocities
at various locations are presented in Figure 7. The root mean square error (RMSE) values
were also calculated. Specific values are as follows: S1C1 (k-ε) RMSE = 0.028 m/s; S1C2
(RNG k-ε) RMSE = 0.027 m/s; S1C3 (Realizable k-ε) RMSE = 0.023 m/s; S1C4 (k-ω)
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RMSE = 0.027 m/s. Generally, the agreement between measurements and simulations
was quite good. The models performed relatively worse at locations S-90◦ (a) and S-135◦

(b), where the average RMSE values for the streamwise velocity exceeded 0.04 m s−1.
These two positions were located close to the inner bend. As expected and shown in the
measurements, flow deceleration and the reversal of the vertical gradient of the velocity
occurred at these locations. This phenomenon was predominantly induced by the unique
helical flow pattern in channel bends: the cross-stream circulation in the bend affected the
streamwise momentum, which in turn deflected the core of high velocities toward the outer
bend [32,53–56]. The velocity profiles obtained by the Realizable k-εmodel showed good
matches with the data at these locations, but the other models were less accurate, implying
that these models cannot satisfactorily capture the details of spiral flow structures observed
in the laboratory test case. The plots also showed that the Realizable k-εmodel performed
consistently well at most locations near the outer bank, where an outer bank cell existed,
implying that the Realizable k-ε performed better than the other models in the prediction
of the outer bank flow distribution.

Water 2024, 16, x FOR PEER REVIEW 13 of 27 
 

 

 
Figure 7. Measured and simulated (OpenFOAM) velocity distribution diagram of different curve 
sections. (a): section 0.918 m; (b): section 0.751 m; (c): section 0.584 m; (d): section 0.417 m; (e) sec-
tion 0.250 m; and (f): section 0.083 m from the outer bank. 

Figure 8 compares the predicted results and the Xiaosi River case. The accuracy of 
simulation results can be judged by the distance between points and lines, and the closer 
the data point is to the 1:1 line, the better the simulation effect is. It has been found that 
the deviation between the simulated value and the real value is mostly around 10% and 
within 15%. It can be clearly seen that the simulation data are similar to the real data, and 
their values are within a reasonable range, which indicates the satisfactory accuracy of the 
simulation. This indicates the value of the technology. 
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0.250 m; and (f): section 0.083 m from the outer bank.

Figure 8 compares the predicted results and the Xiaosi River case. The accuracy of
simulation results can be judged by the distance between points and lines, and the closer
the data point is to the 1:1 line, the better the simulation effect is. It has been found that
the deviation between the simulated value and the real value is mostly around 10% and
within 15%. It can be clearly seen that the simulation data are similar to the real data, and
their values are within a reasonable range, which indicates the satisfactory accuracy of the
simulation. This indicates the value of the technology.
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Figure 9 shows the predicted value and actual value of the same point. The color in the
figure represents the flow value. In the comparison, we can see an obvious similarity here.
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3.2. Prediction of the Flow Fields in Channel Bends Using the DSRCNN Model

As mentioned above, we established a hydrodynamic model and obtained low-
resolution and high-resolution data. The low-resolution data and high-resolution data
constitute a case under a specific upstream velocity. Different case data were established
for different upstream flow velocity conditions at random to form a comprehensive data
set, which can be used to train the DSRCNN model. The flow rate was divided into two
flow components, Ux and Uz, to train the model. In the DSRCNN model, the input signal
are low-resolution data and the output signal are high-resolution data.

The steps for our DSRCNN model training are as follows:

1. Extract high-resolution data from the hydrodynamic model using ParaView and
MATLAB;

2. Use the Decimate function to extract low-resolution data from high-resolution data;
3. Use low-resolution data from 20 cases as input matrices for 135◦ bends and 30◦ bends;

low-resolution data from 10 cases are used for the Xiaosi River.
4. Use high-resolution data from 20 cases as the target signal matrix for 135◦ bends and

30◦ bends; low-resolution data from 10 cases are used as the target signal matrix for
the Xiaosi River.



Water 2024, 16, 425 14 of 25

5. Train the DSRCNN by feeding the data of step (3) as input and enforcing the data of
step (4) as the output signal.

After the DSRCNN model has been trained, further operations are required to verify
the performance of the model since the simulation accuracy of the model has not been
judged during the model training. To verify the performance of the DSRCNN model, it is
necessary to generate high-resolution data and low-resolution data via the hydrodynamic
model. Using low-resolution data as input, a simulation value was obtained after the
DSRCNN model operation. The simulation value was compared with the high-resolution
data generated by the hydrodynamic model to judge its performance. The specific operation
steps are as follows:

1. Extract high-resolution data from the hydrodynamic model using ParaView and
MATLAB;

2. Use the Decimate function to extract low-resolution data from high-resolution data;
3. Use low-resolution data from 20 cases as input matrices for 135◦ bends and 30◦ bends;

low-resolution date from 10 cases are used for the Xiaosi River.
4. Using the data of step (3) as an input signal, predict the time-average velocity field

of the validated bend by using the trained DSRCNN, and obtain the analog value
matrix.

5. Compare the analog value from step (4) with the target signal value from the low-
resolution data.

Figures 10 and 11 show the flow field profiles of the predicted and actual high-
resolution data, respectively, as obtained using the DSRCNN model with different ve-
locity components in a 135◦ bend. We compared the PSRCNN model with the modified
DSRCNN model to verify the improvement. At the same time, three commonly used
spatial interpolation models were used, namely, Bilinear, Nearest, and Bicubic for data
interpolation. The models and types used in this article are introduced in Table 2. It can
be seen that the predicted results of the DSRCNN model are very similar to the actual
high-resolution results, and DSRCNN is the most satisfactory among the five methods in
terms of improving the resolution.
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Table 2. The models and types used in this article.

Model Type

OpenFOAM CFD
Delft3D CFD

PSRCNN [57] Deep learning
DSRCNN Deep learning (the present study)

Bilinear [58] Interpolation method
Nearest [59] Interpolation method
Bicubic [60] Interpolation method

In Figure 12, the flow velocities at different sections of a bend are predicted using
five different methods. Different colors represent different forecasting methods, and the
component of flow velocity in two directions is shown separately. In the figure, a significant
improvement in simulation accuracy can be found in the DSRCNN model.

Figures 13 and 14 show the flow field profiles of the predicted and actual high-
resolution data, respectively, as obtained using the DSRCNN model with different velocity
components in a 30◦ bend. The results were also compared with the SRCTN model, Bi-
linear, Nearest, and Bicubic method. As can be seen in the figure, the prediction results
of the DSRCNN model are satisfactory. In the front section at the bend, the water flow
profile was not perfectly predicted by the DSRCNN model and SRCTN model, because
the model smoothed the prediction and the DSRCNN model still exhibited the best overall
performance according to the comparison of overall simulation results and error analysis.

In Figure 15, the velocities were predicted using different methods in a 30◦ bend. In
this figure, the DSRCNN model demonstrates superior performance in predicting various
points.
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3.3. Prediction of the Flow Fields in a Meandering River

The flow field simulation of the Xiaosi River uses the deep learning model of the
135◦ bend instead of starting from scratch. Even though there are some commonalities of
water flow in both the 135◦ bend and the Xiaosi River, differences still exist; therefore, it is
impractical for direct use. This can be solved using transfer learning. As we mentioned
earlier, transfer learning can be used for similar types of data, such as images, video,
biometrics, etc., and allows for differences, enabling transfer learning to be applied here.
Before conducting transfer learning, it is necessary to establish a set of comprehensive data
sets for the Xiaosi River. The comprehensive data set uses the previously verified Delft3D to
establish the simulation of eight different cases. The upstream section flow corresponding
to each case was 9, 12, 15, 18, 21, 24, 27, and 30 m3/s. Two cases were randomly selected as
the transfer learning dataset, two cases as the validation data set, and four cases as the test
data set.

1. Use the validated delft3D model to generate data for different upstream section flows.
2. Extract high-resolution data from the hydrodynamic model using ParaView and

MATLAB;
3. Use the Decimate function to extract low-resolution data from high-resolution data;
4. Combine low-resolution data with high-resolution data to form a case. Eight cases are

needed in this study;
5. Randomly select two cases for transfer learning, and then use two cases for validation;
6. The validated model uses the remaining four cases for testing.
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Figure 16 shows the spatial distribution of the flow pattern of the sample. The left one
is the result of the numerical simulation, which is called ground truth, and the right one is
obtained by using our deep learning algorithm. The trained model effectively reproduces
the true distribution of water flow and has good simulation performance.
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4. Discussion

The results have shown that DSRCNN has improved compared to PSRCNN, and DSR-
CNN has better simulation performance than three commonly used spatial interpolation
models (Bilinear, Nearest, and Bicubic). The R2 and RMSE between real data and simulated
data indicate the good performance of simulating the flow field situation.

4.1. DSRCNN Transfer Learning

Three methods were used to conduct the 30◦ bend simulation:
(1) The artificial intelligence model, trained using the comprehensive data set of the

135◦ bend experiment, was used for analysis, named Raw.
(2) The deep learning method was used to re-establish the comprehensive data set. At

this time, the training result of the 135◦ bend was completely ignored, so it was named
RT (return).

(3) The proven and powerful 135◦ model was combined with the transfer learning
method, named TL.
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It is worth noting that the amount of data used here was the same as that used in
the 135◦ bend training case. The simulation results were obtained and analyzed with the
actual values; both the RMSE and R2 were calculated. We analyzed the flow of water
in two directions, UX and UZ, and compared the performance of the three methods. In
Figure 17, the results of 20 analyzed cases are displayed. It can be seen in the figure that
the accuracy of the simulation results of RT and TR are generally satisfactory, while the
simulation results of the Raw model are unsatisfactory.
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In order to further study the performance of the model when using a small amount
of training data, we reduced the amount of training data. It was assumed that only two
groups of data can be used for model experiments, that is, only two groups of data are
used for model training, and two groups of data are used for validation, and the rest of the
data are all used for testing. The RMSE and R2 values of the three simulation methods are
shown in Figures 18 and 19. The error of transfer learning is generally the smallest, that is,
its RMSE value is the smallest, and its R2 is generally higher.
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4.2. Merits and Limitations of the Approach

In the comparison between actual data and predicted data, we can easily find that both
RT and TL produce acceptable results. But the result of the TL method has a smaller RMSE
and its R2 is closer to 1, indicating that the TL method is superior. For a small number of
training cases, the TL method generally outperforms the RT method.

This research has developed an artificial intelligence model that can be processed with
super-resolution and can obtain the flow field distribution of the research area based on a
limited amount of observational data. The developed model can generate high-resolution
flow field data based on low-resolution flow field data. The model achieved relatively
accurate simulation results in both the laboratory and actual Xiaosi River studies.

One factor that restricts the application of the hydrodynamic model in the field of
practical engineering is the computer time and storage requirements. Therefore, hydrody-
namic models tend to incur significant computing costs in practical applications, which is
unrealistic when the goal is to achieve real-time forecasting. By establishing the hydrody-
namic model and validating it with the actual measured data, it was demonstrated that the
data obtained by the hydrodynamic model can represent the actual flow characteristics of
the river to a certain extent. In other words, the hydrodynamic model was considered as
the flow characteristic data generator which can generate real data. The intelligent network
was continuously trained with the data generated by the model, constantly exploring
the deep relationship between the input value and the target value. After training, the
input value could obtain the required output value through the interpretative equation
obtained previously. In subsequent use, the data did not need to be generated by the
hydrodynamic model; instead, the measured value was directly taken as the input term
and the results were obtained directly by using the network. The experimental results
effectively demonstrated the significance and effectiveness of this method.

The developed AI model has the significant advantage of using a small amount of
local measurement data to simulate and obtain more accurate results, even when there
are no local measurement data. This is because machine learning continuously learns the
potential relationship between input and target values and provides complex mathematical
expressions that can easily be re-programmed into other retyped programs, effectively
applying the learned expressions. Transfer learning also provides the possibility for studies
in areas without observational data. Once there are certain similarities in water flow,
transfer learning can be used to solve problems in areas without data using the knowledge
learned in areas with sufficient data to measure. The point to reiterate is that the data
obtained do not necessarily fully match the measurements or the predictions obtained by
training the hydrodynamic model, but it has been shown in the studies that these slight
differences are completely acceptable and can be considered relatively accurate. The values
of error indices calculated in the experiments have shown that it is feasible to use the
super-resolution learning model based on a convolutional neural network as an alternative
to the hydrodynamic model for new scenarios.

However, the machine learning model did not successfully capture the abnormal
fluctuations at the entrance of the bend, and this error did not obviously occur in the
interpolation method. This may be because the result of the model may be smoother,
but it is better than others on the whole. In future research, we will use stricter physical
constraints to more accurately simulate the abnormal flow in the key areas of sharp bends.

5. Conclusions

A new super-resolution architecture was developed and applied to the actual flow
situation using transfer learning. The model was compared with traditional models (in-
cluding PSRCNN, Bilinear, Nearest, and Bicubic), and a relatively good correlation with
the actual situation was demonstrated. Then, transfer learning was carried out to evaluate
the universality of the method, and a remarkable superior performance was found.

The remarkable advantage of this model is that it can be used for super-resolution
processing, and the data of this research area can be obtained from a small number of
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observation points. Model debugging and simulation analysis were conducted for 135◦

and 30◦ bends and the Xiaosi River basin. For the 135◦ and 30◦ bend cases, OpenFOAM
was used for the hydrodynamic model simulation, and for the Xiaosi River, the Delft3D
model was used. The comprehensive dataset generated by the hydrodynamic model was
used to train and validate the deep learning model. The results of the model comparison
show that the model can simulate the flow field distribution of the bend flow better than
the other methods.

To the best of the authors’ knowledge, DSRCNN was first proposed and applied in
meandering rivers. In the simulation, it was also difficult to capture the flow fluctuation at
the entrance of the bend. In future research, we will test different data processing methods
and add more constraints to further improve the accuracy of the model simulation. And
we will use transfer learning to simulate more complex cases.

Supplementary Materials: The dataset used in the article can be downloaded at: https://www.
mdpi.com/article/10.3390/w16030425/s1.
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