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Abstract: The cause mechanism of collapse disasters is complex and there are many influencing
factors. Convolutional Neural Network (CNN) has a strong feature extraction ability, which can
better simulate the formation of collapse disasters and accurately predict them. Taihe town’s collapse
threatens roads, buildings, and people. In this paper, road distance, water distance, normalized
vegetation index, platform curvature, profile curvature, slope, slope direction, and geological data
are used as input variables. This paper generates collapse susceptibility zoning maps based on
the information value method (IV) and CNN, respectively. The results show that the accuracy of
the susceptibility assessment of the IV method and the CNN method is 85.1% and 87.4%, and the
accuracy of the susceptibility assessment based on the CNN method is higher. The research results
can provide some reference for the formulation of disaster prevention and control strategies.

Keywords: collapse; susceptibility; convolutional neural network (CNN); information value method
(IV); Taihe town

1. Introduction

Collapse is a geological phenomenon characterized by the detachment and sudden
collapse of a steep slope of rock or soil, resulting in the accumulation of material at the
foot of the slope or in a valley due to gravity, often leading to significant loss of life and
property. Collapses include rock falls, soil falls, and ice falls, which are different from
landslides. A collapse occurred on 14 August 2019, at Chengkun Aidai railway station in
Suxion, Ganluo County, Sichuan Province, China, where a rock mass detached from a slope,
resulting in the death of seventeen workers and blocking railway traffic [1]. On 3 June 1980,
a catastrophic collapse occurred at the Yanchihe phosphate mine in Yuan’an County, Hubei
Province, claiming the lives of 284 people [2]. Therefore, the susceptibility assessment of
collapse disasters can provide support for earthquake prevention, disaster reduction, and
engineering construction. With the development of the Geographical Information System
(GIS) and Remote Sensing (RS) technology, geological hazard susceptibility assessments
have also become more efficient and accurate, which greatly accelerates the research
process in this field. The assessment methods of geological hazards mainly include the
Analytic Hierarchy Process (AHP) [3–7], the Support Vector Machine (SVM) [8,9], the
Information Value method (IV) [10,11], the Frequency Ratio method (FR) [4,12], the Weight
of Evidence method (WOE) [4,13,14], Artificial Neural Network (ANN) [15–17], Random
Forest (RF) [8,18] and a variety of model coupling methods [19–22].

In recent years, with the significant improvement in the quality and quantity of
geological disaster data, deep learning has been widely used in disasters, such as tsunami
disasters [23,24], earth prediction [25,26], volcanic eruptions [27,28], et al. But the current
hot research is still focused on the field of landslides and land subsidence, rather than
collapse. Ding Qing et al. [29] have used Long Short Term Memory (LSTM) to predict
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ground subsidence in Wuhan, China. JM et al. [30] have used LSTM, the recurrent neural
network (RNN), and the deep neural network (DNN) to make landslide susceptibility
maps for Maoxian County, China. Abaker et al. [31] have introduced a deep learning- and
IoT-based framework for rock-fall early warning, devoted to reducing rock-fall risk with
high accuracy. Tian et al. [32] present a non-contact vision method using deep learning and
computer vision technology to study collapse.

As one of the most representative methods in deep learning, a CNN has a strong learn-
ing ability to better simulate the formation of disaster and accurately predict the location of
potential disaster points. Ge et al. [33] use five kinds of CNN, including AlexNet, Inception-
v3, Xception, ResNet-101, and DenseNet-201, to predict landslide susceptibility along a
transmission line. Wang et al. [34] have constructed one-dimensional, two-dimensional,
and three-dimensional landslide data expression forms, and proposed three CNN mod-
els to evaluate landslide susceptibility in Yanshan County, China. Yue et al. [35] used
a two-step CNN to classify seismic events. Although there are few studies on the as-
sessment of collapse susceptibility based on convolutional neural networks, this study
can explore the applicability of convolutional neural networks in the field of collapse
vulnerability evaluation.

In this paper, Taihe Town is taken as the research area. Based on GIS and TensorFlow
platforms, multi-source data are used to generate and compare the collapse hazard suscep-
tibility zoning maps based on CNN and IV. On the one hand, this paper provides a basis for
the assessment of collapse susceptibility and, on the other hand, explores the applicability
of the CNN method in the field of collapse.

The main research schemes are as follows:

(1) Referring to the existing literature and expert experience, we sort previous studies in
the study area; collect distance from water system, distance from the road, land cover
type, normalized difference vegetation index, planform curvature, profile curvature,
slope, aspect, and geological data; and conduct data pre-treatment.

(2) Conduct correlation analysis on the data and eliminate the data with strong correlation.
The data are classified, and the information quantity carried by each classification
factor is calculated. Based on the information value of each factor, the collapse
susceptibility partition map is made by superposition.

(3) Standardize the data and make the data set; Construct the CNN and use data sets
for training and validation. The CNN was tested after training. The tested CNN was
used to predict the susceptibility of the study area to collapse.

(4) The susceptibility zoning maps based on the two methods were compared using
ROC curves.

2. Materials and Methods
2.1. Overview of the Study Area

The study area, Taihe Town, is located in the southeastern part of Zichuan District,
Zibo City, Shandong Province (Figure 1). The area features a crisscrossing network of roads
and is an important transportation hub in western and southern Shandong [36]. The town
with the largest population and number of villages is located within the coordinates of
118.003◦ E to 118.252◦ E, 36.607◦ N to 36.375◦ N (Figure 1) [37]. The water system within
the Taihe Town area belongs to the Xiaoqing River Basin, which includes two primary
rivers, the Zihu and E Zhuang, and 42 secondary rivers such as Dongyuliang, Xiyuju
Feng, and Xiangyu, with a river network density of 0.7 km/km2 and a total runoff of
50 million m3. Among them, the Zihu River is the largest river in the area, with a length
of 28 km. Taihe Town belongs to a warm-temperate, semi-humid, continental monsoon
climate, characterized by four distinct seasons, abundant sunshine, and plenty of rainfall
as well as a dry and windy spring, a hot and rainy summer, a cool and dry autumn, and a
cold and less snowy winter. The average annual temperature in the area is 12.9 ◦C, with an
average of 2564 h of sunshine per year. The average annual precipitation is 730 mm, with
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an average of 52 rainy days per year. The rainfall is concentrated from June to September
each year, with the most rainfall occurring in July and August.

Figure 1. Location of study area.

Based on the latest geological hazard field survey results in Zichuan District, there are
53 hazards or disaster points in the Zichuan area, which cumulatively threaten a population
of 1767 and property worth 3.705 million RMB (The data came from the project “Study
on InSAR Interpretation optical Remote Sensing Interpretation and Early Identification of
Geological Hazards in Shandong Province in 2021 Geological Hazard Risk Survey, China”
and from the project report “Research on Geological Hazard Identification Based on the
combination of Air and Earth Integration and disaster pregnancy Background Indicators
(Taking Zichuan District as an example)”). Some pictures of the Taihe town are shown in
Figure 2. The collapse sites in Taihe Town are shown in Figure 3.

2.2. Multi-Source Data

Cataloged data of geological hazard potential danger points provide information
on the location, size, and type of hazards in a particular area and is based on field in-
vestigations and compiled from collapse events. The elevation data of 30 m × 30 m
resolution used in this analysis is the data source of slope, aspect, planform curvature,
and profile curvature. Cataloged data of geological hazard potential danger points and
DEM data are provided by Shandong GEO-Surveying&Mapping Institute in China; The
1:250,000-resolution road, river, and geological data are downloaded from the National
Catalogue Service For Geographic information (https://www.webmap.cn/, accessed on
25 October 2022); Land cover data is produced from the SinoLC1 dataset and is accessible at
https://doi.org/10.5281/zenodo.7707461 (accessed on 4 May 2023). The produced SinoLC1
dataset is the first 1-m resolution and currently the highest resolution land cover product
that covers all of China [37]. The Normalized Difference Vegetation Index (NDVI) dataset
is provided by the National Ecosystem Science Data Center, National Science & Technology
Infrastructure of China. (http://www.nesdc.org.cn, accessed on 6 May 2023). The accuracy
and coordinate system of each evaluation factor data are different. Multiple data are unified
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into the unit grid with the same resolution of 30 m × 30 m, and the coordinate system is
uniformly processed as WGS_1984_UTM_Zone_50N, which is convenient to complete the
superposition of multiple factor attribute values.

Susceptibility assessment of collapse hazards requires a good understanding of the
environment and trigger factors that induce collapse [38,39]. Representativeness is required
for the data used to evaluate the susceptibility of collapse hazards. According to the
relevant literature and expert suggestions, this text initially selects nine data variables for
research: distance from water system, distance from the road, land cover, NDVI, planform
curvature, profile curvature, slope, aspect, and geological data.

Figure 2. Scene of hazard in study area.
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Figure 3. The geographical location of the disaster site in Taihe Town.

2.2.1. Distance from Water System

In this study, the water system data we used was the river system. In the assessment
of collapse susceptibility, distance from the water system is an important parameter, as the
influence of water is one of the main factors leading to collapse. The closer the distance
to the water system, the higher the susceptibility to collapse. Specifically, water can cause
soil damage through infiltration, gravity, water pressure, and other mechanisms, leading
to the occurrence of collapse. Additionally, water can increase the weight of soil, increase
soil pressure, and reduce the shear strength of soil, thereby increasing the sensitivity and
susceptibility to collapse.
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2.2.2. Distance from Road

The presence of roads and activities such as cutting slopes for road construction can
alter the original stable state of soil and have a significant impact on the stability of the
land, thereby affecting the susceptibility to collapse. In general, the closer the distance to
roads, the higher the susceptibility to collapse or landslide [40].

2.2.3. Land Cover Type

Land cover type is one of the important parameters. Different land cover types have
varying effects on the susceptibility to collapse. Specifically, vegetation cover can increase
the shear strength and stability of soil and reduce soil erosion and damage, thus reducing
the risk of collapse. Therefore, areas with better vegetation cover generally have lower
susceptibility to collapse. Conversely, the surface of exposed soil is susceptible to erosion
and damage, which can lead to soil looseness and loss, thereby increasing the risk of
collapse.

2.2.4. Normalized Difference Vegetation Index (NDVI) Data

In the assessment of susceptibility to collapse disasters, the NDVI can be used as
one of the indicators for evaluation. The NDVI is an index obtained by calculating the
ratio between vegetation infrared reflectance and visible reflectance, which can reflect
the vegetation cover on the land surface. Vegetation cover can affect the stability of the
land, thereby influencing the susceptibility to collapse. Areas with better vegetation cover
generally have lower susceptibility to collapse, while areas with poor vegetation cover are
more prone to collapse. Therefore, the NDVI can be used to evaluate the vegetation cover
of the land, and thus infer the susceptibility to collapse.

2.2.5. Planform Curvature

In the assessment of susceptibility to collapse disasters, planform curvature is one of
the important parameters that can be used to evaluate the morphological characteristics
and terrain changes of land surfaces, and thus infer the susceptibility to collapse. Planform
curvature refers to the curvature radius of the land surface in the horizontal direction and
can reflect the changes in the land surface. For land with different planform curvature, the
susceptibility to collapse varies. Generally, areas with smaller planform curvature have
relatively flat land surfaces and a lower risk of collapse, while areas with larger planform
curvature have relatively complex land surfaces and a higher risk of collapse.

2.2.6. Profile Curvature

Profile curvature refers to the curvature radius of the land surface in the vertical
direction and can reflect the changes in the land surface as well as the potential slope
change rate. For land with different profile curvature, the susceptibility to collapse varies.
Areas with larger profile curvature have relatively complex land surfaces and a higher risk
of collapse.

2.2.7. Slope

Slope reflects the degree of inclination and vertical changes of the land surface. For
land with different slopes, the susceptibility to collapse varies. Areas with smaller slopes
generally have relatively flat land surfaces and a lower risk of collapse, while areas with
larger slopes have relatively steep land surfaces and a higher risk of collapse.

2.2.8. Aspect

Slope aspect refers to the direction of inclination of the land surface, which can to
some extent reflect the direction of natural forces such as water flow and wind on the land
surface. For land with different slope aspects, the natural forces acting on it also differ,
leading to different levels of susceptibility to collapse. For example, land with a slope
aspect facing the direction of rainfall is more susceptible to water erosion and has a higher
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risk of collapse. Conversely, land with a slope aspect opposite to the direction of rainfall is
less susceptible to water erosion and has a relatively lower risk of collapse.

2.2.9. Geological Data

Geological data can directly or indirectly provide information on geological structures,
lithology, and other aspects of information, including the composition and structural char-
acteristics of rocks. Different rock types behave differently under stress and deformation.
Lithologic data can provide information on the type, distribution, thickness, fractures, and
joints of rocks in a certain area, which can help people understand the mechanical proper-
ties and stability of rocks, and thus evaluate the likelihood and degree of danger of collapse
disasters in that area. Taking the Yihe Formation of Quaternary Holocene in the study
area as an example, this rock formation is a fluvial sediment, which is mainly composed
of granular materials such as gravel, sand, and mud [41]. The grit particles are relatively
large, have high stability, and are relatively not easy to collapse. On the other hand, the
shaly sediment has small particles, high water content, and is easy to flow and deform, so
it is more likely to collapse when subjected to external forces. The rocks deposited in the
Yihe Formation and other fluvial facies often have certain structural characteristics, such
as bedding plane, joint, and fissure. These structural features have important effects on
the stability and anti-collapse ability of rock mass. If the rock layer tends to tilt, cross, or
fracture, it will make the rock mass easy to slide and collapse when subjected to external
forces. Joints and fissures may become the occurrence and expansion path of rock mass
collapse, which increases the instability of rock mass.

Performing correlation analysis on multiple datasets and eliminating those with high
correlation can lead to more accurate evaluation results. This paper uses the Pearson
correlation coefficient based on the GIS platform to calculate the degree of correlation
between sample features. The Pearson correlation coefficient is generally used to mea-
sure the degree of linear correlation between two vectors [42]. Based on the information
provided, the dataset “land cover type” has a significant negative correlation with the
“NDVI data”, with a correlation coefficient of −0.566, which exceeds the threshold of
0.5 (Table 1). In the subsequent processing, “NDVI data” was retained, and “land cover
type” data was discarded.

Table 1. Multi-source data correlation matrix.

Layer 1 2 3 4 5 6 7 8 9

1 1.000 0.240 0.224 −0.290 0.024 −0.129 −0.205 −0.017 0.005
2 0.240 1.000 0.178 −0.154 −0.016 −0.206 −0.271 −0.021 0.033
3 0.224 0.178 1.000 −0.566 −0.012 −0.120 −0.288 −0.056 0.085
4 −0.290 −0.154 −0.566 1.000 −0.038 0.113 0.262 0.014 −0.065
5 0.024 −0.016 −0.012 −0.038 1.000 0.110 −0.384 −0.007 −0.045
6 −0.129 −0.206 −0.120 0.113 0.110 1.000 0.302 0.033 −0.053
7 −0.205 −0.271 −0.288 0.262 −0.384 0.302 1.000 0.047 −0.054
8 −0.017 −0.021 −0.056 0.014 −0.007 0.033 0.047 1.000 −0.063
9 0.005 0.033 0.085 −0.065 −0.045 −0.053 −0.054 −0.063 1.000

Notes: Layer: 1. Distance from water system 2. Distance from road 3. Land cover type 4. NDVI data 5. Planform
curvature 6. Profile curvature 7. Slope 8. Aspect 9 Geological data.

2.3. Methods
2.3.1. Information Value Method

The information value method (IV) is based on statistical models and information
theory and calculates the information value of a specific research unit to comprehensively
measure the probability of geological disasters. The IV method is a very popular binary
statistical method with clear physical meaning, simple operation, and high practicality. It
can effectively solve the problem of quantitative evaluation of geological disasters with
numerous factors that are difficult to quantify.
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The first step is to reclassify each data or influencing factor, and then calculate the
information value of each level of influencing factor [43]. In the context of using the IV
method for geological hazard susceptibility assessment, reclassifying plays a specific role in
simplifying and standardizing the input variables and their associated values. Reclassifica-
tion involves grouping or categorizing the original data into a smaller number of classes or
categories, which facilitates the analysis and interpretation of the variables’ contributions
to the hazard susceptibility. To avoid subjective bias in the reclassification process, the re-
searcher employed a method of engaging in discussions with other authors. By promoting
collaborative discussions and consensus-building among experts, the researcher sought to
increase the objectivity of the study. This collaborative process helped reduce the influence
of subjective biases, ensuring more reliable and trustworthy results in the reclassification.
The total information value is obtained by summing up the information values of multiple
factors. The classification of each factor is shown in (Figures 4–11) and its corresponding
information value is presented in Table 2. The basic formula is as follows (1), and the total
information value formula is as follows (2):

Iij = Ln(
Ni/N
Sij/S

)(i, j = 1, 2 . . . n) (1)

where Iij is the IV of collapse disaster under the class j for factor i; Ni is the number of
disaster points of subcategory j under factor i; N is the total number of hazard points; Sij is
the number of grids of subcategory j under factor i; and S is the total number of grids of
the study area. The information value of each factor is shown in Table 2.

I =
n

∑
i=1

Iij =
n

∑
i=1

Ln(
Ni/N
Sij/S

) (2)

where, I is the total IV of each grid, which is the information value abbreviated. The larger
the value of I, the more prone the region is to collapse disasters. When using the IV method,
each factor has the same weight of 1. The total information content calculated is shown in
Figure 12.

Table 2. Each data classification and its information value.

Layers/i Value j Sij Ni Ni/N Sij/S I

Distance from
water system

1 >300 272,871 14 0.778 0.908 −0.155
2 0 ≤ 50 4638 0 0.000 0.015 0.000
3 50 ≤ 100 4581 1 0.056 0.015 1.293
4 100 ≤ 150 4610 0 0.000 0.015 0.000
5 150 ≤ 200 4630 0 0.000 0.015 0.000
6 200 ≤ 250 4561 2 0.111 0.015 1.991
7 250 ≤ 300 4587 1 0.056 0.015 1.292

Distance from
road

1 >300 243,257 6 0.333 0.810 −0.887
2 0 ≤ 50 11,362 6 0.333 0.038 2.176
3 50 ≤ 100 10,125 2 0.111 0.034 1.193
4 100 ≤ 150 9651 1 0.056 0.032 0.548
5 150 ≤ 200 9187 0 0.000 0.031 0.000
6 200 ≤ 250 8631 1 0.056 0.029 0.660
7 250 ≤ 300 8265 2 0.111 0.028 1.396

NDVI

1 −0.2 ≤ 0.012 5943 0 0.000 0.020 0.000
2 ≤0.228 7082 1 0.056 0.024 0.857
3 ≤0.313 28,487 8 0.444 0.095 1.545
4 ≤0.369 79,830 4 0.222 0.266 −0.179
5 ≤0.421 95,414 3 0.167 0.318 −0.645
6 ≤0.492 65,680 1 0.056 0.219 −1.370
7 ≤0.713 18,023 1 0.056 0.060 −0.077
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Table 2. Cont.

Layers/i Value j Sij Ni Ni/N Sij/S I

Planform
curvature

1 ≤11.546 56,136 5 0.278 0.191 0.375
2 ≤20.847 64,660 5 0.278 0.220 0.234
3 ≤30.790 49,622 3 0.167 0.169 −0.012
4 ≤42.015 36,046 3 0.167 0.123 0.307
5 ≤54.524 26,866 0 0.000 0.091 0.000
6 ≤68.636 23,884 0 0.000 0.081 0.000
7 ≤82.106 36,891 2 0.111 0.125 −0.121

Profile
curvature

1 ≤2.849 78,882 10 0.556 0.268 0.728
2 ≤5.249 80,357 4 0.222 0.273 −0.207
3 ≤7.948 62,218 3 0.167 0.212 −0.238
4 ≤10.947 38,825 1 0.056 0.132 −0.865
5 ≤14.546 21,662 0 0.000 0.074 0.000
6 ≤19.795 9640 0 0.000 0.033 0.000
7 ≤38.390 2521 0 0.000 0.009 0.000

Slope

1 ≤6.516 50,050 7 0.389 0.168 0.837
2 ≤11.869 63,884 7 0.389 0.215 0.593
3 ≤16.989 62,680 3 0.167 0.211 −0.235
4 ≤21.877 53,944 0 0.000 0.181 0.000
5 ≤27.229 39,417 0 0.000 0.133 0.000
6 ≤34.211 21,192 1 0.056 0.071 −0.249
7 ≤59.346 6093 0 0.000 0.020 0.000

Aspect

1 flat 1864 0 0.000 0.006 0.000
2 north 39,613 2 0.111 0.133 −0.182
3 northeast 38,874 1 0.056 0.131 −0.856
4 east 34,563 6 0.333 0.116 1.053
5 southeast 34,731 2 0.111 0.117 −0.050
6 South 32,863 0 0.000 0.111 0.000
7 southwest 33,422 5 0.278 0.112 0.904
8 west 37,812 0 0.000 0.127 0.000
9 northwest 43,518 2 0.111 0.146 −0.276

Geological
data

1 νδfK↓1↑1 13,415 0 0.000 0.045 0.000
2 χCK↓1↑4 468 0 0.000 0.002 0.000
3 ∈↓4→O↓1→J∠s 54,927 2 0.111 0.183 −0.498
4 s 4788 0 0.000 0.016 0.000
5 νδfK↓1↑1 1406 0 0.000 0.005 0.000
6 ∈↓3→J∠zˆ 10,006 0 0.000 0.033 0.000
7 ∈↓2→Cˆ∠zˆ 914 0 0.000 0.003 0.000
8 ∈↓2–3→Cˆ∠m 4341 0 0.000 0.014 0.000
9 ∈↓3–4→J∠g 24,371 4 0.222 0.081 1.008
10 ∈↓4→O↓1→J∠cˆ 80,778 3 0.167 0.269 −0.478
11 Qh∠y 25,527 8 0.444 0.085 1.655
12 O↓2→Mw 12,826 0 0.000 0.043 0.000
13 O↓2→Mt 3189 0 0.000 0.011 0.000
14 O↓2→Mt-w 801 0 0.000 0.003 0.000
15 O↓2→Md 9367 0 0.000 0.031 0.000
16 O↓2→Md-b 19,719 0 0.000 0.066 0.000
17 O↓2→Mb 12,154 0 0.000 0.040 0.000
18 O↓2→Mb-w 1315 0 0.000 0.004 0.000
19 O↓1→J∠s⊥↑a-b 20,166 1 0.056 0.067 −0.189
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Figure 4. Distance from water system.
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Figure 5. Distance from road.
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Figure 6. NDVI.
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Figure 7. Planform curvature.
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Figure 8. Profile curvature.
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Figure 9. Slope.



Water 2024, 16, 709 16 of 35

Figure 10. Aspect.
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Figure 11. Geological data.
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Figure 12. Collapse susceptibility zoning map based on IV.
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2.3.2. Convolutional Neural Network

The CNN consists of a convolutional layer, a pooling layer, and a fully connected layer.
These additional layers enable the CNN to effectively process and analyze high-dimensional
data by extracting relevant features at different scales and levels of abstraction.

The convolutional layer in the CNN uses a convolution kernel to extract features from
the input data. By convolving the kernel over the input data, the network can identify
and capture important features of the data, such as edges, shapes, and textures. The basic
calculation formula is as follows (3):

Cj =
N

∑
i

f
(
ωj ∗ xi + bj

)
j = 1, 2, 3, 4, . . . k (3)

In the equation, k represents the number of convolution kernels; Cj represents the
output of the j-th convolution kernel; f represents the non-linear activation function;
i represents the spatial position of the convolution operation; xi represents the input
data corresponding to the convolution window; and ωj and bj represent the weight and
bias, respectively.

The pooling operation plays a crucial role in reducing the dimensionality of the
output feature maps generated by the convolutional layer. By downsampling the feature
maps, pooling helps to reduce the number of parameters between layers, thereby reducing
model complexity and improving computational efficiency. The function prototype is as
follows (4):

Lout =

[
Lin + 2 ∗ padding− dilation ∗ (kernelsize − 1)− 1

stride
+ 1

]
(4)

In the equation, if the input data shape is (N, C, Lin), and the output shape is (N,
C, Lout), the kernelsize is the size of the sliding windows; stride—the stride of the sliding
window must be >0; padding—implicit negative infinity padding to be added on both sides;
dilation—the stride between elements within a sliding window.

2.3.3. Data Set Construction

Neural networks tend to perform better with standardized and larger datasets. To
standardize the multi-source data, the values of each layer are normalized to the range of
0–1. Due to the lack of convenient data for precise disaster points, the available disaster
point locations were used to expand the dataset. The collapse point of Taihe town is mainly
a small collapse, and the specific range of each collapse point is not all in a 30 m × 30 m
grid. According to the first law of geography, “all things are related to other things, but
things near are more related than things far away”. By considering points that are close
to the collapse point and have similar environmental conditions or characteristics, the
introduction of irrelevant information and noise can be effectively reduced. Therefore,
we choose the eight selected points within the grid selected around the hazard point
coordinates as a supplement. Specifically, 8 points were selected around each of the original
18 collapse hazard points, resulting in a total of 162 collapse hazard points. Additionally,
162 non-collapse hazard points were randomly selected outside of a 1 km buffer zone. In
total, there were 324 points. The locations are shown in Figure 13.

Based on the expanded collapse point data, a one-dimensional representation was
constructed for training and validating the convolutional neural network. The researchers
used 70% of the data for model training and 30% of the data for model validation. The data
representation is shown in Figure 14.
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Figure 13. Expanded collapse sites.
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Figure 14. One-dimensional disaster data.

2.3.4. CNN Construction

In this study, the CNN was built based on the tensorflow2.5.0 machine learning plat-
form. The parameters of each layer are shown in Table 3, with a total of 14,657 parameters,
each of which was involved in the training process. The first layer is a convolutional layer,
which is also the input layer, with 32 neurons and 32 bias parameters, using a 3 × 1 kernel
size. The second layer is also a convolutional layer, with 64 neurons and 64 bias parameters,
followed by a 1D max pooling layer. The third layer is a Flatten layer, which converts the
input data from multiple dimensions to a one-dimensional format by flattening the data.
The fourth layer is a dense layer with 64 neurons.

Table 3. Convolutional neural network structure and parameters.

Layer (Type) Output Shape Param #

conv1d (Conv1d) (None, 6, 32) 128
conv1d_1 (Conv1d) (None, 6, 32) 6208

max_pooling1d
(MaxPooling1D) (None, 2, 64) 0

flatten (Flatten) (None, 128) 0
dense (Dense) (None, 128) 8256

dropout (Dropout) (None, 128) 0
dense_1 (Dense) (None, 128) 65

Total params: 14,657
Trainable params: 14,657
Non-trainable params: 0

2.3.5. The CNN Training and Verification

The loss curves for the training and validation sets are shown in Figure 15. The model
parameters were saved at the 23rd epoch, where the minimum loss value of 0.3392 was
achieved and the validation accuracy was 0.8367. The training process was halted when
the validation loss had increased for five consecutive epochs, and the optimal parameters
were saved.
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Figure 15. Training and Validation Loss.

The confusion matrix is made on the training set and the verification set
(Figures 16 and 17), and the abbreviations are shown in Table 4:

Figure 16. Confusion matrix of train dataset.
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Figure 17. Confusion matrix of validation dataset.

Table 4. Confusion matrix.

Confusion
Predicted Value

Positive Example Negative Example

True value
Positive example TP FN

Negative example FP TN

True Positive (TP): The number of positive cases that were correctly predicted by the
model. This refers to the situation where the true label of the data is positive, and the
predicted label is also positive.

True Negative (TN): The number of negative cases that were correctly predicted by
the model. This refers to the situation where the true label of the data is negative, and the
predicted label is also negative.

False Positive (FP): The number of negative cases that were incorrectly predicted as
positive by the model. This refers to the situation where the true label of the data is negative,
but the predicted label is positive.

False Negative (FN): The number of positive cases that were incorrectly predicted
as negative by the model. This refers to the situation where the true label of the data is
positive, but the predicted label is negative.

To further evaluate the confusion matrix, the precision, recall, and F1-score metrics
were used.

Precision: Precision, also known as positive predictive value, measures the proportion
of predicted positive cases that are actually positive. It is calculated as (5):

Precision =
TP

TP + FP
(5)
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Recall : Recall, also known as sensitivity or true positive rate, measures the proportion
of actual positive cases that are correctly identified as positive by the model. It is calculated
as (6):

Recall =
TP

TP + FN
(6)

F1-score: The F1-score is the harmonic mean of precision and recall, and it provides a
single measure of the overall performance of the model. It is calculated as (7):

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(7)

3. Results
3.1. CNN Calibration and Verification

The results of the CNN detection are shown in Table 5. The results reported on the
training set show that for samples with a label of 0.0, the CNN achieved a precision of 0.94,
a recall of 0.84, and an F1-score of 0.89. For samples with a label of 1.0, the CNN achieved a
precision of 0.86, a recall of 0.95, and an F1-score of 0.90. The results reported on the test set
show that for samples with a label of 0.0, the CNN achieved a precision of 0.88, a recall of
0.86, and an F1-score of 0.84. For samples with a label of 1.0, the CNN achieved a precision
of 0.86, a recall of 0.88, and an F1-score of 0.87. Overall, the performance of the model on
the training and test sets was comparable, and the F1-scores were high, indicating good
performance of the CNN.

Table 5. Testing of convolutional neural networks, including precious, recall, and F1-score.

Precision Recall F1-Score

Train dataset Report
0.0 0.94 0.84 0.89
1.0 0.86 0.95 0.90

Test dataset Report
0.0 0.88 0.86 0.84
1.0 0.86 0.88 0.87

3.2. Collapse Zoning Map Based on the CNN and IV Method

Based on the trained CNN, collapse susceptibility prediction was carried out on a
grid-by-grid basis in the study area, and a susceptibility zoning map was created (Figure 18).
The susceptibility values in the study area range from 0 to 1, with higher values indicating
higher susceptibility of the grid cell to collapse hazards.

The results (Figures 12 and 18) were reclassified into eight classes and five classes
(Figures 19–22), respectively, and were evaluated using ROC curves.

According to Table 6 and Figure 23, the accuracy of the information value method
was 85.1% and 85.9%, while the accuracy of the CNN-based approach was 87.9% and
87.4%. The ROC curves based on the CNN performed well for both eight-class and five-
class classifications, with larger AUC values compared to those of the information value
method. The precision of the CNN-based approach was significantly higher than that of
the information value method by 1.5% to 2.8%.
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Figure 18. Collapse susceptibility zoning map based on the CNN.
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Figure 19. The susceptibility maps based on the IV method are divided into five types.
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Figure 20. The susceptibility maps based on the CNN are divided into five types.
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Figure 21. The susceptibility maps based on the IV method are divided into eight types.
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Figure 22. The susceptibility maps based on the CNN are divided into eight types.
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Table 6. Collapse susceptibility assessment frequency ratio.

Name Susceptibility Grid
Number

Collapse
Number Grid Ratio Disaster

Proportion AUC

CNN TO 5
TYPE

1 150,537 0 0.501 0.000

0.879
2 48,033 1 0.160 0.056
3 29,542 0 0.098 0.000
4 27,408 4 0.091 0.222
5 44,958 13 0.150 0.722

IV TO 5
TYPE

1 73,360 1 0.249 0.056

0.851
2 100,329 1 0.341 0.056
3 63,802 2 0.217 0.111
4 38,535 2 0.131 0.111
5 18,079 12 0.061 0.667

CNN TO 8
TYPE

1 127,531 0 0.424427 0.000

0.874

2 45,276 1 0.15068 0.056
3 26,382 0 0.0878 0.000
4 19,515 0 0.064947 0.000
5 16,765 1 0.055794 0.056
6 16,810 1 0.055944 0.056
7 20,138 8 0.06702 0.444
8 28,061 7 0.093388 0.389

IV TO 8
TYPE

1 36,302 0 0.123432 0.000

0.859

2 63,830 1 0.217031 0.056
3 61,603 1 0.209459 0.056
4 47,636 0 0.161969 0.000
5 34,070 2 0.115843 0.111
6 24,755 2 0.084171 0.111
7 17,358 5 0.05902 0.278
8 8551 7 0.029075 0.389

Figure 23. ROC and AUC.

4. Discussion

The CNN is a deep learning model that is commonly used to analyze visual images,
especially in the field of remote sensing images, using two-dimensional convolutional
neural networks for landslide and ground object recognition [44–46]. Compared with the
traditional method of assigning weight to each influence factor, the CNN has more powerful
feature learning functions, such as automatic feature extraction and processing of high-
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dimensional data, and can extract abstract information that is difficult to describe directly.
Compared with landslides, collapse also has many influencing factors and complicated
causes. The CNN has been widely used in landslide susceptibility prediction [47–49], so
we try to apply the CNN to the assessment of collapse susceptibility.

Previous studies of geological hazards, especially their susceptibility, have mainly
focused on landslides, debris flows, land subsidence, and so on. In this paper, the CNN and
IV methods are used to study the collapse hazard of Taihe Town to analyze the applicability
of the CNN in the field of collapse. In geohazard susceptibility assessment, the IV method
is a common quantitative evaluation method [50,51]. It is based on statistical principles
and is used to assess the influence of different factors or variables on geohazard occurrence.
The advantages of the IV method lie in its ability to quantitatively assess the contribution
of different factors or variables to geohazard occurrence and provide a scientific basis for
decision-making. We compare the results based on the information method to prove that
the results based on the CNN are equally reliable.

There are many research methods on how to evaluate the vulnerability of geological
hazards. How to choose a suitable research method and how to consider the influence of
natural conditions and human activities to carry out accurate and reasonable susceptibility
regionalization are still major challenges. When utilizing the CNN for collapse susceptibility
assessment, accurately selecting the appropriate influencing factors and ensuring the
reliability and robustness of the model in the presence of numerous factors are crucial.
Here are some approaches to address these issues: 1© Prior analysis and feature selection:
Conduct a thorough analysis and study of various potential influencing factors before
building the CNN model. This includes human activities, geological features, climate
conditions, land use, and more. Through in-depth analysis of data and domain knowledge,
select the key factors that have the most significant impact during disasters. The feature
selection process should be based on scientific principles and expert knowledge to ensure
that the chosen influencing factors are relevant and meaningful. 2© Integration of multi-
source data: Integrate information from multiple data sources, such as remote sensing data,
GIS data, human activity data, etc. By leveraging multiple data sources, comprehensive
and accurate information about influencing factors can be obtained. This helps improve the
reliability and robustness of the model, reducing biases and incompleteness associated with
a single data source. 3©Model validation and evaluation: Perform model validation and
evaluation to verify its reliability and robustness. Use techniques such as cross-validation,
validation sets, and test sets to assess the model’s performance on different datasets.
This allows for checking whether the model can produce stable and consistent results
across multiple datasets and different scenarios. 4© Continuous improvement and updates:
Continuous improvement and updates of the model are key to ensuring reliability and
robustness as data and domain knowledge accumulate. Regularly review and update the
model to adapt to new data, new influencing factors, and new challenges.

The difficulty of neural network construction lies in the adjustment of hyperparam-
eters. How to optimize hyperparameters is very important to improve accuracy [52].
Optimizing hyperparameters refers to adjusting the hyperparameters of a neural network
to find the optimal configuration that maximizes the network’s performance. Hyperparam-
eters include learning rate, batch size, number of layers, activation functions, and others.
They directly affect the training process and performance of the neural network. In this
study, based on experience and previous experimental results, select a set of reasonable
hyperparameter values. These empirical rules may come from domain knowledge or
recommendations from the relevant literature. Although this method is relatively simple, it
can yield good results in certain cases.

During the dataset expansion process, we strategically select eight points surrounding
each original disaster point. This selection takes into account the proximity to the collapse
point as well as the similarity in environmental conditions and characteristics. By doing so,
we effectively minimize the introduction of irrelevant information and noise. Hence, we
supplement the dataset with these carefully chosen eight points within the grid surrounding
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the coordinates of the disaster point. However, the noise generated by these data or the
resulting data imbalance still needs to be further quantified.

The incremental method of data points directly affects the accuracy of the results [53].
Moreover, the existing research is challenging to select valuable data. How to choose the
points reasonably remains to be studied. An et al. [54] select non-disaster points evenly
distributed throughout the region outside the 500 m buffer of the disaster point. Wang
et al. [55] found the low-prone areas based on the IV method and randomly selected several
non-hazard points in the extremely low and low-prone areas. In this paper, we adopt
the most commonly used buffer method, which has universal applicability. This is an
oversampling method, the purpose of which is to generate a new sample from an existing
few samples. However, the model learning sample noise will reduce the classification
accuracy of the model. This paper lacks the study of noise and hopes to describe it in
the future.

In this paper, the land cover type data is excluded and NDVI data is retained when the
data correlation analysis is carried out. The comparison of land cover types was not made
by excluding NDVI data. What kind of data should be retained to improve the accuracy of
the results needs further research.

5. Conclusions

The CNN has excellent data extraction capabilities and can discover potential func-
tional relationships from complex data. In terms of collapse susceptibility prediction, the
CNN can effectively extract advanced features and accurately predict the susceptibility of
collapse. In this study, Taihe Town, Zibo City, Shandong Province was selected as the study
area, and both the CNN and IV methods were used for collapse susceptibility zoning. In the
CNN-based susceptibility assessment, eight influencing factors, including distance to roads
and water systems, NDVI, plane curvature, profile curvature, slope, aspect, and geological
data, were selected. The raw collapse data was incrementally processed and converted into
one-dimensional data, and a CNN structure was constructed for collapse susceptibility
analysis. At the same time, the susceptibility map is made by the IV method and compared
with the susceptibility map based on the CNN. This paper proves the feasibility of using
the CNN to evaluate the collapse susceptibility assessment in the study area. The following
conclusions were obtained:

(1) The results of collapse susceptibility assessment based on both the IV and CNN meth-
ods can effectively characterize the susceptibility of collapse in the study area, with a
large number of collapse points falling in the high susceptibility zones. The accuracy
of the CNN-based results was higher than that of the IV method by approximately
1.5% to 2.8%, indicating that the CNN-based results are more accurate and reliable
than those obtained using the information value method.

(2) The 1D-CNN structure based on one-dimensional data achieved reliable prediction
results in collapse susceptibility assessment, with an accuracy of 87.9% and 87.4%.
The one-dimensional data structure can effectively present the relationship between
collapse and influencing factors.

(3) This study demonstrated the feasibility of using incremental data in dataset construc-
tion (Section 2.3.3). If non-disaster points can be accurately selected or sufficient data
is available when expanding the non-disaster points, the accuracy of the results may
be further improved.

(4) When the zoning map was reclassified into five or eight classes, the AUC values
did not show the same or decreasing trend, indicating that increasing the number of
classification data does not necessarily improve the growth rate.

(5) The CNN constructed in this study is not the optimal neural network structure,
and if all structures can be exhaustively searched, it may be possible to find model
parameters and hyperparameters with higher accuracy.
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(6) In this study, the effectiveness of the two methods was compared using ROC curves,
and the comparison was not based on the differences in the zoning maps. The next step
could be to use new methods to quantitatively characterize the degree of difference
between the two susceptibility zoning maps.

In conclusion, both CNN-based and IV-based collapse susceptibility assessments are
accurate and reliable. However, there are some challenges when applying the CNN model
to collapse susceptibility evaluation, such as the need for sufficient training samples and
complex hyperparameter optimization. To address these challenges and explore more
effective deep learning models, future research goals should focus on improving the CNN
model’s performance in collapse susceptibility assessment.
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