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Abstract: Clay is widely encountered in nature and directly influences seepage behaviors, exerting
a crucial impact on engineering applications. Under low hydraulic gradients, seepage behaviors
have been observed to deviate from Darcy’s law, displaying a non-linear trend. However, the
impacts of clay content on non-linear seepage behavior and its pore-scale mechanisms to date remain
unclear. In this study, constant-head seepage experiments were conducted in sand–clay porous media
under various hydraulic gradients. Low-field nuclear magnetic resonance (LF-NMR) technology
was utilized to monitor the bound-water and free-water contents of sand–clay porous media under
different seepage states. The results show a threshold hydraulic gradient (i0) below which there is
no flow, and a critical hydraulic gradient (icr) below which the relationship between the hydraulic
gradient (i) and seepage velocity (v) is non-linear. Both hydraulic gradients increased with clay
content. Moreover, the transformation between bound water and free water was observed during
the seepage-state evolution (no flow to pre-Darcy or pre-Darcy to Darcy). As the hydraulic gradient
reached the i0, the pore water pressure gradually overcame the adsorption force of the bound-water
film, reducing the thickness of the bound-water film, and causing non-linear seepage behavior. When
i0 < i < icr, the enlarging hydraulic gradient triggers the thinning of bound water and enhances the
fluidity of pore water. Moreover, the increasing clay content augments the bound-water content
required for the seepage state’s change.

Keywords: clay content; pre-Darcy; nuclear magnetic resonance; hydraulic conductivity; seepage state

1. Introduction

In the development of hydrodynamic-response-mechanism models for saturated clay-
containing layers, conventional approaches in groundwater studies employed Darcy’s law
to describe pore water behavior in clay-containing porous media [1]. Darcy’s law states
that the pressure gradient is linearly proportional to the fluid velocity in porous media.
However, previous research has revealed that Darcy’s law is effective only within a certain
range [2–5]. When the samples contain clay, their seepage behavior deviates from Darcy’s
law at low or high hydraulic gradients [6]. Therefore, it is of great importance to achieve
an in-depth understanding of hydraulic conductivity in the clay-containing porous media
for addressing these challenges [7]. Elucidating the transformation mechanism of pore
water in clay-containing porous media during the pre-Darcy stage and the hydrodynamic
response under the transformation are crucial to advance the study of the pre-Darcy
seepage theory. Furthermore, the research is practical to address the engineering geological
problems associated with clay-containing porous media. Özer Bağcı et al. discovered
that the relationship between flow velocity and pressure gradient does not obey Darcy’s
law and exhibits a pre-Darcy effect during the seepage process [8]. Researchers have also
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acknowledged over the years that the pre-Darcy effect not only signifies a deviation from
linearity, but also indicates the presence of a threshold hydraulic gradient [9–11].

Scholars have traditionally relied on laboratory seepage test results to quantify the
low-velocity non-Darcy seepage process of clay samples [12–17]. Currently, around ten
characteristic curves have been established, with the power function curve being the most
commonly used [18,19]. While the microscopic mechanism influencing the seepage state
remains unclear, it has been suggested that the presence of bound water in clay-containing
porous media affects the seepage state. However, the research on the transformation process
of bound water from a microscopic perspective deserves to be explored. It is generally
acknowledged that there is a strong interaction between pore water and clay particles [20],
and the essence of non-Darcy seepage is the result of the mutual transformation of different
water states under the specified hydraulic gradient. Osipov proposed that clay particles
combine with water molecules to form a bound-water film with a certain thickness [21].
Studies by Wang et al. indicate the presence of two key hydraulic gradients in clay samples,
with bound water in clay being the main factor affecting the deviation of the hydraulic
conductivity from Darcy’s law [22]. This is due to the electrical double layer of bound
water in clay, with shear force existing in each part of the bound water in the electrical
double layer. When the pore water pressure exceeds the shear force of the bound water,
the bound water moves, resulting in a thresholding hydraulic gradient in the clay seepage,
and the thresholding hydraulic gradient is linearly related to the shear force of the bound
water. While previous studies have examined the hydration, expansion, and dispersion
characteristics of clay particles, focusing on the mechanisms of a strongly bound-water layer
and weakly-bound-water layer [23,24], no research has delved into the microscopic-level
mechanism of water transformation during medium- and low-velocity non-Darcy seepage
in clay samples. Further investigation into these microscopic mechanisms is necessary
to enhance our understanding of the complex interplay between bound water and clay
particles during non-Darcy seepage processes.

Investigating the transformation process of bound water in clay-containing porous
media necessitates the precise measurement of the bound-water content. However, current
methods for determining water content in porous media, such as X-ray diffraction [25,26],
isothermal adsorption [27,28], and thermogravimetric analysis [29,30], have limitations,
including difficult operation, long test periods, and low accuracy. This presents a significant
technical impediment constraining the advancement of the low-velocity non-Darcy seep-
age theory in clay-containing porous media at the microscopic level. LF-NMR (low-field
nuclear magnetic resonance) has emerged as a promising alternative, enabling the rapid,
non-destructive, quantitative, and accurate measurement of sample porosity and other
parameters. Consequently, a large number of researchers have exploited LF-NMR for
experimental research [31,32]. For instance, Lu et al. utilized LF-NMR to ascertain the
T2 cutoff value for distinguishing between free water and bound water in samples [33].
Lapasin et al. investigated the aging dynamics and structural evolution of salt-free Laponite
aqueous dispersion through a combination of LF-NMR and rheological analysis [34]. The
application of LF-NMR has significantly advanced the study of seepage in porous media.
Xie et al. explored the hydration behavior of sodium montmorillonite using LF-NMR [35].
Furthermore, researchers have employed LF-NMR to investigate pore structure [36], imbi-
bition [37], volatilization [38], solute transport [39], and biological [40] aspects of porous
media. However, research on the transformation of water state during seepage in porous
media is still lacking.

This study aims to quantify the transformation of bound water and free water during
the seepage process, which further investigates the impact of clay content in sand–clay
porous media on seepage behaviors from a microscopic perspective. To achieve this
objective, we employ a comprehensive research methodology that integrates LF-NMR with
seepage experiments. This innovative approach not only circumvents the abovementioned
limitations, but also enables a more nuanced analysis of the internal moisture dynamics
within the porous medium as it transitions into the seepage state. Four distinct sample
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sets are established, and constant-head seepage experiments are conducted under varying
hydraulic gradients. LF-NMR facilitates the real-time monitoring of water-state evolution
during the seepage process in samples with varying clay contents, enabling the microscopic
observation and detailed analysis of the water state within the clay matrix. This study
performs an in-depth analysis of the transformation process of bound water and free
water in sand–clay porous media, elucidating the mechanisms through which this process
influences the transition between seepage states.

2. Materials and Methods
2.1. Experimental Setup

Figure 1 illustrates the experimental setup used in this study, which included: (a) the
seepage generation system: comprising deionized water, a lifting frame (40 cm × 40 cm ×
200 cm), a lifting platform (40 cm × 40 cm), a peristaltic pump (operating at an injection rate
of 2 mL/min), a water storage tank, a water supply bucket, silicone tubes (De 4.8 × 1.6 mm),
and polytetrafluoroethylene (PTFE) tubes (De 3.17 × 0.795 mm). (b) The seepage test system,
which consisted of a DY1000 digital pressure sensor (0~110 kPa), DY1000 pressure sensor hub,
pressure analyzer, and water collection device. (c) An LF-NMR analysis system, including
a PTFE column and an LF-NMR instrument (MacroMR12-150H-I, manufactured by Suzhou
Niumag Co., Ltd., Suzhou, China), featuring a magnetic field strength of 0.3 T and a constant
magnet temperature of 32 ◦C. The PTFE column measured 100 mm in length, 50 mm in outer
diameter, with a 12.5 mm wall thickness, an inner cylinder diameter of 25 mm, and a length of
60 mm. To prevent water leakage during the experiments, both ends of the sample tube were
sealed with silicone gaskets and 500 mesh filter.
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Figure 1. Scheme of the experimental setup: (a) seepage generation system; (b) flow test system;
(c) LF-NMR analysis system.

2.2. Sand–Clay Porous Media

Two sets of samples were prepared, each consisting of sand–clay porous media with
four clay contents. One of the four sand–clay porous media was pure quartz sand, and the
remaining three were sand–clay porous media. The samples were denoted as C0, C12, C15,
and C18, and detailed information is summarized in Table 1. A set of samples was used to
determine the T2 cutoff values that was necessary for NMR quantification in online seepage
tests, while the other samples were employed for NMR online constant-head permeability
tests. To ensure uniform porosity and dry density across both sample groups, an identical
preparation method was utilized for sample filling. Specifically, quartz sand with a particle
size of 0.45–0.6 mm (sourced from Hong Dingxing Company, Chengdu, China) and illite
powder (obtained from Xincheng Mineral Company, Kaiyuan, China) with a particle size
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of 0.075 mm were used. The physical parameters of the quartz sand and illite powder are
summarized in Table 2.

Table 1. The compositions of the sand–clay porous media.

Sample Name Clay Content Dry Density (g/cm3) Porosity

C0 0% 1.65 ± 0.05 0.37 ± 0.05
C12 12% 1.68 ± 0.05 0.36 ± 0.05
C15 15% 1.67 ± 0.05 0.38 ± 0.05
C18 18% 1.69 ± 0.05 0.37 ± 0.05

Table 2. Physical parameters of the sand–clay porous media.

Name Particle Size/mm Mineral Composition Specific Gravity

Illite Powder 0.075 Muscovite, Potassium Feldspar 2.6
Quartz Sand 0.45–0.6 / 2.65

Prior to the initiation of the test, deionized water was boiled to reduce impurities.
After boiling and cooling, the water was degassed to eliminate bubbles and impurities, thus
preventing their influence on the test results. Additionally, the quartz sand was dried in an
oven (HN101-2/+) to eliminate impurities and mitigate their impact on the test. Initially,
illite powder and quartz sand were combined for various weight-based ratios, followed
by the addition of deionized water and thorough mixing. Subsequently, sand–clay porous
media with a specific moisture content were then prepared and layered into the sample
tube. Each layer was compacted, and the surface was roughened before the addition of
the subsequent layer, ensuring a seamless transition between layers. The filled sample
was then positioned in a vacuum-saturated barrel (model ZK-270) for over 12 h. Upon
extraction from the barrel, both ends of the sample tube were promptly sealed to prevent
test errors resulting from evaporation.

2.3. Bound-Water Detection Using LF-NMR

LF-NMR primarily analyzes the response signal of hydrogen atoms in pore water
when testing the material. The strength of the signal is indicative of the sample’s developed
pore structure. Given PTFE’s molecular formula (C2F4), its use as a sample-filling container
is not anticipated to influence the results of the NMR analysis. Furthermore, the LF-
NMR inversion of the signal attenuation degree provides the sample’s relaxation signal,
serving as the basis for investigating the physical property parameters of the porous
media. As per the NMR relaxation mechanism, transverse relaxation encompasses three
components: transverse bulk relaxation, transverse surface relaxation, and transverse
diffusion relaxation [37]:

1
T2

=
1

T2B
+

1
T2S

+
1

T2D
, (1)

T2D =
Cmd(γGTE)

12
, (2)

where T2 is the transverse relaxation time, T2B is the transverse bulk relaxation time, T2S
is the transverse surface relaxation time, T2D is the transverse diffusion relaxation time,
Cmd is the molecular diffusion coefficient, G is the cyclotron magnetic ratio of protons, and
TE is the echo spacing. Because the diffusion of water molecules is very fast, 1/T2D is
negligible when TE is small. T2B is inversely proportional to fluid viscosity, and due to the
low viscosity of water, 1/T2B is small enough to be negligible [37]. T2S is the transverse
relaxation time caused by surface relaxation, which is inversely proportional to the self-
diffusion coefficient of the liquid and the square of the echo spacing, TE [41]. Because the
diffusion rate of water molecules is very fast, when the magnetic field is uniform, that is,
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when G is small, TE is small enough and T2D is negligible. Therefore, Equation (1) can be
simplified by T2S to [42–44].

1
T2

= ρ2
S

Vpore
≈ ρ2

2
R

, (3)

where ρ2 is the surface relaxation ratio; R is the radius of the pore.
Based on Equation (3), it can be inferred that T2 is directly proportional to the pore size

and inversely proportional to the adsorption degree of water molecules and soil particles.
This implies that larger pore sizes correspond to weaker binding forces of water molecules
within the pore, resulting in stronger NMR signals. The distribution of the T2 spectral curve
serves as an indicator of the strength of the binding forces between water molecules and
the sample. The distinct disparity between free water and bound water, influenced by the
soil particles’ binding force during the seepage process, enabled the clear differentiation of
water molecule states within the samples. Therefore, this study relies on the reliability of
this method to monitor the transformation process of water molecules in sand–clay porous
media, which is crucial for investigating the pivotal aspects of the transition between
seepage states. Table 3 shows the parameters set for the CPMG pulse sequence.

Table 3. The parameters used for the CMPG pulse sequence.

CPMG Value

Sampling Frequency (kHz) 200
RF Delay (ms) 0.002

Waiting Time (ms) 6000
Cumulative Frequency 8

Echo Time (ms) 0.25
Number of Echoes 14,000

Subsequently, the sample was analyzed during the experiment to determine the
boundary point (T2 cutoff) between the relaxation times of bound water and free water in
the T2 distribution curve of the sample. This measurement served as a foundation for the
analysis of the constant-head seepage experiment. The saturated sample was dried in an
oven, and every three hours, it was taken out and cooled to 32 ◦C for NMR measurements
to obtain the T2 distribution curve. This procedure was repeated until the weight of the
sand–clay porous media no longer decreased after drying for three hours. Lu’s [33] drying
method was used to determine the sample’s T2 cutoff. Figures S1 and S2 display the
measured T2 distribution curves for each sample group along with the corresponding T2
cutoff values. Both Figures S2 and S3 demonstrate that, in the absence of clay from the sand–
clay porous media, the T2 cutoff value is nearly zero, indicating a minimal bound-water
content. However, as the clay content increases, the T2 cutoff values decrease, measuring
4.913 ms, 3.172 ms, 2.203 ms, and 0.138 ms.

The NMR measurements included two primary steps. Initially, the seepage state of the
saturated sample was assessed, and the signal of the water status within the sample was
obtained. During this section of the test, the sand–clay porous media were continuously
monitored using NMR. The sand–clay porous medium’s T2 distribution curve was created
under each hydraulic gradient, and the water status and seepage state were analyzed from
a microscopic perspective. Before the test starts, all of the system’s components’ devices
must be connected. Once the device is connected, seepage can start once the sample’s
T2 distribution curve has been measured as static. In this experiment, the height of the
outlet pipe of the sample was fixed, and the height of the water tank was changed to
achieve different hydraulic gradients. When the sample reached a stable state, which was
indicated by the pressure gauge on both sides of the sample, the flow rate, Q, and the
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pressure difference, ∆P, were measured. The hydraulic gradients (i) and seepage velocity
are calculated by Equations (4) and (5):

i =
∆P
ρgL

, (4)

where i is the hydraulic gradient, ∆P is the pressure difference (Pa), ρ is the density of water
(g/cm3), g is the acceleration of gravity (cm/s2), and L is the seepage path length (cm).

ν =
Q
S

, (5)

where v is the seepage velocity (cm/s), Q is the seepage flux (cm3/s), and S is the cross-
sectional area of the sample (cm2).

Concurrently, NMR measurements were conducted on the sand–clay porous media,
revealing the samples’ T2 distribution curves under the hydraulic gradient. It is important
to note that several preliminary experiments were conducted ahead of the official experi-
ment to ensure that the information sequence and filling technique were most suitable for
the experimental conditions.

3. Results
3.1. Effects of Clay Content on Threshold Hydraulic Gradients

The relationships between seepage velocity (v) and hydraulic gradient (i) for the sand–
clay porous media are illustrated in Figure 2. The results show that seepage occurs when
the hydraulic gradient reaches a threshold hydraulic gradient (i0) for the sand–clay porous
media. When the hydraulic gradient increases to a critical hydraulic gradient (icr), the v-i
curves transfer into a linear relationship. The non-seepage and non-linear regimes are
identified as a pre-Darcy regime, while the linear regime is known as the Darcy’s law.
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In porous media without clay (C0), the threshold hydraulic gradient was either very small
or undetectable in the current experiment. The sand–clay porous media with clay contents
of 12%, 15%, and 18% (C12, C15, and C18, respectively) show threshold hydraulic gradients
of 0.283, 0.317, and 0.650, respectively (Figure 2b). Notably, for porous media without clay
(C0), the transition from non-linear seepage to linear seepage occurred when the hydraulic
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gradient exceeded 0.150. In the case of porous media C12, C15, and C18, the shift in seepage
behavior occurred at critical hydraulic gradients of 2.533, 4.733, and 5.900, respectively.

The observed trend indicates a positive correlation between the threshold hydraulic
gradient and critical hydraulic gradient and clay content (Figure 3). This relationship is
linked to the conversion of bound water into free water, a process that occurs as pore
water pressure is overcome. Moreover, as the clay content increases, a more pronounced
non-linear relationship emerges, and the transition from non-linear to linear seepage
encompasses a wider hydraulic gradient range. This can be attributed to the interaction
between clay particles and pore water, leading to the formation of a bound-water film.
The presence of this bound-water film reduces the pore size within the sand–clay porous
medium, impeding the passage of free water through the pores. The transformation of
bound water and free water is elaborated upon in the subsequent section.
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The hydraulic conductivity, K, under various hydraulic gradients is calculated accord-
ing to Darcy’s law:

K =
v
i
=

Q·L
A·∆h

, (6)

where Q is the seepage flux (cm3/s); L is the seepage path length (cm); A is the flow cross-
section (cm2); ∆h is the frictional head loss; and K is the hydraulic conductivity (cm/s).

As shown in Figure 4, when the hydraulic gradient satisfies i0 < i < icr, the hydraulic
conductivity exhibits a positive correlation with i rather than maintaining a constant value.
As icr < i, the hydraulic conductivity stabilizes, becoming independent of the hydraulic
gradient, thus indicating adherence to Darcy’s law for seepage behavior. Concurrently,
the hydraulic conductivity in the Darcy regime diminishes with increasing clay content.
Notably, the transitional range of hydraulic gradients for the transfer of seepage behavior
from pre-Darcy to Darcy becomes broader with a higher clay content, aligning with the
observed trend in the previous v-i relation (see Figure 2).

The Reynolds number is a dimensionless indicator to distinguish the pore water flow
state, which is the function of the particle diameter of porous media, seepage velocity, fluid
viscosity coefficient, and density. The formula to calculate the Reynolds number is stated
as follows:

Re =
vρd
µ

, (7)



Water 2024, 16, 883 8 of 15

where v is the seepage velocity (m/s); ρ is the fluid density (kg/m3); d is the mean particle
size of porous media (m); and µ is the dynamic viscosity (Pa·s).
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The Reynolds number at a critical hydraulic gradient is determined for sand–clay
porous media with different clay contents. The pre-Darcy critical Reynolds number was the
highest for the porous medium without clay (C0), and gradually decreased with increasing
clay content. Specifically, the values were 5.81 × 10−4, 4.25 × 10−5, 1.95 × 10−5, and
1.85 × 10−5 for sand–clay porous media C0, C12, C15, and C18, respectively. The exact
critical Reynolds number that delineates the transition between pre-Darcy and Darcy flow
regimes remains unknown. Kundu et al. [45] used glass beads with diameters of 2.5 mm
and 5 mm to investigate the critical Reynolds numbers between pre-Darcy and Darcy
regimes, and indicated critical values of 0.2 and 0.5, respectively. In a separate study,
Dudgeon determined a pre-Darcy critical Reynolds number of 8 × 10−4 for porous media
consisting of river gravel sand [46]. In Dukha’s experiments [47], a critical Reynolds number
of 0.4 was obtained. The smaller critical Reynolds numbers obtained in this study were
due to the particle size of the clay. This study used quartz sand and clay with particle sizes
of 0.45 mm and 0.075 mm, respectively. The size in this study was two orders of magnitude
smaller than that in previous studies.

3.2. Bound-Water Control on Seepage Behavior

Transformations of bound water and free water in sand–clay porous media were
monitored using the LF-NMR technique, and their quantification was based on the T2 signal
analysis. The resulting T2 signal distribution curve under different hydraulic gradients is
visually depicted in Figure 5. The T2 signal distribution curve illustrates the relationship
between relaxation time, pore size, and water molecule activity within the sand–clay
porous media. Generally, larger pore sizes correspond to stronger water activity and longer
relaxation times in the saturated state. Typically, free water exhibits a relaxation time greater
than 10 ms, while bound water exhibits a relaxation time less than 10 ms. By analyzing the
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relaxation time range of the peak, the water status in the sand–clay porous media can be
effectively categorized.
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Figure 5. T2 signal distribution curves of sand–clay porous media: (a) C0, (b) C12, (c) C15, and (d) C18

under different hydraulic gradients.

The T2 signal distribution curves of the four sand–clay porous media exhibit a primary
peak accompanied by several smaller peaks. The T2 range of the largest peak for C0,
C12, C15, and C18 is summarized in Table 4. Equation (3) indicates that the leftward shift
observed in the T2 signal distribution curves may be attributed to an increase in the sand–
clay porous medium’s surface relaxation ratio or a decrease in pore size as the clay content
increases. As the clay content increases, the pores within the sand–clay porous media
gradually diminish, leading to an increase in bound-water content.

Table 4. Relaxation time range of the main peak in the T2 spectrum of the sample.

Sample C0 C12 C15 C18

Relaxation Time 130.69–2244.53 ms 3.17–60.03 ms 2.54–35.18 ms 2.20–30.47 ms

In sand–clay porous media, bound water is typically located at the solid–liquid inter-
face, while free water is present outside the bound-water region. The interaction between
clay particles and water molecules leads to the formation of a bound-water film with a
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specific thickness. By establishing the T2 cutoff value for each sand–clay porous media,
the signal intensities of bound water and free water under different hydraulic gradients
were calculated and depicted in Figure 6. As the hydraulic gradient increases, the signal
intensity of bound water demonstrates a decrease, while free water exhibits an escalating
trend, particularly in sand–clay porous media containing clay.
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When the hydraulic gradient increases from 0 to the threshold hydraulic gradient, the
signal intensity of bound water decreases, while free water exhibits an increasing trend,
particularly in sand–clay porous media containing clay. However, under low hydraulic
gradients, the bound-water film does not transmit pore water pressure, but occupies part of
the pore space and reduces the pore diameter (Figure 7a). Therefore, the free water within
the soil cannot smoothly pass through the pores of sand–clay porous media, resulting in
no seepage. When i0 < i < icr, the signal intensity of bound water continues to decrease.
During this stage, the pore water pressure gradually overcomes the adsorption force of
the bound-water film [48]. This causes the weakly bound water in the outer layer of the
bound-water film to transform Into free water. As a result, the thickness of the bound-water
film (Figure 7b) continuously reduces, leading to gradual seepage that demonstrates a
non-linear pattern. As the hydraulic gradient increases to a critical hydraulic gradient,
seepage reaches the Darcy regime. The signal intensity of bound water decreases to a
constant value, indicating that the thickness of the bound-water film reaches the minimum
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value. At this point, the bound-water film only consists of strongly bound water, which
cannot flow or participate in pressure diffusion.
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3.3. Effects of Clay Content on Seepage Behavior

Due to the adsorption of clay particles, the more clay particles in the sand–clay porous
media, the higher the contents of bound-water film and bound water [21]. As shown in
Figure 6, a higher clay content can be observed in sand–clay porous media C12, C15, and C18
compared to C0. The bound-water film diminishes the effective pore size for flow, which
directly influences the transition of seepage behavior. The hydraulic conductivity (see
Figure 8) serves as a crucial indicator for identifying the seepage stage, and its evolution
provides an insight into the effects of clay content on seepage behavior. Figure 8 illustrates
the inverse relationship between the increasing bound-water proportion and the hydraulic
conductivity in sand–clay porous media. As the hydraulic gradient increases, a gradual
transformation of bound water into free water occurs, resulting in a reduction in the bound-
water proportion and an increase in water mobility. This leads to a progressive rise in
hydraulic conductivity, indicating a gradual shift in the seepage states from no flow to
non-linear flow and to linear behavior.

The increase in clay particles augments the number of micropores in the soil sample,
resulting in a higher amount of bound water. Therefore, the proportion of transformed
bound water required for seepage and the transition from non-linear to linear seepage
states increase with the clay content. When icr < i, the rate of bound-water transformation
into free water decelerates to zero, stabilizing the bound-water proportion in the sand–clay
porous media, and consequently leading to a stabilization of hydraulic conductivity.
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4. Conclusions

In this study, a series of constant-head seepage experiments were conducted in sand–
clay porous media with different clay contents, and LF-NMR technology was utilized to
directly measure the change in water status in the sand–clay porous media during the
seepage processes. From a microscopic point of view, we analyzed how bound water
transformed and affected the seepage processes in sand–clay porous media with different
clay contents. The findings of this study reveal that, under the influence of a hydraulic
gradient, weakly bound water can be transformed into free water and participate in seepage,
consequently impacting the seepage state of soil. The main conclusions derived from this
study are as follows:

1. The threshold hydraulic gradient and the critical hydraulic gradient are related to
the clay content of sand–clay porous media. The threshold hydraulic gradient (i0),
representing the minimum gradient for flow initiation, demonstrates an increasing
trend with higher clay content. Additionally, an expansion in the range of hydraulic
gradients in the pre-Darcy flow is observed as the clay content of the porous media
increases.

2. The adsorption of water molecules by clay particles, leading to the formation of a
bound-water film, significantly influences the threshold hydraulic gradient. The
bound water within the pores of sand–clay porous media particles restricts the flow
of water molecules. This phenomenon causes a deviation in seepage behavior from
Darcy’s law in sand–clay porous media with a high clay content under low-hydraulic-
gradient conditions. As the hydraulic gradient gradually increases, the seepage
behavior of the sand–clay porous media becomes non-linear when i0 < i < icr, ac-
companied by an increase in the hydraulic conductivity of the sand–clay porous
media.

3. LF-NMR technology can be employed to characterize the transformation between
bound-water and free-water contents during seepage processes. The alteration in the
semaphore as the hydraulic gradient increases indicates the shift from bound water to
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free water. It can be observed that the hydraulic conductivity is inversely correlated
to the proportion of bound water in clay–sand porous media.

4. The transition of bound water, including both weakly bound water and strongly bound
water, near the threshold and critical hydraulic gradients elucidate the microscopic
mechanism of the change in the seepage state. As the hydraulic gradient increases,
the weakly bound water on soil particle surfaces gradually transitions into free water,
causing a continuous thinning of the bound-water film. This transformation plays
a role in soil seepage, ultimately altering its seepage state. As a result, soil particle
pores fill with highly-mobile free water, leading to a transition in the seepage state
from non-linear to linear seepage.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/w16060883/s1, Figure S1: T2 distribution curve of soil
samples (a) C0, (b) C12, (c) C15 and (d) C18 with drying time.; Figure S2:T2 cutoff values of soil samples
(a) C0, (b) C12, (c) C15 and (d) C18, the black and red dashed lines respectively indicate the cumulative
signal amplitude under saturated soil sample and after drying for a certain time, while the black and
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