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Abstract: Understanding the subsurface is of prime importance for many geological and hydroge-
ological applications. Geophysical methods offer an economical alternative for investigating the
subsurface compared to costly borehole investigations. However, geophysical results are commonly
obtained through deterministic inversion of data whose solution is non-unique. Alternatively, stochas-
tic inversions investigate the full uncertainty range of the obtained models, yet are computationally
more expensive. In this research, we investigate the robustness of the recently introduced Bayesian
evidential learning in one dimension (BEL1D) for the stochastic inversion of time-domain electromag-
netic data (TDEM). First, we analyse the impact of the accuracy of the numerical forward solver on
the posterior distribution, and derive a compromise between accuracy and computational time. We
also introduce a threshold-rejection method based on the data misfit after the first iteration, circum-
venting the need for further BEL1D iterations. Moreover, we analyse the impact of the prior-model
space on the results. We apply the new BEL1D with a threshold approach on field data collected
in the Luy River catchment (Vietnam) to delineate saltwater intrusions. Our results show that the
proper selection of time and space discretization is essential for limiting the computational cost while
maintaining the accuracy of the posterior estimation. The selection of the prior distribution has a
direct impact on fitting the observed data and is crucial for a realistic uncertainty quantification.
The application of BEL1D for stochastic TDEM inversion is an efficient approach, as it allows us to
estimate the uncertainty at a limited cost.

Keywords: uncertainty; saltwater intrusion; TDEM; BEL1D; SimPEG

1. Introduction

Geophysical methods offer an economical alternative for investigating the subsurface
compared to the use of direct methods. Most geophysical methods rely on a forward
model to link the underlying physical properties (e.g., density, seismic velocity, or electrical
conductivity) to the measured data and by solving an inverse problem. Deterministic
inversions typically use a regularization approach to stabilize the inversion and resolve the
non-unicity of the solution, yielding a single solution. However, uncertainty quantification
is generally limited to linear noise propagation [1–4]. In contrast, stochastic inversion
methods based on a Bayesian framework compute an ensemble of models fitting the data,
based on the exploration of the prior model space [5]. Bayesian inversion is rooted in the
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fundamental principle that a posterior distribution can be derived from the product of the
likelihood function and the prior distribution. Various strategies have been developed
in this regard, as evidenced by the literature across several disciplines, including, but
not limited to, hydrology and hydrogeology [6–9] or geophysics [10,11]. Although the
increase in computer performance has advanced the use of stochastic approaches, long
computational time remains an important issue for their broader adoption [12–15]. Indeed,
most stochastic approaches rely on Markov chain Monte Carlo (McMC) methods for
sampling the posterior model space [5], which require a large number of iterations and
forward model computations.

Alternatives have been developed to estimate the posterior distribution at a lim-
ited cost such as Kalman ensemble generators [16,17] or Bayesian Evidential learning
(BEL) [18,19]. BEL is a simulation-based prediction approach that has been initially pro-
posed to by-pass the difficult calibration of subsurface reservoir models and to directly
forecast targets from the data [20,21], with recent applications in geothermal energy [22–24],
reservoir modelling [25–28], experimental design [29] and geotechnics [30]. It has also been
quickly adopted by geophysicists to integrate geophysical data into model or properties
prediction [24,31,32]. BEL has also been recently proposed as an efficient alternative for the
1D inversion of geophysical data (BEL1D) [18,19]. BEL1D circumvents the inversion process
by using a machine learning approach derived from Monte Carlo sampling of the prior
distribution. It has been proven efficient for the estimation of the posterior distribution
of water content and relaxation time from nuclear magnetic resonance data [18], and the
derivation of seismic velocity models from the analysis of the dispersion curve [19]. The
main advantage of BEL1D is to rely on a smaller number of forward model runs than
McMC approaches to derive the posterior distribution, leading to a reduced computational
effort. Earlier work has shown that BEL1D converges towards the solution obtained from
an McMC procedure but it slightly overestimates the uncertainty, especially in the case of
large prior uncertainty [18]. The use of iterative prior resampling followed by a filtering of
models based on their likelihood has been recently proposed to avoid uncertainty overesti-
mation [19]. Although this increases the computational cost of BEL1D, it remains about
one order of magnitude faster than McMC [19]. In this contribution, we propose to apply a
threshold on the data misfit after the first BEL1D first iteration to circumvent the need for
multiple iterations when prior uncertainty is large.

So far, BEL1D has only been applied to a limited number of geophysical methods. In
this contribution, we apply the algorithm to the inversion of time-domain electromagnetic
(TDEM) data. We combine BEL1D with the TDEM forward modelling capabilities of the
open-source Python package SimPEG (version 0.14.1) [33,34] for the stochastic inversion of
TDEM data. Electromagnetic surveys have proven to be efficient for delineating groundwa-
ter reservoir structure and water quality (e.g., [35–37]). In the last decades, the popularity
of TDEM has largely increased with the adoption of airborne TDEM surveys for mineral
but also hydrogeological applications (e.g., [38–40]). More recently, towed transient electro-
magnetic (tTEM) systems [41] and waterborne TDEM systems [42,43] were designed for
continuous measurements of TDEM data, thus allowing to the coverage of large areas in
relatively short times.

To date, the inversion of such extensive surveys relies on deterministic quasi-2D
or -3D inversion [44], i.e., using a 1D forward model with lateral constraints. In the
process of resolving inverse problems, which entails fitting observational data, the forward
model representing the underlying physical processes is pivotal. However, this model is
susceptible to errors inherent in the modelling process. The employment of an accurate
numerical forward model imposes substantial computational demands, consequently
constraining the feasible quantity of forward simulations [45].

In light of these computational constraints, it is a prevalent practice to resort to rapid
approximation strategies for the forward solver [46,47], to work with a coarser discretiza-
tion [48,49] or to deploy surrogate models to replace the expensive simulations [50–52].
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Modelling errors may introduce significant biases in the posterior statistical analyses
and may result in overly confident parameter estimations if these errors are not accounted
for [52,53]. Hansen et al. [53] studied the effect of using approximate forward models on
the inversion of GPR cross-hole travel time data and demonstrated that the modelling error
could be more than one order of magnitude larger than the measurement error, leading
to unwanted artifacts in the realizations from the posterior probability. For EM methods,
studies have demonstrated the negative effect of using fast approximations of the forward
model on the accuracy of the inversion [54–56]. In particular, for TDEM methods, using
accurate models is computationally too expensive to be attractive for stochastic inversion
of large data sets, as are those obtained from surveys with airborne or tTEM methods.
Therefore, in this study we investigate a possible approach that balances accuracy in the
modelling and reduced computational costs.

Stochastic approaches for the inversion of TDEM are therefore still uncommon
(e.g., [13,15,56,57], yet these are computationally demanding for large data sets. Typi-
cally, the whole inversion needs to be re-run for every sounding, independently. Hence,
developing a fast alternative is highly relevant for to-date hydro-geophysical investigations.

In this paper, we focus on the robustness of BEL1D to retrieve the posterior distribu-
tions of electrical subsurface model parameters from the inversion of TDEM data. The
novelties of our contribution lie in the following:

1. Demonstrating that BEL1D is an efficient approach for the stochastic inversion of
TDEM data.

2. Exploring the impact of the accuracy of the forward solver to estimate the posterior
distribution, and finding a compromise between accuracy and computational cost.

3. Proposing and validating a new thresholding approach to circumvent the need for
iterations when the prior uncertainty is large.

4. Applying the new approach to field TDEM data collected in the Luy River catchment
in the Binh Thuan province (Vietnam) for saltwater intrusion characterization. This
data set was selected because electrical resistivity tomography (ERT) data are available
for comparison, but lack sensitivity at greater depth. The case study is also used to
illustrate the impact of the selection of the prior on the posterior estimation.

The computational undertakings in this study are performed using the pyBEL1D
package (version 1.1.0) [58] which serves as the computational backbone for our analyses.
This integration of theoretical insights and practical applications is intended to advance the
understanding and uncertainty quantification of TDEM surveys.

2. Materials and Methods
2.1. BEL1D

In contrast to deterministic approaches, BEL1D does not rely on the stabilization of
the ill-posed inverse problem through regularization. Instead, BEL1D learns a statistical
relationship between the target (the set of parameters of interest, in this case a subsurface
layered model of the electrical conductivity) and the predictor (the geophysical data). This
statistical relationship is derived from a combination of models and data (typically a few
thousand) drawn from the prior distribution which reflects the prior geological knowledge.
For each sampled model, the forward model is then run to generate the corresponding data
set [18]. Next, a statistical relationship is learned in a lower dimensional space and used to
calculate the posterior distribution corresponding to any data set consistent with the prior,
without the need to run any new forward model. We refer to [18,19] for details about the
algorithm. Here, we only provide a short overview. BEL1D consists of seven steps:

Step 1: Prior sampling and forward modelling
As in any stochastic inversion, the first step is to assign the range of prior uncertainty

based on earlier field knowledge. For TDEM 1D inversion, we need to define the number
of layers, their thickness and electrical conductivity. A set of n prior models is sampled.
For each sampled model, the corresponding TDEM data are simulated using the forward
model. In this step, it is important to state the size of the transmitting and receiving loop
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and the waveform and magnetic momentum of the primary field, as well as the acquisition
time and sampling of the decay-curve.

More specifically, this first step entails defining the prior model using a finite set of
NL layers, with the final layer simulating the half-space. Except for this layer, which is
defined by its conductivity only, the other layers are defined by their conductivity and
thickness. Thus, the total number of model parameters or unknowns is q = 2 × NL − 1.
For each of those q parameters, a prior distribution is described, which must reflect the
prior understanding of the survey site. Such information can be based on either previous
experiments or more general geological and geophysical considerations. Random models
are sampled within the prior range, and the forward model is run for each one to calculate
the corresponding noise-free data set d (Figure 1, boxes 1 and 2):

d = f(m) (1)

where m is the set of q model parameters and f is the forward model solving the physics
(see Section 2.2).
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Figure 1. The schematic diagram of BEL1D applied to TDEM data (modified from [18]).

Step 2: Reducing the dimensionality of data.
Lowering the dimensionality of the data is required to determine a statistical con-

nection between the target and the predictor. Dimension reduction also helps to limit
the impact of noise on the inversion [31]. Principal component analysis (PCA) identifies
linear combinations of variables that explain most of the variability by using the eigen-
value decomposition [59]. Higher dimensions typically exhibit less variability and can
be disregarded. Noise is propagated using Monte Carlo simulation [18,31] to estimate
the uncertainties of the PCA scores caused by data noise (Figure 1 box 3). Similarly, the
dimensions of model parameters q can be reduced if necessary.

Step 3: Statistical relationship between target (model parameters) and predictor (the
reduced dataset)
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Canonical correlation analysis (CCA) is used to determine a direct correlation between
the target and predictor [18]. CCA essentially calculates the linear combinations of (reduced)
predictor variables and target variables that maximize their correlation, producing a set
of orthogonal bivariate relationships [59]. The correlation typically decreases with the
dimensions, the first dimension being the most correlated (Figure 1 box 4).

Note that CCA is not the only approach for deriving a statistical relationship. Due to
the expected non-linearity in the statistical relationship between seismic data and reservoir
properties, [32] have used summary statistics extracted from unsupervised- and supervised-
learning approaches including discrete wavelet transform and a deep neural network
combined with approximated Bayesian computation to derive a relationship. Similarly, [60]
used a probabilistic Bayesian neural network to derive the relationship.

Step 4: Generation of the posterior distributions in CCA space
In the CCA reduced space, kernel density estimation (KDE) with a Gaussian kernel [61]

is used to map the joint distribution fH(mc, dc), where the suffix c refers to the canonical
space and m and d stand for model and data. We employ a multi-Gaussian kernel with
bandwidths selected in accordance with the point density [18]. The resulting distributions
are not restricted to any specific distribution with a predetermined shape. As a result,
a simple and useful statistical description of the bivariate distribution can be generated
(Figure 1 box 4).

Using KDE, results are partly dependent on the choice of the kernel, especially the
bandwidth, which can result in posterior samples falling out of the prior space [18]. The py-
BEL1D code allows for the filtering of erroneous posterior samples resulting from KDE [58].
This limitation partly explains why BEL1D tends to overestimate the posterior distribu-
tion [18,19], as the derived joint distribution is an approximation in a lower dimensional
space, not relying on the calculation of a likelihood function, such as in McMC, which
would ensure convergence to the actual posterior distribution. However, [19] has empir-
ically shown that the approach was efficient and yielded similar results to McMC. An
alternative to KDE is to use transport maps [24].

Step 5: Sampling of the constituted distributions
The KDE maps are then used to extract from the joint distribution the posterior

distribution fH(mc|dobs,c) for any observed data set projected into the canonical space dobs,c.
Using the inverse transform sampling method [62], we can now easily generate a set of
samples from the posterior distributions in the reduced sample (Figure 1 box 5).

Step 6: Back transformation into the original space
The set of the posterior samples in CCA space are back-transformed into the original

model space. The only restriction is that more dimensions must be kept in the predictor
than the target in order to support this back transformation. The forward model is then run
for all sampled models to compute the root-mean-squared error (RMSE) between observed
and simulated data.

Step 7: Refining the posterior distribution by IPR or a threshold
In case of large prior uncertainty, [19] recommend applying iterative prior resampling

(BEL1D-IPR). The idea is to enhance the statistical relationship by sampling more models
in the vicinity of the solution. In short, models of the posterior distribution are added to
the prior distributions, and steps 2 to 6 are repeated. This iterative procedure is followed
by a filtering of the posterior models based on their likelihood, using a Metropolis sampler.
This allows for the sampling of the posterior distribution more accurately, but at a larger
computational cost. BEL1D-IPR is used as the reference solution in this study as it has been
benchmarked against McMC [19].

We propose to reduce the computational effort of BEL1D-IPR by applying a filtering
procedure after the first iteration. The threshold criterion is defined based on the expected
relative RMSE (rRMSE) estimated from the data noise. The rRMSE is calculated in log
space to account for the large range of variations in the amplitude of the measured TDEM
signal, so that a systematic relative error expressed in % corresponds to a predictable value
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of the rRMSE calculated in log space. For each time window, we assume the systematic
error can be expressed as a percentage of the expected signal di

ei = a di

where a is the expected relative error. The measured data could then be expressed as

di,m = (1 + a)di

Expressing the error on a log scale, we have

ei,log = log di,m − log di = log
di,m

di
= log(1 + a)

which is independent from the absolute value of the data. It is then possible to predict the
rRMSE value if a systematic relative error a was contaminating the data set. This value is
0.18, 0.135, and 0.05 for a systematic error on the data of 20, 15 and 5%, respectively.

Since the actual error on field data is not systematic but has a random component, and
since the estimation of the level of error from stacking might underestimate the error level,
the choice of the threshold is somehow subjective. In the field case, for example, a stacking
error of about 5% was estimated, which we found to underestimate the actual noise level
so that we chose a threshold corresponding to 3 times that value (15%, or a threshold of
0.135 on the rRMSE).

With such an approach deviating from the Bayesian framework, the posterior solution
is only an approximation of the true posterior distribution. The main advantage is to
eliminate the need to run new forward models and to ensure that the same prior distribution
can be used for several similar data sets, making the prediction of the posterior very fast in
surveys with multiple soundings. We refer to this new approach as BEL1D-T.

2.2. SimPEG: Forward Solver

We use the open-source python package SimPEG to obtain the TDEM response for
a given set of model parameters and the acquisition set-up [33,34]. The main advantage
of SimPEG is that it provides an open source and modular framework for simulating and
inverting many types of geophysical data. We opted for a numerical implementation instead
of the more classical semi-analytical solution such as the one provided in empymod [63]
to assess the impact of a modelling error in the forward model on the estimation of the
posterior. This step is crucial to assess how an error in the forward model propagates into
the posterior distribution. Indeed, for the field data inversion, we initially experienced
some inconsistencies between the prior and the data, and we wanted to rule out the forward
solver being responsible for it. We nevertheless limit ourselves to a strictly 1D context,
yet the approach could be extended to assess the error introduced by multi-dimensional
effects (through a 2D or 3D model), and is therefore flexible. However, the use of a 3D
model increases the computational cost, and it is beyond the scope of this study to compare
numerical and semi-analytical forward solvers [55].

The SimPEG implementation uses a staggered-grid discretization [64] for the finite
volume approach [34], which calls for the definition of the physical properties, fields,
fluxes, and sources on a mesh [65–67]. The details of the implementation can be found
in [33,34]. For the 1D problem, SimPEG makes use of a cylindrical mesh. The accuracy and
computational cost of the forward solver depend on the time and space discretization.

2.2.1. Temporal Discretization

For the temporal discretization, it is a good practice to start with short time steps
at the early times when the electromagnetic fields change rapidly [65]. At later stages,
the time steps can be increased as the variations in the EM fields are more gradual and
the signal-to-noise ratio (S/N) decreases. Shorter time steps increase the accuracy of the
forward model but also the calculation time. Hence, it is important to find an adequate
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trade-off between accuracy and computational cost. In this paper, we tested three sets
of temporal discretization with increased minimum and average size for the time steps
(Table 1 and Figure 2).

Table 1. Description of the different temporal discretization. F (fine), I (intermediate) and C (coarse)
are the corresponding acronyms.

Temporal
Discretization

Total Number of
Time Steps

Maximum Size of
Time Steps (s)

Weighted Average
Length of Time Steps (s)

Fine
(F) 1710 10−5 0.581 × 10−6

Intermediate
(I) 510 10−5 1.95 × 10−6

Coarser
(C) 185 10−4 5.38 × 10−6
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2.2.2. Spatial Discretization

Spatial discretization also has a direct impact on the accuracy of the forward solver [65].
When creating the mesh, as shown in Figure 3, the discretization in the vertical direction
is controlled by the cell size in the z-direction, whereas the horizontal discretization is
controlled by the cell size in the x-direction. A finer discretization results in a more accurate
solution but is also more computationally demanding. Note that a coarse discretization
might also prevent an accurate representation of the layer boundaries as defined in the prior.
If the layer boundary does not correspond to the edge of the mesh, a linear interpolation is
used. In this paper, we selected five values for the vertical discretization to test the impact
of the spatial discretization on the estimated posterior (Table 2).
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modelled with a very high resistivity and logarithmically increasing cell size.

Table 2. Cell size in z-direction for the different spatial discretization. The letters in brackets, VF (very
fine), F (fine), M (medium), C (coarse) and VC (very coarse) are used as acronyms in the remainder of
this paper.

Spatial Discretization Thickness of Grid Cells (in m)

Very Fine (VF) 0.25

Fine (F) 0.5

Medium (M) 1

Coarse (C) 1.5

Very Coarse (VC) 2

2.3. Synthetic Benchmark

We analysed the impact of both temporal and spatial discretization on the accuracy
of the posterior distribution for all fifteen combinations of the temporal and spatial dis-
cretization (see Tables 1 and 2), using synthetic data. A single combination is referred to
by its acronyms, starting with the time discretization. The combination F-C, for example,
corresponds to the fine time discretization combined with the coarse spatial discretization.

The synthetic data set is created with the finest discretization using the benchmark
model parameters in brackets (see Table 3) defined by a five-layer model, with the last
layer having an infinite thickness. The posterior distribution obtained with that same
discretization and BEL1D-IPR is used as a reference. The prior is also the same for all
tests and consists of uniform distributions for the nine model parameters (Table 3). The
acquisition settings mimic the field set-up; see the following subsection.
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Table 3. Prior range of values for all parameters of the model. Benchmark model parameters for the
synthetic model are shown in brackets.

Layers Thickness (m) Resistivities (ohmm)

Layer 1 0.5–6.5 (5) 10–55 (20)

Layer 2 5–15 (10) 1–15 (4.5)

Layer 3 0.5–10 (5) 20–100 (50)

Layer 4 35–50 (42) 50–115 (75)

Layer 5 ∞ (∞) 5–20 (10)

3. Field Site

Understanding the interactions between salt and freshwater dynamics is crucial for
managing coastal aquifers, yet it is difficult due to the required subsurface information,
with high spatial and temporal resolution not always accessible from borehole data. The
study area for the field tests is located in the Luy River catchment in the Binh Thuan
province (Vietnam, Figure 4), which has been facing saltwater intrusions problems for
many years [68–70].
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The data were collected using the TEM-FAST 48 equipment (Applied Electromagnetic
Research, Utrecht, The Netherlands), with a 25 m square loop with a single turn acting as
both transmitter and receiver. The injected current was set to 3.3 A with a dead-time of
5 µs. The data were collected using 42 semi-logarithmic time windows ranging from 4 µs
to 4 ms. The signal was stacked allowing for noise estimation. A 50 Hz filter was applied
to remove noise from the electricity network. For the inversion, the early time and late
time were manually removed (see Sections 4.3 and 4.4). The recorded signals at an early
time steps, i.e., below 10−5 µs, were impacted by the current switch-off phenomena, while
above 1 ms the signal-to-noise ratio was too low. We therefore filtered the TDEM data to a
time range from 8 µs to 500 µs. In the forward model, we implemented the current shut-off
ramp from the TEM-FAST48 system following the approach proposed by [71].

4. Results

We subdivide the results into four subsections. In the first subsection, we analyse the
impact of the accuracy of the forward solver on the accuracy of the posterior in BEL1D-IPR.
In the second section, we test the impact of a threshold on the rRMSE applied after the first
BEL1D iteration (BEL1D-T). The third subsection is dedicated to the selection of the prior.
Finally, the last section corresponds to the application of BEL1D-T to the field data.

4.1. Impact of Discretization

In this section, we tested in total 15 combinations of temporal and spatial discretization
to study their behaviour on both the computation time and the accuracy of the posterior
distribution computed with BEL1D-IPR (four iterations). The reference used the finest
time and spatial discretization (F-VF). Since the computational costs of BEL1D are directly
related to the number of prior samples and the computational cost of running one forward
model [19], computing the solution for the F-VF combination is more than 150 times more
expensive that running it with the C-VC combination (Table 4). An initial set of 1000 models
is used in the prior. All calculations and simulation were carried out on a desktop computer
with the following specifications: Processor intel ® CORE TM i7-9700 CPU @ 3.00 GHz,
RAM 16.0 GB.

Table 4. Time (in seconds) to compute one forward model in SimPEG for the 15 combinations of
time and space discretization. The red colour corresponds to posterior distributions whose mean is
biased, whereas the blue colour represents an under- or overestimation of the uncertainty for the
two shallowest layers.

Spatial Discretization

Time VF F M C VC

F 389.02 73.88 33.4 25.92 17.7

I 114.79 22.38 6.3 3.55 2.73

C 44.98 11.48 3.90 2.46 2.02

We first analyse the impact of the forward solver in BEL1D-IPR. A very similar be-
haviour is noted for all combinations using the VF spatial discretization, in combination
with the three temporal discretization for all parameters (Figure 5). The parameters (thick-
ness and resistivity) of the two first layers are recovered with relatively low uncertainty,
while the uncertainty remains quite large for deeper layers, showing the intrinsic uncer-
tainty of the methods related to the non-unicity of the solution. The results look globally
similar, but a detailed analysis of the posterior distribution focusing on the resolved param-
eters (two first layers, see Figure 6) shows a slight bias of the mean value in C-VF and I-VF
for the thickness of the second layer. This bias is small (less than 0.5 m) and could be the
result of the sampling. A slightly larger uncertainty range can also be observed for the I
and C time discretization.
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Globally, a systematic bias is observed for the largest spatial discretization (VC and C)
for the thickness of layers 1 and 2 (Figure 6), which can likely be attributed to the difficulty
in properly representing thin layers with a coarse discretization. A bias in the thickness
of layer 2 is also noted for all coarse-time discretization, and to a lesser extent for the
intermediate-time discretization, although this is limited when combined with F and VF
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spatial discretization. There is no significant bias visible in the estimation of the resistivity
of layer 1, while most combinations have a small but not significant bias for layer 2, and the
uncertainty range tends to be overestimated or underestimated for most combinations with
large spatial discretization. Eventually, combinations with a VF or F spatial discretization
combined with all time discretization, as well as the F-M combination, provide relatively
similar results to the reference F-VF.

The time and spatial discretization for simulating the forward response of TDEM
have therefore a strong impact, not only on the accuracy of the model response, but also
on the estimation of the parameters of the shallow layers after inversion. In particular,
the coarser spatial discretization biases the estimation of the thicknesses of the shallow
layer. The same is also observed for the combination of a coarse- or intermediate-time
discretization with a medium spatial discretization. As shallow layers correspond to the
early times, this bias is likely related to an inaccurate simulation of the early TDEM response
by the forward solver due to the chosen discretization. Although it comes with a high
computation cost, we recommend keeping a relatively fine time and space discretization to
guarantee the accuracy of the inversion. The cheapest option in terms of computational
time with a minimum impact on the posterior distribution corresponds in this case to the
C-F combination.

4.2. Impact of the Threshold

Because of the additional costs associated with the iterations, we compare the posterior
distributions obtained with BEL1D-IPR to our new BEL1D-T approach, applying a threshold
after the first iteration. The selected threshold based on the rRMSE calculated on the
logarithm of the data are 0.18, 0.135, 0.05, corresponding, respectively, to a systematic
error on the data of 20%, 15% and 5%. Various values of the threshold are tested for the
reference solution (F-VF discretization) (Figure 7) and the analysis of the discretization is
repeated (Figure 8). The threshold is applied after the first iteration to avoid additional
computational time. The corresponding posterior distribution retains only the models
that fit the data to an acceptable level. Note that the corresponding posterior distribution
has a lower number of models than the IPR on BEL1D, as the latter enriches the posterior
with iterations.

For solutions without a threshold, the colour scale is based on the quantiles of the
RMSE in the posterior distribution. The threshold thus removes the models with the largest
RMSE (yellow-green). Without the threshold (Figure 7A,B,G), some models not fitting the
data are present in the posterior. The threshold approach after one iteration succeeds in
obtaining a posterior closer to the reference solution (Figure 7D–F,J–L). The benchmark
model, which is the true model, lies in the middle of the posterior.

The impact of the selected threshold value on the posterior distribution is illustrated
in Figure 7D–F,J–L. Since the threshold is based on the rRMSE, decreasing its value is
equivalent to rejecting the models with the largest data misfit from the posterior, while only
models fitting the data with minimal variations are kept in the posterior. This rejection
efficiently removes poor models from the posterior. If a low value is selected, only the very
few best-fitting models are kept, and these are very similar to the reference model, hence
reducing the posterior uncertainty range in the selected models (overfitting), while a high
value of the threshold might retain models that do not fit the data within the noise level.
The choice of the threshold should therefore be carefully made based on the noise level,
and its sensitivity should be assessed.
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Figure 7. Posterior-model space visualization: yellow dots represent the prior distribution, blue dots
show the posterior distribution, and the red line corresponds to the benchmark model. The panels
represent the following: (A) the posterior-model space distribution after four iterations without
a threshold (BEL1D-IPR); (B) the posterior-model space distribution after one iteration without
threshold. Comparison between BEL1D-IPR (C) and three threshold values for BEL1D-T (0.18, 0.135
and 0.05 (D–F)). The x and y axes are equivalent to resistivity (ohm.m) and depth (m). Posterior-model
distribution for BEL1D-IPR (G,I) and after one iteration without a threshold (H) (the color scale is
based on the value of the RMSE) and BEL1D-T with threshold values (0.18, 0.135 and 0.05, J–L).
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Figure 8. Box plot of thickness and resistivity for the two first layers after one iteration. Red line
shows the benchmark F-VF (1). (1) represents the first iteration.

Since the choice of the threshold impacts the rejection rate, the number of samples
to generate cannot be estimated a priori. An initial estimate can, however be derived
from a limited set of posterior samples. For the selected threshold value of 0.135, only
166 models are retained after filtering, corresponding to a rejection rate of 83.4%. If more
models are required in the posterior, it is necessary to generate new models, which is
not computationally expensive in BEL1D. The only additional effort is to compute the
resulting rRMSE. The total computational effort is therefore proportional to the efficiency
of the forward solver (Table 4). For instance, generating 500 models in the posterior would
require generating 3000 samples based on the same rejection rate, and therefore would
take three- times longer. BEL1D-T is therefore equivalent to a smart sampler that quickly
generates models only in the vicinity of the posterior distribution and can contribute to
a first fast assessment of the posterior. If the generation of many models is required, we
rather recommend using BEL1D-IPR.

In this case, the threshold value of 0.135 seems acceptable and close to the BEL1D-
IPR posterior distribution after four iterations. A higher threshold seems to retain too
many samples, resulting in an overestimation of the posterior. The threshold value of
0.05 corresponds to a very large rejection rate and would require generating more models
to assess the posterior properly. In the remaining part of the paper, the threshold 0.135 is
used. The visualization of model space encompassing all combinations of temporal and
spatial discretization for the first two layers’ thicknesses is illustrated in Figure S1 of the
Supplementary Materials. Correspondingly, the depth-resistivity models are depicted in
Figure S2 for the combinations of F-F, C-F, F-M, C-M, F-VC, and C-VC.

Figure 8 shows the boxplot results for BEL1D-T with the threshold 0.135 for various
combinations of the discretization, and can be compared to the corresponding solution
with BEL1D-IPR (Figure 6). Differences are less pronounced than with BEL1D-IPR. The
F-VF and F-F and F-M discretization have similar posterior distributions as the reference
for the thickness of the first two layers, while the uncertainty range for the resistivity is
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slightly underestimated. Figure 6 shows that the F-VF and F-F and F-M discretizations lead
to results without bias for any parameters.

As with BEL1D-IPR, the very-coarse and coarse discretization are systematically
biased. Most other combinations show a slight bias for the thickness of layer two, and—to
a certain extent—also for layer one. Nonetheless, the difference with the reference for
many combinations is less pronounced than for BEL1D-IPR. For example, the I-M and C-M
combinations give relatively good approximations of the posterior. As in BEL1D-IPR the
prior distribution is complemented with models sampled at the first iteration, without
relying on their RMSE, an initial bias resulting from an error in the forward solver might
be amplified in later iterations, leading to larger discrepancy between the response of the
final model and the data. With BEL1D-T, the application of the threshold after iteration one
prevents the solution deviating too much from the truth.

4.3. Impact of the Prior

In this section, we present some results obtained from the application of BEL1D to
the TEM-fast dataset collected at sounding 2611, near project 22 (Figure 4). The measured
signal can be seen in Figure 9, together with the standard deviation of the stacking error. A
deterministic inversion of the data was carried out with SimPEG to have a first estimate
of the electrical resistivity distribution (Figure 9). It shows a conductive zone at a shallow
depth, likely corresponding to the saline part of the unconsolidated aquifer, while more
resistive ground is found below 15 m, likely corresponding to the transition to the resistive
bedrock. Below, a gradual decrease in resistivity can be observed.

In field cases, defining the prior distribution can be complicated, as the resistivity is not
known in advance. We compare three possible prior combinations (obviously inconsistent
prior range—case A, slightly inconsistent prior range—case B, acceptable prior range—case
C) to better understand the impact of the choice of the prior. We apply BEL1D-T to bypass
the additional computational time required in BEL1D-IPR, and use the F-F discretization.

The prior model consists of layers: the first five layers are characterized by their
thickness and electrical resistivity, while the last layer has an infinite thickness. The prior
distributions are shown in Figure 9 and Table 5. In case A, the prior is narrow, and was
chosen to represent the main trend observed in the deterministic inversion. However,
the first layers (upper 10 m) have a small resistivity range not in accordance with the
deterministic inversion (red line in Figure 9). Similarly, the fourth layer underestimates the
range of resistivity values expected from the deterministic inversion (60–70 Ohm.m). The
prior for case B displays larger uncertainty: the first layer is forced to have larger resistivity
values, and a strong transition is forced for the half-space. Finally, the last prior case C is
very wide and allows a large overlap between successive layers, as well as a very large
range of resistivity values.

Table 5. Prior distributions for the different cases: (a) obviously inconsistent prior range, (b) slightly
inconsistent prior range and (c) acceptable prior range.

Case A Case B Case C

Thickness
(m)

Resistivity
(ohmm)

Thickness
(m)

Resistivity
(ohmm)

Thickness
(m)

Resistivity
(ohmm)

Layer 1 0–10 2–5 0–10 10–25 0–10 10–55

Layer 2 5.0–10 0.5–6 5–10 0.5–5 5.0–10 0.5–15

Layer 3 0.5–10 20–100 0.5–10 20–50 0.5–10 20–100

Layer 4 35–50 60–70 35–50 50–100 35–50 50–600

Layer 5 45–60 5–10 45–60 0.2–0.5 45–60 0.2–10

layer 6 0–0 10–15 0–0 10–40 0–0 5–100
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Figure 9. Prior distributions for the three cases of sounding 2611. Case A: obvious inconsistent prior
range; case B: slightly inconsistent prior range; case C: acceptable prior range. (a–c) Prior range with
deterministic inversion (red); (d–f) measured signal, noise and forward solution for the prior mean;
(g–i) forward response of each prior model.
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The forward responses of the mean prior model of each three cases are displayed
in Figure 9d–f. We can see that the response of the prior is the following: (1) it largely
deviates from the measured signal for case A, (2) it deviates at later times for case B, and
(3) it has the lowest deviation in case C. We also display the range of the forward response
for 4000 prior models (Figure 9g–i). Due to the poor selection of the prior, a large difference
between the measured data and the prior data space can be seen for case A (Figure 9g). The
prior is clearly not consistent with the data, as the latter lies outside of the prior range in
the data space in the early time steps. On the other hand, for case B (Figure 9h), the prior
data range now encompasses the observed data, although it is rather at the edge of the
prior distribution. For case C (Figure 9i), the prior range in the data space encompasses the
measured data which lie close to the response of the prior mean model (Figure 9).

However, visual inspection is not sufficient to verify the consistency of the prior.
Indeed, it is necessary to ensure that specific behaviours of the measured data can be
reproduced by the prior model. This can be carried out more efficiently in the reduced PCA
and CCA space [72]. Indeed, as BEL1D relies on learning, it cannot be used for extrapolation,
and should not be used if the data fall outside the range of the prior. To further support the
argument, the PCA and (part of) the CCA spaces are shown in Figures 1 and 10, respectively.
In Figure 10, the red crosses show the projection of the field data on every individual PCA
dimension. It confirms that the prior for case A is inconsistent, with dimensions 2 and 3
lying outside, whereas the first PCA score lies at the edge of the prior distribution. For
higher dimensions, the observed data lie within the range of the prior data space, but those
dimensions represent only a limited part of the total variance. This is an indication that the
prior is not able to reproduce the data and is therefore inconsistent. For cases B and C, no
inconsistency is detected in the PCA space.
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Figure 10. PCA space, (a) obvious inconsistent prior, (b) slightly inconsistent prior and (c) acceptable
prior. The black dot represents the prior models and the red cross represents the observed data.

A similar exercise is then performed in the CCA space where the projection of the field
data is marked by a red line. In Figure 11a the observed data (red line) are lying outside the
zone covered by the sampled prior models for most dimensions (grey zone). In such a case,
BEL1D returns an error message and does not provide any estimation of the posterior. For
the sake of illustration, we deactivated this preventive action and, nevertheless, performed
the inversion. The posterior models in Figure 12 (case A) show low uncertainty for layers 1,
2, 4, 5, and 6, because of the limited range provided in the prior. The posterior data space
shows that the posterior models do not fit the data, as a result of the inability of BEL to
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extrapolate in this case. Note that the threshold was not applied in this case, as it would
have left no sample in the posterior, since none of them fit the observed data.
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inconsistent prior and (c) acceptable prior. The red line represents the observed data. The y-axis
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For case B, although it is apparently consistent in the PCA space, a similar occurrence
of inconsistency appears in the CCA space (Figure 11b) for dimension three and some
higher dimensions. Although apparently consistent with each individual dimension, the
observed data do not correspond to combinations of dimensions contained in the prior, in
which case they constitute an outlier for the proposed prior identified in the CCA space.
However, in this case, the posterior models that are generated fit the data and have a
relatively low RMSE (Figure 12c,d). The posterior-model visualization shows a limited
uncertainty reduction for layers one to three and almost no uncertainty reduction for layers
four, five and six (Figure 12c,d), likely pointing to a lack of sensitivity of the survey to these
deeper layers. This indicates that BEL1D-T can overcome some inconsistency between
the prior definition and the observed data, likely because the affected dimensions are
only responsible for a small part of the total variance, to a level relatively similar to the
noise level.
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In case C, no inconsistency is detected in the prior data space, the PCA and CCA
space (Figures 10c and 11c). The posterior models do fit the data within the expected noise
level and the deterministic inversion lies within the posterior (Figure 12e,f). The posterior
uncertainty is large, especially for deeper layers (four, five and six). Therefore, in this case,
BEL1D-T seems to correctly identify the posterior distribution of the model parameters.
As the late times were filtered out, the data set is more sensitive to the shallow layers, and
insensitive to the deeper layers. Increasing the prior range for those layers would also
induce an increase in uncertainty in the posterior model.

4.4. Field Soundings

We selected two TDEM soundings, which are co-located with ERT profiles (red and
yellow dots on Figure 4). The comparison with independent data can be used to evaluate
the posterior solution from BEL1D-T. For the TDEM soundings (see Figure 13c,d), we
compare the deterministic inversion, the BEL1D-T posterior distribution and a conductivity
profile extracted from the ERT profile at the location of the sounding.
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deterministic inversion of TDEM data in red.

The resistivity image and TDEM results of profile 22 show the same trend (Figure 13a,c).
At a shallow depth between 5 and 15 m, less-resistive layers are observed, which indicates
the presence of saltwater in the unconsolidated sediment (20 to 25 m thickness). At a greater
depth, we have an increase in resistivity corresponding to the transition to the bedrock. The
deterministic solution tends to show a decrease in resistivity at greater depths, which may
be an artifact due to the loss of resolution. BEL1D-T is successful in providing a realistic
uncertainty quantification, not resolved with the deterministic inversion. It can be observed
that, except for the shallow layer, the reduction in uncertainty compared to the prior is
relatively limited and concerns mostly the thickness and not the resistivity, illustrating
the insensitivity of the survey set-up for depths below 60 m, where the solution is mostly
driven by the definition of the prior distribution. The selection of an rRMSE threshold,
however, ensures that all those models are consistent with the recorded data.

The results for profile 23 are different (Figure 13b,d). This site is at the foot of sand
dunes, close to the sea, with an elevation level between 11 and 50 m. The shallow layer
is relatively resistive, but the two methods do not agree on the value of the resistivity,
with the TDEM resulting in higher values. BEL1D-T tends to predict a larger uncertainty
towards low values of the resistivity for the shallow layers compared to the deterministic
inversion. Below 50 m, the resistivity drops to 1–10 Ohm.m for both methods, which seems
to show the presence of saltwater in the bedrock. The uncertainty range estimated by
BEL1D-T seems to invalidate the presence of rapidly varying resistivity between 50 and
75 m, predicted by the deterministic TDEM inversion, which is quite coherent with the lack
of sensitivity at this depth.

4.5. Summary and Discussion

Deterministic inversions are affected by the non-uniqueness of the solution preventing
the quantification of uncertainty. Our approach using BEL1D-T allows us to retrieve not
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only the changes in resistivity with depth, but also to quantify the reliability of the model.
We summarize the main outcomes of the sections above as the following:

(1) When using a numerical forward model, the temporal and spatial discretization
have a significant effect on the retrieved posterior distribution. A semi-analytical
approach is recommended when possible. Otherwise, a sufficiently fine temporal and
spatial discretization must be retained and BEL1D-T constitutes an efficient and fast
alternative for computing the posterior distribution.

(2) BEL1D-T is an efficient and accurate approach for predicting uncertainty with limited
computational effort. It was shown to be equivalent to BEL1D-IPR but requires fewer
forward models to be computed.

(3) As with any Bayesian approach, BEL1D-related methods are sensitive to the choice of
the prior model. The consistency between the prior and the observed data is integrated,
and the threshold approach allows for quickly identifying the inconsistent posterior
model. We recommend running a deterministic inversion to define the prior model
while keeping a wide range for each parameter, allowing for sufficient variability.
Our findings illuminate the substantial uncertainty enveloping the deterministic
inversion, highlighting the risk of disregarding such uncertainty, particularly in
zones of low sensitivity at greater depths. We implement a threshold criterion to
ensure all the models within the posterior distribution fit the observed data within a
realistic error. Nonetheless, there exists a risk of underestimating uncertainty when
the prior distribution is overly restrictive, as detailed in our prior analysis. Relying
too much on the deterministic inversion is therefore dangerous, as it might not recover
some variations occurring in the field because of the chosen inversion approach. To
accommodate a broader prior, it may be imperative to resort to BEL1D-IPR or to
increase the sample size significantly, ensuring a comprehensive exploration of the
model space and a more accurate reflection of the inherent uncertainties.

(4) For the field case, the results are consistent with ERT and deterministic inversion. Our
analysis reveals that the uncertainty reduction at depths greater than 60 m is almost
non-existent. It is recommended to avoid interpreting the model parameters at that
depth, as the solution is likely highly dependent on the prior.

5. Conclusions

In this paper, we introduce a new approach combining BEL1D with a threshold after
the first iteration (BEL1D-T) as a fast and efficient stochastic inversion method for TDEM
data. Although BEL1D-T only requires a limited number of forward runs, the computa-
tional time remains relatively important as we used the numerical solver of SimPEG to
calculate the forward response. The proper selection of time-steps and space discretization
is essential to limit the computation cost while keeping an accurate posterior distribution.
Our numerical studies reveal that there is a compromise between the spatial and temporal
discretization in the forward solver that minimizes the ricks of numerical errors in the
posteriors generated, yet also reducing the computational cost. A fine temporal discretiza-
tion seems to be important, as described in Table 1, yet a very fine spatial discretization
does not seem mandatory. As this analysis is likely specific to every acquisition set-up and
prior distribution, we suggest carefully evaluating the modelling error introduced by the
forward model before starting the BEL1D-T inversion. The use of faster semi-analytical
forward models is recommended when available. However, 2D and 3D effects when the
1D forward solver are used are expected to have a similar impact on the forward-model
error. as observed in our work.

The application of a threshold on the rRMSE after one iteration is an efficient approach
to limiting the computational costs. We select the threshold based on the estimated relative
error in the data set, translated into an absolute value of the rRMSE calculated on a log scale.
Selecting a too-selective threshold can result in overfitting and thus an underestimation of
the uncertainty. We showed that selecting a threshold based on the expected noise level
leads to a solution similar to the one obtained with the reference BEL1D-IPR. The proposed
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approach allows for partly mitigating the adverse effects of an inaccurate forward model,
and therefore can be used to obtain a first fast assessment of the posterior distribution.

Moreover, it should be noted that, as with any stochastic methods, BEL1D is sensitive to
the definition of the prior. We have experienced some prior distributions that might appear
visually consistent in the data space resulting in inconsistencies in the low-dimensional
spaces. It is thus crucial to verify the consistency of the prior also in the lower dimensional
space. This feature is included by default in the pyBEL1D code [58], but it might be
interesting to deactivate this feature in order to investigate the reasons and their impacts
on the posterior. Beside the definition of the prior itself, the inconsistency can be attributed
to the noisy nature of the field data [19].

In the case of large uncertainty, an iterative prior resampling approach is advised,
as proposed by [19], but it comes at a larger computational cost. Therefore, we propose
reducing the prior uncertainty by using the deterministic inversion as a guide, and limiting
ourselves to the first iteration, while filtering the models based on their RMSE. However,
care should be taken to avoid restricting the prior too much, as this might yield an underes-
timation of the uncertainty. In such cases, BEL1D-T acts more as a stochastic optimization
algorithm, providing only a fast approximation of the posterior distribution, but still allow-
ing for the rough estimation of the uncertainty of the solution, without requiring heavy
computational power such as HPC facilities.

We validated the approach using TDEM soundings acquired in a saltwater intrusion
context in Vietnam. The posterior distribution was consistent with both the deterministic
inversion and the ERT profiles. The range of uncertainty was larger where TDEM and ERT
deterministic inversions do not agree, which illustrates the intrinsic uncertainty of these
type of data and the need for uncertainty quantification.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w16071056/s1, Figure S1. (a) Posterior-model space visualization
with one iteration and threshold (0.135), (b) posterior-model space visualization with four iterations;
the above row is with fine-time discretization, whereas the other rows are with intermediate- and
coarse-time discretization. From left to right, with spatial discretization (VF, F, M, C, and VC).
Figure S2. Posterior-model visualization with respect to depth (m) vs resistivity (ohm.m); colour bar
represents the RMSE values (a) with four iterations without a threshold and (b) with one iteration
and a 0.135 threshold value.
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