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Abstract: The hydrological series in the Loess Plateau region has exhibited shifts in trend, mean,
and/or variance as the environmental conditions have changed, indicating a departure from the
assumption of stationarity. As the variations accumulate, the compound effects caused by the driving
variables on runoff variations grow complex and interactive, posing a substantial risk to water
security and the promotion of high-quality development in regions or river basins. This study focuses
on the Tuwei River Basin in the Loess Plateau, which experiences significant changes in vegetation
coverage and minimal human disturbance, and examines the cross-driving relationship between
the runoff change and its driving variables (including hydrometeorological and environmental
variables). A quantitative statistical analysis method based on the GAMLSS is then developed to
estimate the interacting effects of changes in the driving variables and their contribution to runoff
changes. Finally, various anticipated scenarios are used to simulate the changes in driving variables
and runoff disturbances. The findings indicate the following: (1) The developed GU, LO, and NO
distribution-based GAMLSSs provide a notable advantage in effectively capturing the variations
in groundwater storage variables, actual evapotranspiration, and underlying surface parameters,
as well as accurately estimating the impacts of other relevant variables. (2) The precipitation and
groundwater storage variables showed predominantly positive contributions to the runoff change,
but actual evapotranspiration had an adverse effect. The changes in underlying surface parameters,
particularly since 2000, increase actual evapotranspiration, while decreasing groundwater storage,
resulting in a progressive decrease in runoff as their contribution grows. (3) The scenario simulation
results reveal that alterations to the underlying surface have a substantial influence on the evolution
of runoff in the Tuwei River Basin. Additionally, there are cross-effects between the impact of various
driving variables on runoff, potentially compounding the complexity of inconsistent changes in
runoff sequences.

Keywords: hydrological non-stationarity; attribute analysis; scenario modeling; GAMLSS; Tuwei
River Basin

1. Introduction

Precipitation, evaporation, water storage, and the underlying surface condition are
commonly regarded as the primary causes of watershed runoff. Recently, they have seen
varying degrees of change, impacted by increasingly intense climate change and human
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activities around the world, primarily generating non-stationary changes in runoff in arid
and semi-arid regions [1,2]. Furthermore, the elements impact each other, amplifying their
interactions and driving effects on runoff in these regions [3–5]. The Loess Plateau (LP)
comprises the largest area, and it is receiving increased attention, particularly since the
vegetation cover has altered dramatically [6–8]. As widely described in the literature, the
major elements in the LP’s water cycle process have changed dramatically in recent years
as a result of climate change and human-induced vegetation regreening [9]. Runoff, as a
result of changes in numerous elements, is heavily influenced by the compound impacts
of these changes [7,10,11]. Physically, precipitation, evapotranspiration, and groundwater
storage have a direct impact on runoff changes, whereas changes in the underlying surface
are the primary environmental factors that indirectly cause runoff changes. However, when
the streamflow is non-stationary, it is extremely difficult to disentangle the contributions
of various elements to the inconsistent changes in runoff to figure out the attribution
explanations of significant variations in runoff on the LP.

As a result, many scientists have explored the inconsistency and attribution of regional
hydrological processes using various time series models or physical hydrological models.
For example, Feng et al. (2016) used a multiple regression model to investigate the inter-
active roles of climate and human activities on runoff decline in 14 basins in the LP and
discovered that reduced precipitation was the primary reason for the decrease in runoff
between 1961 and 2009, with human intervention playing a dominant role in producing
these shifts, after which the water yield decreased further [6]. Zhang et al. (2020) used
the partial least squares regression (PLSR) approach to evaluate the contribution of the
expanding implementation of ecological restoration (ER) strategies in the LP to achieve
streamflow decline, and the results revealed that ER was the dominant cause of streamflow
reduction, with the contribution increasing from 59% in 1980–1999 to 82% in 2000–2015 [10].
Tan et al. (2024) proposed a modified Budyko attribution method to quantify vegetation-
induced runoff alterations in the LP, and the findings show that the vegetation change
mainly caused runoff reduction over the LP, resulting in 78.94% of the reduced runoff, and
the “Grain-for-Green” Program (GFGP)-led LULC shift, particularly for cropland reduction,
plays a vital role in vegetation-induced runoff losses, which could increase future water
stress in the LP [7]. Gao et al. (2020) used the SWAT model to simulate runoff change
under several scenarios in the Jing River Basin of the LP and evaluated the climatic and
anthropogenic impacts. The results showed that the impact of climatic elements progres-
sively diminished over time, while the influence of direct variables (water withdrawal)
expanded the fastest, and the influence of indirect causes steadily increased [12]. Sun et al.
(2019) used the RCC-WBM model to quantitatively separate the impacts of climate change
and human activities on runoff change in the Tao River from the Tibetan Plateau to the
LP and found that human activities are the primary drivers of runoff reduction in the
Basin, though both these absolute influences tend to increase [13]. Liu et al. (2012) used the
Tsinghua Hydrological model based on the Representative Elementary Watershed approach
(THREW) to investigate the characteristics of runoff generation in the LP, concluding that
the subsurface flow contribution to total streamflow is greater than 53% from October to
March, while the overland flow contribution exceeds 72% from April to September [14].

Although the aforementioned research has made significant progress in interpreting
the interactive effects of the hydrological cycle on the LP, as well as analyzing the attribution
of non-stationary characteristics in runoff sequences, these two models or methods have
some limitations. For example, time series analysis can only provide average and general
contribution estimates, such as from climate change, ecological restoration (ER) strategies,
or human activities. In other words, while these methods may be beneficial for analyzing
non-stationary time series, their intrinsic static regression aspect does not properly describe
many complicated physical interaction processes [15]. Hydrological models, such as
lumped (IHACRES), semi-distributed (HEC-HMS), and fully distributed (SWATgrid) ones,
accurately simulate runoff in smaller catchments under most hydroclimatic conditions, but
they frequently fail in larger catchments, regardless of the hydroclimatic conditions [16],
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particularly in catchments with non-stationarity in rainfall–runoff relationships. This
implies the need for additional research to promote the establishment of the cross-driving
relationship between runoff non-stationary changes and their driving elements, as well
as the quantitatively evaluation of variations in the driving elements and their impact on
runoff alterations, both of which are critical in formulating water resource management
policies and addressing water shortages on the LP.

The Generalized Additive Model in Location, Scale and Shape (GAMLSS) is a tool for
modeling time series under non-stationary conditions [17]. It supports a variety of random
variable frequency distribution types and is extremely useful in constructing linear or
nonlinear functional relationships between distribution function position parameters, scale
parameters, shape parameters, and explanatory variables [18]. The GAMLSS framework
has been widely applied in non-stationary frequency analysis, modeling, and forecasting in
hydrology [19–22]. This GAMLSS feature also allows for cross-driving interactions between
runoff and the driving elements, or between the driving elements themselves. In light of this,
the goal of this paper is to create an inconsistent hydrological statistical model (GAMLSS)
with physical factors as covariates in order to identify the cross-driving relationship between
watershed hydrometeorological (precipitation, actual evapotranspiration, groundwater
storage variables, and runoff) and surface environmental variables (underlying surface
parameters) with inconsistently changing characteristics. It offers a novel approach to
inquiry that differs from the previous time series analysis and hydrological models in that
it statistically analyzes the cross-driving relationship between elements and investigates
the causes of runoff decline.

The study entails (1) investigating the cross-driving relationship between runoff
changes and their driving delivers (including hydrometeorological and surface environ-
mental elements), (2) developing a hydrological non-stationary model that incorporates
several driving elements, (3) quantitatively examining the changes in runoff driving vari-
ables and their impact on runoff evolution, and (4) developing scenario plans to simulate
future runoff change patterns under various driving impacts. Although this study focuses
on the Loess Plateau, the findings are extremely relevant to water managers in other arid
and semi-arid regions with substantial hydroclimatic fluctuations or changes.

2. Study Area and Data

The Tuwei River is a first-level tributary of the Yellow River. It is situated in Yulin
City, in the northern part of Shaanxi Province, China [23]. The river spans 140.0 km, covers
3294.0 km2 of drainage area [24], and has an average channel ratio of 3.87‰. The Tuwei
River’s water system is simple, with a branch-like distribution. The tributaries along the
southwest bank are more developed [25]. The largest tributaries include the Qingshui,
Zhalinchuan, Yangjiapan, and Kaiguangchuan Rivers. The Tuwei River Basin has a multi-
year average runoff of around 380 million m3. A significant regional variance in runoff
is visible. The upstream level is substantially higher than the downstream level, and the
runoff recharge is primarily groundwater. Seasonal variations include two flood periods:
a spring flood and a summer flood. The river has a low silt composition, with an annual
sediment transit volume of 33.5 million tons, with the highest amount occurring between
June and September. The Tuwei River Basin has a continental monsoon climate, which
means hot summers and cold winters. The multi-year average temperature is 8.5 ◦C, with
an average precipitation of 392.2 mm. Rainfall is irregularly distributed throughout the
year, with the bulk falling from June to September. The basin’s multi-year average wind
speed is 2–3.6 m/s, and the average number of sunlight hours is 2853.

The watershed hydrometeorological observations include precipitation, potential evap-
otranspiration, and runoff. Since there is no national meteorological station in the Tuwei
River Basin, potential evapotranspiration was calculated using data from the Shenmu me-
teorological station, which is close to the basin. The meteorological data came from China’s
Meteorological Data Network (http://data.cma.cn/). The precipitation data are collected
from seven rainfall stations in the basin and cover the period 1957–2010. The statistics
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are from the Yellow River Basin Hydrological Data Yearbook. Also, the Thiessen polygon
method was used to acquire surface precipitation data on the watershed. Gaojiachuan
Station serves as the Tuwei River Basin’s discharge hydrological station. The station’s daily
flow data from 1957 to 2010 was utilized. These data also came from the Yellow River Basin
Hydrological Data Yearbook. Figure 1 depicts the distribution of meteorological, rainfall,
and hydrological stations throughout the basin.
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River Basin.

3. Methodology

The basin’s yearly scale water balance formula (P = E + ET + ∆G, when surface water
storage changes a little) reveals that precipitation, actual evapotranspiration, and ground-
water storage variables are the principal drivers of runoff changes. The underlying surface
conditions have a significant impact on actual evapotranspiration and groundwater storage
variables, making them crucial concerns that cannot be overlooked when investigating the
evolution of the runoff process in changing environments. As a result, this study selected
precipitation, actual evapotranspiration, groundwater storage variables, and the parameter
n in the Budyko equation [26], which represents changes in the underlying surface, as the
key driving forces impacting runoff variations. Therein, groundwater storage variables
were obtained using the USGS RORA model [27,28]. Also, an inconsistent GAMLSS was de-
veloped by identifying and establishing the interaction of runoff changes and their physical
driving elements (e.g., groundwater storage variables, actual evapotranspiration, and un-
derlying surface characteristics) as covariates [29]. This model studies how non-stationary
fluctuations in yearly precipitation, groundwater storage factors, and actual evapotranspi-
ration affect annual runoff. Finally, using the planned scenario, runoff variations caused by
multiple diverse driving forces were simulated, and alternative co-evolution rules were
investigated. Therein, the first year of the entire series (1957) was selected as the base year
of evolution analysis.

3.1. Interaction of Runoff and Physical Driving Elements

Figure 2 depicts the interactive relationship and influence of runoff and its underlying
variables. Precipitation, as a component of watershed moisture conditions, has a direct
impact on groundwater storage variables, evapotranspiration, underlying surface parame-
ters, and runoff. Precipitation, underlying surface factors, and actual evapotranspiration
all interact to drive groundwater storage variables synergistically. When precipitation
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reaches the aquifer, the amount of groundwater recharge increases, thereby increasing
groundwater storage. As the underlying vegetation condition improves, the amount of
infiltration increases, resulting in increases in groundwater recharge and groundwater
storage. When actual evapotranspiration increases, groundwater recharge decreases, and
groundwater storage shrinks. A mix of precipitation and surface properties influences
actual evapotranspiration. When precipitation rises, so does actual evapotranspiration;
when the underlying vegetation condition improves, so does transpiration from vegetation.
Precipitation is what drives the underlying surface characteristics. When precipitation
increases, plants absorb more water to meet their growth needs, resulting in improved
vegetation conditions and, as a result, an increase in the underlying surface parameter n.
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3.2. GAMLSS

A Generalized Additive Model in Location, Scale, and Shape (GAMLSS) is a semi-
parametric regression model that analyzes the frequencies of stationary and non-stationary
runoff and other features [17–22,29,30].

For any time t(t = 1, 2, · · · n), the GAMLSS assumes that the distribution function
of the mutually independent random variable observation sequence yt(t = 1, 2, · · · n) is
Fy
(
Yt
∣∣θt ) and the probability density function is f

(
yt
∣∣θt ), where θt = (θt1, θt2, · · · θtm) is

the set of m parameter vectors (including position, shape, and scale parameters) related
to explanatory variables (covariates) and random effects. k = 1, 2, · · · , m, gk(·) is defined
the monotonic connection function between the parameter vector θk, the explanatory
variables, and the random effect terms. If the random effect term is ignored, the expression
is as follows:

gk(θk) = Xkβk (1)

where Xk is an explanatory variable matrix with dimension n × p, and βk is a parameter
vector with length p.

Usually, the GAMLSS has no more than four distribution parameters. Most distribu-
tions have only two parameters: a position parameter and a scale parameter. The position
parameter β1 is regard as the first parameter vector θ1, representing the mean value µ of the
random variable, whereas the scale parameter β2 refers to the second parameter vector θ2,
representing the mean square error σ of the random variable. Shape parameters β3, such



Water 2024, 16, 986 6 of 19

as skewness ν and kurtosis τ, are also included in more complicated distributions. If the
distribution function has three parameters, the equation can be stated as follows:

g1(µ) = X1β1
g2(σ) = X2β2
g3(ν) = X3β3

(2)

The explanatory variable can be stated in matrix form as follows:

Xk =


1 x11 · · · x1pk
1 x21 · · · x2pk
...

...
. . .

...
1 xn1 · · · xnpk

 (3)

The maximum likelihood method is used to determine the model parameters. The
likelihood function is as follows:

L(β1, β2, β3) =
n

∑
t=1

ln(F(yt|β1, β2, β3 )) (4)

where yt is the measured value of the sequence, n is its length or the sample size, and F is
the cumulative probability distribution function that the series follows. However, it should
be noted that the L-moments method is recommended for use when less than 50 data
values are collected [30].

This study used the AIC (Information Criterion) and SBC (Schwartz Bayesian Information
Criterion) to assess the appropriateness of model fitting. The lower the AIC and SBC values
are, the better the model fits. As a result, the optimal model in this study is the one
with the lowest AIC and SBC values. The AIC and SBC values are calculated using the
following formulas:

AIC = −2lnL (β1, β2, β3) + 2d f (5)

SBC = −2lnL (β1, β2, β3)+d f ln(n) (6)

where lnL(β1, β2, β3) is the log-likelihood function associated with the regression parameter
estimate, and df is the log-likelihood function’s degree of freedom.

Also, the residual distribution of the fitted model is an important criterion for assessing
the model’s fit. As a result, a worm plot is used in this study to determine if the model’s
residual sequence follows a normal distribution. If the residual sequence falls within
the upper and lower bounds of the theoretical curve, it is assumed that the residual
sequence follows the normal distribution and that the model fits correctly. In addition, this
study employs the mean, variance, skewness coefficient, kurtosis coefficient, and Filliben
correlation coefficient as statistical markers of the residual sequence. The mean is closer to 0,
the variance is closer to 1, the skewness coefficient is closer to 0, the kurtosis coefficient is
closer to 3, and the Filliben coefficient is closer to 1, indicating that the model fits better [31].

Initially, the consistency analysis of each variable sequence in this study was carried
out. Six two-parameter distributions were chosen, Gumbel/GU, normal/NO, logistic/LO,
gamma/GA, log normal/LOGNO, and Weibull/WEI, which are commonly employed
in the frequency analysis of extreme events around the world [32,33], particularly in
North China [34,35]. Their fit was tested using the GAMLSS by fixing the stable model’s
parameters, with the goal of determining the best appropriate consistency probability
distributions for each sequence. The three most suitable distributions of each sequence were
then submitted to non-consistency analysis with time as a covariate, and the parameters in
the GAMLSS were adjusted over time to examine the trend of each sequence parameter
changing over time. The sequence is judged to have undergone non-consistent changes if
the AIC and SBC values of the GAMLSS with time as a covariate are less than those of the
consistency model. Finally, the non-stationary GAMLSS of runoff with physical factors as
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covariates is used to investigate non-consistent variations in runoff due to the influence of
physical driving variables.

3.3. Quantitative Statistical Simulation of Observed Variable Changes

Taking into account the driving relationship between the various variables that have
been constructed, this study uses the GAMLSS with physical influencing factors as co-
variates to conduct non-consistency analysis on the observed variable [29], and then the
relationship expression of the observed variable’s distribution parameters with the change
in physical factors is obtained. The formula is as follows:

yi = F
(

y
∣∣∣(xi

1, xi
2, . . . Xi

n|β1, β2, β3

))
(7)

where yi is the simulated value of the variable in the i-th year; xi
1, xi

2, . . . Xi
n is the value of

each covariate in the i-th year; F is the distribution function that the variable follows; and
β1, β2, β3 is the model’s distribution parameter (i.e., position, scale, and shape parameters).

Each factor’s covariate is x1, x1, . . . xn, and ∆yi
1, ∆yi

2, . . . ∆yi
n represents the covariate

x1, x1, . . . xn’s contribution to factor ∆y in the ith year. The computation formula is given
as follows: 

∆yi
1 = yi(xi

1, x0
2, . . . x0

n
)
− y0(x0

1, x0
2, . . . x0

n
)

∆yi
1 = yi(xi

1, xi
2, . . . x0

n
)
− y0(x0

1, x0
2, . . . x0

n
)

...
...
...

∆yi
n = yi(xi

1, xi
2, . . . xi

n
)
− yi(xi

1, xi
2, . . . xi

n−1, x0
n
) (8)

where x1, x1, . . . xn are the values of covariates in the base year (1957).
Finally, by summing the contributions of each covariate to the observed variable, it

can be concluded that the simulated value of observed variable changes in year i versus
1957. The computation formula is given as follows:

∆yi = ∆yi
1 + ∆yi

2 + · · ·∆yi
n (9)

where ∆yi represents the simulated value of observed variable changes in year i as compared
to that of the base year.

3.4. Scenario Setting

The baseline condition is a driving process that takes into account multi-year average
precipitation (P). Furthermore, three simulation scenarios are defined, in which precipi-
tation and underlying surface parameters (n) are changed from the baseline conditions,
allowing for groundwater storage variables, actual evapotranspiration (E), underlying
surface parameters, and runoff to be simulated. Furthermore, the evolution process and
the change degree of each variable are obtained. The baseline conditions and three non-
consistency scenarios are established as follows:

• S1: Baseline conditions are based on the multi-year average precipitation;
• S2: Precipitation increases by 10%;
• S3: Underlying surface parameters also increase by 10%;
• S4: Both precipitation and surface parameters increase 10% simultaneously.

4. Results and Discussions
4.1. Statistical Attribution of Changes in Groundwater Storage Variable

As we all know, the yearly groundwater storage variables are primarily determined
by combining annual precipitation, actual evapotranspiration, and underlying surface
characteristics [36]. As a result, a GAMLSS using yearly precipitation, annual actual
evapotranspiration, and annual underlying surface characteristics as covariates can be de-
veloped. Specifically, this may be classified into the following three situations: (1) the mean
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µ changes with the physical factors, and the mean square error σ is a constant; (2) the mean
µ is a constant, and the mean square error σ changes with the physical factors; and (3) both
the mean µ and mean square error σ change with the physical factors. The minimum
AIC can be used to determine the optimal distribution function of yearly groundwater
storage variables under the effect of physical factors, as well as the relationship equation of
distribution parameters that change with the physical factors.

4.1.1. Mean µ Changes with Physical Factors, and Mean Square Error σ Is a Constant

A non-stationary model of yearly groundwater storage variables with physical factors
as covariates was created, in which the mean (µ) changes with the physical factors and
the mean square error (σ) is constant. Table 1 provides the AIC values for the model.
The table shows that when the mean µ varies with the physical factors and the mean
square error σ remains constant, the GU distribution, with annual precipitation, actual
evapotranspiration, and underlying surface parameters as covariates, has the smallest
AIC value.

Table 1. AIC values for the non-stationary GAMLSS of annual groundwater storage variable utilizing
physical variables as covariates, with only the mean value µ changing.

Covariate Combination GU LO NO

P 64.21 69.98 76.48
E 64.71 70.10 75.71
n 64.02 67.22 71.45

P + E −0.27 −0.24 −1.59
P + n 30.19 26.10 24.33
E + n 54.38 47.07 47.27

P + E + n −9.33 −6.02 −6.28

Table 2 presents the distribution parameters. The relationship between the mean µ and
physical factors demonstrates that annual groundwater storage increases with precipitation,
declines with evapotranspiration, and increases with the underlying surface characteristics.

Table 2. Distribution parameter estimates and goodness-of-fit test for GU-GAMLSS with only the
mean value µ changing.

Distribution Covariate
Combination

Position
Parameter

Scale
Parameter AIC SBC

GU P + E + n 0.02P − 0.03E +
2.15n − 1.76 logσ = −1.75 −9.33 0.62

4.1.2. Mean µ Is a Constant, and Mean Square Error σ Changes with Physical Factors

A non-stationary model of yearly groundwater storage variables was created, in
which the mean µ remained constant, whereas the mean square error σ varied based on
the physical factors. Table 3 provides the AIC values for the model, showing that almost
all of the distributions have large AIC values. The only one that does not have very
small AIC values is the NO distribution, which uses annual precipitation and underlying
surface characteristics as covariates and only modifies the mean square error (σ) with the
physical factors.

Table 3. AIC values for the non-stationary GAMLSS of annual groundwater storage variable utilizing
physical variables as covariates; only the mean square error σ varies with physical variables.

Covariate Combination GU LO NO

P 64.77 70.13 76.69
E 63.92 70.13 76.69
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Table 3. Cont.

Covariate Combination GU LO NO

n 61.66 58.56 61.40
P + E 56.86 48.33 47.06
P + n 55.33 47.34 45.80
E + n 54.41 48.06 46.27

P + E + n 56.02 49.34 47.79

The NO distribution parameters are presented in Table 4.

Table 4. Distribution parameter estimates and goodness-of-fit test for NO-GAMLSS with only the
mean square error σ varying.

Distribution Covariate
Combination

Position
Parameter Scale Parameter AIC SBC

NO P + n 0.29 logσ = −0.01P + 2.43n − 1.30 45.80 53.76

4.1.3. Both Mean µ and Mean Square Error σ Change with Physical Variables

A non-stationary model was created, in which both the mean µ and mean square
error σ change with the physical variables. The AIC values for the model are presented in
Table 5. The table demonstrates that when physical factors modify the mean µ and mean
deviation σ, the GU distribution, with yearly precipitation, actual evapotranspiration, and
underlying surface characteristics as covariates, has the lowest AIC value.

Table 5. AIC values for the non-stationary GAMLSS of annual groundwater storage variable utilizing
physical variables as covariates; both mean µ and mean square error σ change with physical variables.

Covariate Combination GU LO NO

P 64.77 70.13 76.69
E 63.92 70.13 76.69
n 61.66 58.56 61.40

P + E 56.86 48.33 47.06
P + n 55.33 47.34 45.80
E + n 54.41 48.06 46.27

P + E + n 56.02 49.34 47.79

The distribution parameters are reported in Table 6. The relationship between the
mean µ and physical factors shows that annual groundwater storage increases with more
precipitation, decreases with more evapotranspiration, and increases with larger underlying
surface parameters.

Table 6. Distribution parameter estimates and goodness-of-fit test for GU-GAMLSS, with both mean
µ and mean square error σ changing with physical variables.

Distribution Covariate
Combination Position Parameter Scale Parameter AIC SBC

GU P + E + n 0.02P − 0.03E + 3.32n − 2.35 logσ = 0.02P − 0.03E + 6.01n − 4.85 −11.45 4.46

To better examine the research results, the annual groundwater storage variables are
treated with physical factors as covariates, and the mean µ fluctuates with the physical
factors, as does the mean square error σ. Figure 3 depicts the optimal non-consistency
model’s quantile plots at 5%, 50%, and 95%.
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4.1.4. Quantitative Contribution Estimation of P, E, and n to Groundwater Storage 
Changes 

Statistical simulation methods were used to quantitatively examine the changes in 
groundwater storage variables compared to those at the baseline year of 1957, determining 
the contributions of precipitation, actual evapotranspiration, and underlying surface fac-
tors to these changes (Figure 5). Figure 5a indicates that precipitation and the underlying 
surface parameters positively contribute to changes in the groundwater storage variables, 
whereas actual evapotranspiration has a negative influence. Prior to the 1970s, precipita-
tion, evapotranspiration, and the underlying surface characteristics in the Tuwei River Ba-
sin fluctuated dramatically. However, since 2000, the proportion of actual 

Figure 3. Five % (blue), fifty % (dark green), and ninety-five % (light green) quantile plots of the best
non-stationary model for three distributions of annual groundwater storage variables, with P, E, and
n as covariates.

Figure 4 and Table 7 show a worm plot, statistical indicators, and Filliben correlation
coefficient for the residual sequence, respectively. The above chart shows that when the
mean µ and mean deviation σ change, owing to physical causes, the GU distribution, with
yearly precipitation, evapotranspiration, and surface characteristics as covariates, has a
better fitting impact. Furthermore, the AIC value is lower than those of the consistent
model for yearly groundwater storage and the inconsistent model using time as a covariate.
The residual sequences all fall inside the normal distribution’s confidence interval, and the
Filliben correlation coefficient exceeds 0.95, indicating that the inconsistent changes in the
yearly groundwater storage variable are better conveyed.
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Figure 4. Worm plots of residuals from the best non-stationary models for three distributions of
annual groundwater storage variables, with P, E, and n as covariates. For a satisfactory fit, the data
points should be within the two gray lines (95% confidence interval).

Table 7. Residual sequence statistical indicators and Filliben correlation coefficient of the best non-
stationary model for three distributions of annual groundwater storage variables, with P, E, and n as
covariates. ν represents the skewness coefficient, and τ refers to kurtosis coefficient.

Distribution Characteristics Covariate
Combination µ σ ν τ

Filliben
Coefficient

GU−µ µ changing, σ constant P + E + n −0.00 1.00 0.11 2.42 0.99
NO−σ µ constant, σ changing P + n −0.17 0.99 52 3.13 0.98

GU−µσ µ, σ changing P + E + n −0.02 1.02 60.8 2.37 0.99

4.1.4. Quantitative Contribution Estimation of P, E, and n to Groundwater
Storage Changes

Statistical simulation methods were used to quantitatively examine the changes in
groundwater storage variables compared to those at the baseline year of 1957, determining
the contributions of precipitation, actual evapotranspiration, and underlying surface factors
to these changes (Figure 5). Figure 5a indicates that precipitation and the underlying
surface parameters positively contribute to changes in the groundwater storage variables,
whereas actual evapotranspiration has a negative influence. Prior to the 1970s, precipitation,
evapotranspiration, and the underlying surface characteristics in the Tuwei River Basin
fluctuated dramatically. However, since 2000, the proportion of actual evapotranspiration
and underlying surface parameters to groundwater storage variables has grown, especially
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with evapotranspiration’s contribution increasing rapidly and eventually surpassing that
of the total precipitation and underlying surface parameters’ contributions, causing the
groundwater storage variable to shift from positive to negative over time. Figure 5b depicts
a correlation scatter plot of the simulated groundwater storage variables and calculated
values obtained by using the USGS RORA model [27]. The graph shows a correlation
coefficient of 0.71 between the simulated groundwater storage variables and the calculated
values obtained using the USGS RORA model, demonstrating that the inconsistent model
created in this study performs well in this simulation.
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4.2. Statistical Attribution of Changes in Actual Evapotranspiration and Underlying
Surface Variable
4.2.1. Actual Evapotranspiration

This study found that when the mean µ changes with the physical factors and the mean
square error σ is constant, the GAMLSS of actual evapotranspiration with LO distribution
has the lowest AIC value, with the yearly precipitation and annual underlying surface
characteristics acting as covariates. The link between the mean µ and physical variables
indicates that annual evapotranspiration rises with increasing precipitation and underlying
surface variables. When the mean µ is constant and the mean square error σ varies with
the physical factors, the GAMLSS of actual evapotranspiration with practically all the dis-
tributions has higher AIC values, in which annual precipitation and the underlying surface
characteristics are used as covariates. The NO distribution has a relatively low AIC value.
When both the mean µ and mean deviation σ change due to physical variables, the GAMLSS
of evapotranspiration with LO distribution provides the lowest AIC value, implying that as
annual precipitation increases, so does actual evapotranspiration, and it also grows as the
underlying surface parameters increase. Figure 6 depicts the 5%, 50%, and 95% quantile
plots of annual actual evapotranspiration fitted using the optimal non-stationary GAMLSS
in the three cases above, as well as the residual sequence. Figure 7 and Table 8 illustrate a
worm plot, statistical indicators, and the Filliben correlation coefficient.
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Figure 7. Worm plots of residuals from the best non-stationary models for three distributions of
annual actual evapotranspiration, with P and n as covariates. For a satisfactory fit, the data points
should be within the two gray lines (95% confidence interval).

Table 8. Residual sequence statistical indicators and Filliben correlation coefficient of the best
non-stationary model for three distributions of annual actual evapotranspiration, with P and n as
covariates. ν represents the skewness coefficient, and τ refers to kurtosis coefficient.

Distribution Characteristics Covariate
Combination µ σ ν τ

Filliben
Coefficient

LO−µ µ changing, σ constant P + n −0.06 1.09 −0.95 4.88 0.97
NO−σ µ constant, σ changing P −0.18 0.71 1.63 6.27 0.92
LO−µσ µ, σ changing P + n −0.06 1.03 −0.44 2.90 0.98

It can be seen in the chart that when the mean µ and mean deviation σ change along
with the physical factors, the LO distribution-based GAMLSS of annual actual evapotran-
spiration, with annual precipitation and the surface parameters as covariates, fits better
when the physical factors change. It also has a smaller AIC value than both the consistent
model and the inconsistent model with time as a covariate. The Filliben correlation coeffi-
cient exceeds 0.95, allowing it to better reflect the inconsistent fluctuations in annual actual
evapotranspiration. According to Figure 8a, both precipitation and the underlying surface
factors contribute positively to actual evapotranspiration variations. Precipitation and the
underlying surface characteristics changed dramatically in the Tuwei River Basin prior to
the 1970s. However, after 2000, the contribution of the underlying surface parameters to
actual evapotranspiration increased, causing actual evapotranspiration to gradually climb.
Figure 8b shows a scatter plot of the simulated values and calculated values obtained
using a Budyko-based HWEB model [28]. This graphic demonstrates that the correlation
coefficient between the two factors is as high as 0.99, showing that the non-stationary model
has a good simulation effect.
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4.2.2. Underlying Surface Variables

The GAMLSS of the underlying surface parameter n, with NO distribution and annual
precipitation as covariates, has the smallest AIC value when the mean µ changes with the
physical factors and the mean square error σ remains constant. This suggests that as annual
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precipitation increases, so do the underlying surface characteristics. When the mean µ is
constant and the mean square error σ varies with the physical parameters, the GAMLSSs
with the underlying surface parameter n with almost all the distributions have substantial
AIC values, with the exception of the GA distribution, which has a relatively modest value.
When both the mean µ and mean deviation σ vary with the physical parameters, the
GAMLSS with NO distribution has the lowest AIC value. The link between the mean µ and
physical components indicates that the yearly underlying surface parameters fluctuate with
precipitation. They increase as the quantity rises.

Figure 9 depicts the 5%, 50%, and 95% quantile plots of the yearly underlying surface
parameters fitted using the optimally inconsistent GAMLSS, with precipitation as the
covariate as in the previous three cases. Figure 10 and Table 9 show a residual sequence
worm graph and statistical indicators, as well as the Filliben correlation coefficient.
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Figure 10. Worm plots of residuals from the best non-stationary models for three distributions of
annual underlying surface parameter, with P as the covariate. For a satisfactory fit, the data points
should be within the two gray lines (95% confidence interval).

Table 9. Residual sequence statistical indicators and Filliben correlation coefficient of the best
non-stationary model for three distributions of annual underlying surface parameter, with P as
the covariate.

Distribution Characteristics Covariate
Combination µ σ ν τ

Filliben
Coefficient

NO−µ µ changing, σ constant P 0.00 1.02 1.03 3.45 0.95
GA−σ µ constant, σ changing P −0.11 0.96 0.43 3.18 0.99

NO−µσ µ, σ changing P −0.00 1.02 1.05 3.58 0.96

The graph indicates that the NO-GAMLSS using annual precipitation as a covariate,
provides a better fit when the mean µ and mean deviation σ change because of physical
factors. Furthermore, its AIC value is lower than that of the consistent model with an-
nual underlying surface parameters and the inconsistent model with time as a covariate.
Furthermore, the Filliben correlation value exceeds 0.95, indicating that the model can
better reflect non-consistent variations in the underlying surface parameters. According
to Figure 11a, precipitation contributes positively to changes in the underlying surface
characteristics. Precipitation’s contribution fluctuated substantially up until the 1970s,
which then decreased and stabilized. Figure 11b shows a scatter plot of the non-stationary
model’s simulated and calculated values from the HWEB model. As seen in the figure, the
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correlation coefficient between the two factors is 0.76, indicating that the model provides
better simulation results.
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4.3. Attribution of Changes in Runoff and Statistical Analysis Method Validation

Figure 2 and the basin’s multi-year average water balance formula (R = P − E + ∆G)
were used to quantify the impact of simulated precipitation, actual evapotranspiration, and
the groundwater storage variables on runoff. Figure 12 depicts the computation results,
indicating that the changes in precipitation and groundwater storage variables, on average,
contribute positively to runoff changes, whereas the changes in actual evapotranspira-
tion contribute negatively. After 2000, the variations in actual evapotranspiration and
groundwater storage variables had a stronger impact on runoff, resulting in a progressive
reduction. Figure 12 depicts a scatter plot of observed runoff and the estimated one using
the basin water balance method, with a correlation coefficient of 0.61, demonstrating that
the simulation can effectively characterize the inconsistent changes in annual runoff.
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4.4. Scenario Simulation Using a Non-Stationary Model
4.4.1. Baseline Conditions

Using multi-year average precipitation as the benchmark, we determined the changes
in the underlying surface parameter n caused by precipitation under the benchmark condi-
tions, the actual evapotranspiration changes caused by precipitation and the underlying
surface parameters, the changes in groundwater storage variables caused by surface char-
acteristics and actual evapotranspiration, as well as the runoff changes caused by precipi-
tation, actual evapotranspiration, and the groundwater storage variables. Table 10 shows
the specific driving adjustments. The results show that the change in underlying surface
parameters driven by precipitation (392.2 mm) is 1.17 in value. Precipitation and the un-
derlying surface parameters drive an actual change in evapotranspiration of 298.31 mm.
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The surface characteristics and actual evapotranspiration determine a groundwater storage
variable of 5.75 mm, while precipitation, actual evapotranspiration, and the groundwater
storage variables contribute to a runoff depth change of 88.14 mm.

Table 10. Calculations of variable changes under baseline conditions.

Driving Process Calculated Variables Change Value

P → n n 1.17
P & n → E E 298.31 (mm)

P, n & E → ∆G ∆G 5.75 (mm)
P, n & ∆G → R R 88.14 (mm)

4.4.2. Precipitation Increasing by 10%

Assuming precipitation increases by 10% based on the multi-year average, the change
in the underlying surface parameter n driven by precipitation under this scenario, as well
as the actual evapotranspiration change, are calculated sequentially. The runoff change
values are determined using the calculated precipitation, actual evapotranspiration, and
groundwater storage variables. Table 11 shows the estimated driving changes for various
factors. The results demonstrate that the change value of the underlying surface parameters
driven by the 10% increase in precipitation is 1.29 in value. The actual evapotranspiration
change is 336.61 mm, which is caused by a 10% increase in precipitation and responsive
changes in the underlying surface parameters. Further, the 10% increase in precipitation,
underlying surface parameters, and actual evapotranspiration cause a change in groundwa-
ter storage value of 5.44 mm. Correspondingly, the difference in runoff depth is 89.37 mm.
Comparing the values of each variable calculated under this scenario to the simulation
results under baseline conditions reveals that a 10% increase in precipitation led to an value
increase of 0.12 in the underlying surface parameters, an increase of 38.3 mm in actual
evapotranspiration, a reduction of 0.31 mm in the groundwater storage variables, and an
increase of 1.23 mm in the runoff depth.

Table 11. Calculations of variable changes under a 10% increase in precipitation.

Driving Process Calculated Variables Change Value Difference from
Baseline Conditions

P → n n 1.29 +0.12
P & n → E E 336.61 (mm) +38.3 (mm)

P, n & E → ∆G ∆G 5.44 (mm) −0.31 (mm)
P, n & ∆G → R R 89.37 (mm) +1.23 (mm)

4.4.3. Underlying Surface Parameters Increasing by 10%

The multi-year average raises the underlying surface parameter n by 10%. Next, the
change in actual evapotranspiration caused by precipitation and the increased underlying
surface parameter, the change in groundwater storage variables affected by precipitation,
actual evapotranspiration, and increased underlying surface parameter, and runoff change
values triggered by precipitation, actual evapotranspiration, and groundwater storage vari-
ables in this case, are calculated one after the other. Table 12 shows the changes that various
variables have caused. The calculations reveal that precipitation causes a value change
of 1.17 in the underlying surface parameters, while a 10% rise in the parameter results
in a change of 1.29 in value. The actual evapotranspiration change value is 316.39 mm
following the precipitation change, and the underlying surface parameter rise by 10%. The
groundwater storage variable changes by 1.17 mm following changes in precipitation and
actual evapotranspiration, as well as the underlying surface parameters rising by 10%.
Furthermore, comparing the calculated change values of each variable in this scenario to
the baseline conditions reveals that a 10% increase in the underlying surface parameters
results in an 18.08 mm rise in evapotranspiration and a 6.32 mm decrease in groundwater
storage. The depth of the flow dropped by 11.77 mm.
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Table 12. Calculations of variable changes under a 10% increase in underlying surface parameters.

Driving Process Calculated Variables Change Value Difference from
Baseline Conditions

P → n n 1.17
n increasing by 10% Increase in n 0.12 +0.12

Total change of n n 1.29
P & n → E E 316.39 (mm) +18.08 (mm)

P, n & E → ∆G ∆G −0.57 (mm) −6.32 (mm)
P, n & ∆G → R R 76.37 (mm) −11.77 (mm)

4.4.4. Both Precipitation and Surface Parameters Increasing by 10% Simultaneously

First, precipitation and the underlying surface parameters are both increased by 10%
simultaneously. Next, a 10% increase in precipitation alters the underlying surface charac-
teristics, followed by change in actual evapotranspiration by the two variables’ increases.
Furthermore, a 10% increase in precipitation, the underlying surface parameters, and actual
evapotranspiration causes the quantity of groundwater storage variables to alter. Finally,
the 10% increase in precipitation and actual evapotranspiration, as well as the groundwater
storage variables causes the runoff depth value to shift. Table 13 shows the driving quanti-
ties for each variable. The table demonstrates that a 10% increase in precipitation alters the
underlying surface parameter by 1.29 in value. The overall value of the underlying surface
parameter increases by 10%, to 1.42. When precipitation increases by 10%, the underlying
surface variables increase by 10%, actual evapotranspiration changes, and the groundwater
storage variable decreases by 1.53 mm. When precipitation increases by 10% and actual
evapotranspiration and the groundwater storage variables change proportionally, the depth
of the flow driven increases by 76.38 mm. When the values for each variable in this scenario
are compared to the baseline value, it is discovered that when both precipitation and under-
lying surface parameters rise by 10% at the same time, the underlying surface parameters
rise by 0.25 in value, actual evapotranspiration rises by 58.26 mm, groundwater storage
decreases by 7.28 mm, and runoff decreases by 11.76 mm.

Table 13. Calculations of variable changes under 10% increases in precipitation and underlying
surface parameter simultaneously.

Driving Process Calculated Variables Change Value Difference from
Baseline Conditions

P → n n 1.29
n increasing by 10% Increase in n 0.13 +0.25

Total change of n n 1.42
P & n → E E 356.57 (mm) +58.26 (mm)

P, n & E → ∆G ∆G −1.53 (mm) −7.28 (mm)
P, n & ∆G → R R 76.38 (mm) −11.76 (mm)

Looking at the simulation results of watershed runoff under the different scenarios
shown above, the runoff goes up by 1.23 mm when precipitation goes up by 10%, down by
11.77 mm when the underlying surface parameters go up by 10%, and down by 11.76 mm
when both precipitation and the underlying surface parameters go up by 10%. From this, it
can be seen that the variables that cause flow have effects on each other, and these impacts
change over time. Once their compounds and interaction patterns change, there will be
complicated hydrological effects and changes in runoff that are nonlinear.

5. Conclusions

This study investigated the cross-driving relationship between watershed hydromete-
orological (precipitation, actual evapotranspiration, groundwater storage variables, and
runoff) and surface environmental variables (underlying surface parameters) with incon-
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sistently changing characteristics by building a non-stationary GAMLSS for each driving
variable with physical factors as covariates. The main findings are as follows:

The GU-distribution-based model with precipitation, actual evapotranspiration, and
underlying surface parameters as covariates has a better fitting effect for the groundwater
storage variables, with a smaller AIC value compared to those of the consistent model and
inconsistent model with time as a covariate. After the year 2000, the patterns in time show
that actual evapotranspiration and the underlying surface parameters in the basin became
more important to the groundwater storage variables, while the provoked groundwater
storage variables quickly decreased.

The LO-distribution-based model, which includes precipitation and the underlying
surface parameters as covariates, has a superior match for actual evapotranspiration, with
an AIC value that is lower than those of the consistent model and inconsistent model,
which included time as a covariate. After 2000, the contribution of underlying surface
parameters to the actual evapotranspiration significantly increased, leading to an increase
in evapotranspiration in the basin.

For the yearly underlying surface parameters, the NO-distribution-based model with
precipitation as a covariate fits better when both the mean µ and the mean deviation σ change
because of physical factors. Additionally, its AIC value is lower than that of the consistent
sexual model and the non-uniform model with time as a covariate.

The findings in interacting effects revealed that precipitation and the groundwater
storage variables had positive contributions to runoff variations, whereas actual evapotran-
spiration had a negative effect. Particularly, from 2000, variations in actual evapotranspira-
tion and the groundwater storage variables continued to contribute to the runoff changes
year after year, resulting in a progressive decrease in runoff.

The scenario simulation results demonstrate that if precipitation increases by 10%,
the underlying surface parameters increase the value by 0.12, actual evapotranspiration
increases by 38.3 mm, the groundwater storage variable reduces by 0.31 mm, and runoff
increases by 1.23 mm. In the situation where the underlying surface characteristics increase
by 10%, actual evapotranspiration rises by 18.08 mm, groundwater storage falls by 6.32 mm,
and runoff falls by 11.77 mm. In the scenario where precipitation and underlying surface
parameters both increase by 10%, the underlying surface parameters increase the value
by 0.25, actual evapotranspiration increases by 58.26 mm, groundwater storage variable
decreases by 7.28 mm, and runoff decreases by 11.76 mm. It is clear that there are cross-
influences across the driving variables for runoff, and this influence has time-varying
properties, resulting in more complex hydrological impacts and a nonlinear runoff change.
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