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Abstract: The dynamic behavior of flood waves on rivers is essential to flood prediction. Natural
flood waves are complex due to tributary inputs, rainfall variations, and overbank flows, so this
study examines hydropower dam releases, which are simpler to analyze because channel effects are
isolated. Successive arrival times and heights of peaks along 9 rivers with multiple stream gauges
downstream of hydroelectric dams show that flow peaks typically become exponentially lower and
wider with distance. The propagation velocity of peaks increases with water depth and channel
slope but decreases with downstream distance and greater channel tortuosity. A rich hierarchy of
velocities was found. Hydropower pulses progress at or in slight excess of the theoretical celerity,
which is faster than the propagation rate of average natural floods, which in turn exceeds the mean
velocity of water in the channel, yet the water moves faster than the peaks of record floods. The
progressive changes to the height, shape, and velocity of hydropower flow peaks are simulated by
the first analytical solution to the convolution integral for a rectangular source pulse that is based on
diffusion-advection theory. Available data support some widely held expectations while refuting
others. An expanded definition of “water mining” is proposed.

Keywords: hydroelectric dam pulses; flood waves; natural floods; water mining; convolution integrals

1. Introduction

The dynamic behavior of flood waves on rivers is an essential element of flood predic-
tion. Natural flood waves are driven by heavy rainfall, but tributaries, spatial and temporal
variations in rainfall delivery, channel shape, storage details, and many other effects are
also significant. Much effort has been made to develop flood routing methods (e.g., [1,2]),
and complex algorithms are used to forecast the arrival times and heights of floods on
many rivers [3].

Considering the societal and economic importance of flooding, the wealth of available
data on real flood waves has been little used. Most available studies concern theoretical or
modeling efforts that utilize complex equations, provide no closed-form analytical solutions,
and make minimal comparisons of results to data. Ferrick [4] analyzed the Saint-Venant
equations under a set of varying parameter proportions and concluded that most river flow
pulses are shallow-water gravity waves that are little influenced by friction. Other studies
use models such as HEC-RAS or Flow-3D to simulate discharge under different scenarios,
with most effort being centered on dam failures (e.g., [5–7]). As pointed out by Criss and
Hofmeister [8], the number of free and poorly constrained parameters in many hydrologic
models exceeds the number of observable quantities that are demonstrably simulated, in
which case their predictions are underconstrained.

An exception is provided by the basic forms of the diffusion and diffusion-advection
equations, which incorporate an absolute minimum of adjustable constants, have found
broad application in the physical sciences (e.g., [9]), and have been widely used to investi-
gate flood waves (e.g., [10–14]). The compact, fundamental solutions to these equations
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bear greater fidelity to the mathematical shape of real hydrographs than do other func-
tions and simulations, and have served as effective transfer functions in rainfall-runoff
simulations [15,16].

A key descriptor of river wave dynamics is the observed propagation velocity of the
flood peak. Standard theory shows that the speed, or celerity c, of flood waves should be
about 50% faster than the average velocity Vavg of water in the channel [2]. As is also well
known, the theoretical celerity of “shallow water waves” increases with the square root of
water depth [17,18]. Field studies are essential to confirm the applicability of these results
to rivers, but they are far fewer than modeling efforts. The pioneering study of Faye and
Cherry [19] to define river wave behavior deserves special mention, as they utilized data
from multiple gauging stations along a river to investigate pulse behavior, although only a
few days of data were investigated. Moody [20] used data from multiple gauging stations
to define the propagation rate of the huge 1993 flood on the Mississippi River. Data show
that the wave speed on rivers depends in a complex way on discharge, particularly on
whether the flow remains within banks or extends over the floodplain [21,22].

The behavior of flow pulses generated at hydropower dams is much less complex
than that of natural flood waves triggered by rainfall. Hydropower dam releases have
simple shapes, are generated at a single site, and exclude overbank flows. It follows that
these man-made pulses allow the dynamic behavior of in-channel flows to be isolated and
understood, which behavior is an important part of the complex behavior of natural floods.

Scheduled hydropower pulses are also of environmental and management interest, as
they can be sudden and large and, at many sites, are preceded by warning sirens [23]. Al-
though the term “water mining” is conventionally used to describe groundwater extraction,
the releases of hydroelectric dams also constitute water mining, as they are used to extract
the potential energy from impounded waters. Moreover, like mine waters, the released
waters are environmentally problematic, as they are abnormally cold and deoxygenated,
commonly contain excess nitrate and other contaminants, and have high erosive power
because of their high velocity and low content of suspended sediment, all due to their
protracted storage in the upstream reservoir [24–26].

This paper provides the most comprehensive analysis yet available of the velocity and
attenuation of in-channel flow pulses generated by hydropower dams. Several years of data
are analyzed from 29 river gauges located at increasing distances below dams on 9 rivers
that span the United States (Figure 1a) and exhibit a large range of sizes, depths, and channel
slopes. Data are available for water levels at 15 min intervals [27], permitting the arrival
times and heights of flow peaks to be accurately determined at successive sites. Many
dynamic behaviors are revealed by investigating pulse behavior along individual rivers,
and others are revealed by comparing data from multiple rivers. This study also provides
the first closed-form analytical solutions to the convolution integral for a rectangular flow
source, which represents a very common pattern for dam releases. This solution predicts
the evolving shapes and attenuation of a moving hydropower pulse and links the functional
relationships among master variables. This solution embodies only familiar functions, so
it can be easily used in ordinary spreadsheet programs, and direct analogues could be
applied to diverse problems in the physical sciences, such as the behavior of dye tracers or
the fate of contaminant pulses in streams. Finally, the comparison of natural river floods to
hydropower pulses reveals important similarities and differences.
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Figure 1. (a) Map showing major rivers in the United States [28,29] and the location (red dots) of the 
river gauges listed in Table 1. The initial zero is omitted from several site numbers, and 3 sites cannot 
be labeled for clarity. (b) Digital elevation map (DEM) of Missouri [30] in the central United States, 
showing the Bagnell, Truman, and Clarence Cannon Dams on the Osage, Sac, and Salt Rivers, re-
spectively, and the river gauges (blue dots; Table 1) below those dams. (c) A detailed map showing 
major roads, the Bagnell Dam, and the three river gauges (red dots) along the Osage River in Mis-
souri that were selected for detailed study.  

Figure 1. (a) Map showing major rivers in the United States [28,29] and the location (red dots) of
the river gauges listed in Table 1. The initial zero is omitted from several site numbers, and 3 sites
cannot be labeled for clarity. (b) Digital elevation map (DEM) of Missouri [30] in the central United
States, showing the Bagnell, Truman, and Clarence Cannon Dams on the Osage, Sac, and Salt Rivers,
respectively, and the river gauges (blue dots; Table 1) below those dams. (c) A detailed map showing
major roads, the Bagnell Dam, and the three river gauges (red dots) along the Osage River in Missouri
that were selected for detailed study.
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2. Methods

The propagation velocity of flow peaks was determined by first identifying rivers that
are monitored by several stream gauges located at increasing distances below a hydropower
dam (Figure 1). Adequate archives [27] of water levels (h) and commonly also discharge (Q)
at 15 min intervals were found for several such rivers. Distances between sites (∆x values)
are also needed to determine the propagation rates of hydropower peaks between two sites,
here termed Vhp. These inter-site distances are easily determined by subtracting published
stream gauge locations in “river miles” along the channel, but where such are not available,
they were measured using satellite images and standard GIS tools. The average slope of the
channel bottom between any two sites was determined by taking the reported elevations
for gauge zero, corrected for the local stage (So) of the bottom as determined by method
3 of Criss and Nelson [31], divided by the thalweg distance between the sites.

A simple method was devised to determine the average delay of flow variations
between two successive sites that can utilize all available data in a lengthy record of several
years. First, a table was prepared with a column that represents a uniform time series (t
values for 15 min intervals) plus two columns for the water levels recorded at the two sites.
The water level h1 at site 1 was then plotted against level h2 at site 2, and the correlation
coefficient (R2) of the linear regression was noted. Then, the stage record for the antecedent
(upstream) site was delayed by a single, 15 min time step by inserting an empty row at
the head of its column. Then, the graph was re-plotted, and the correlation coefficient was
recalculated. Additional rows were added until the highest correlation coefficient was
found, with the number of added rows indicating the “best” inter-site delay time. The
overall best average value for Vhp was found by dividing the inter-site distance by this
optimized delay time. Results for several rivers are provided in Table 1.

Table 1. Characteristics of gauged sites below hydropower dams.

River Site * Dist, km Zero *,
m MSL

Vhp
m/s

“Vavg”
m/s

Slope
m/km

Tortuo-
sity †

Time ‡

Const, d So m m †

Osage 06926000 2.09 167.38 0.94 0.53 0.04 1.2
“ 06926080 24.62 164.83 1.65 1.07 0.11 1.63 1.37 0.07 1.9
“ 06926510 75.94 160.20 1.61 0.76 0.09 1.69 1.93 0.28

Salt 05507800 0.80 152.40 0.76 0.49 0.36
“ 05508000 28.96 145.40 1.21 0.72 0.25 1.90 0.69 0.44 1.3

Sac 06919000 1.21 231.25 0.76 1.2
“ 06919020 10.78 228.66 1.07 0.63 0.27 2.21 0.31 1.26 1.5
“ 06919900 41.83 219.79 1.39 0.80 0.28 2.07 0.65 1.23

Cumberland 03414000 2.41 164.62 1.07 0.30 1.4
“ 03414100 54.22 152.28 1.52 1.03 0.12 2.27 1.69 6.52 2.2
“ 03417500 128.4 149.03 1.74 0.98 0.13 2.55 0.31

Allegheny 03012550 0.80 363.57 0.85 2.88 2.16
“ 03015310 14.0 356.01 2.64 2.82 0.73 1.15 2.22 0.13
“ 03016000 63.07 322.91 2.99 1.03 0.67 1.32 3.75 0.53 2.1

Colorado 09380000 25.74 946.76 0.98 1.04 0.67
“ 09402500 166.4 737.22 1.97 1.56 1.52 1.47 1.62 −2.8 2.5
“ 09404200 387.6 408.43 2.32 1.48 1.42 1.83 1.73 12.4

Kootenai 12301933 1.13 640.08 1.12 2.77 4.12
“ 12305000 81.25 547.04 2.77 2.15 1.19 1.36 3.08 1.83 1.7
“ 12308000 100.6 518.16 2.37 1.34 0.52 1.34 3.51 20.7

Snake 13290450 1.45 437.39 2.15 0.77 16.8 1.9
“ 13317660 115.8 259.08 2.82 1.65 1.71 1.35 1.67 −0.5
“ 13334300 129.5 245.88 3.04 2.23 0.93 1.20 2.09 −0.1 2.1
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Table 1. Cont.

River Site * Dist, km Zero *,
m MSL

Vhp
m/s

“Vavg”
m/s

Slope
m/km

Tortuo-
sity †

Time ‡

Const, d So m m †

Missouri # 06467500 8.21 347.53 1.12
“ 06478526 57.44 335.28 1.21 1.07 0.21
“ 06486000 126.6 322.30 1.16 1.70 0.21 −2.0
“ 06601200 192.9 308.02 1.48 1.74 0.19 1.56
“ 06610000 313.8 289.25 1.30 1.79 0.16 0.51

06807000 399.5 276.03 1.70 1.97 0.16 0.45

Note(s): * Site number and gauge zero from ref. [27]; † Dimensionless. Tortuosity is the channel path length
divided by the straight-line distance; m is defined in Equation (3); ‡ Calculated using Equation (2) of [32], typically
using all 15 min data in a 4-year interval; # For the Missouri River sites, the Vhp values represent only two weeks
of data.

For the Osage River (Figure 1b), a detailed study was made of the successive arrival
times and heights of individual flow pulses at three gauges. A preliminary list of pulse
events was generated using the standard capabilities of spreadsheet programs to identify
daily flow peaks above an arbitrary minimum stage of 0.75 m. This was followed by a
tedious visual inspection of the computer generated list, which was required to eliminate
events where multiple peaks occurred in short succession and then mutually interfered,
where data were missing at critical intervals, or where downstream sites had much higher
volumes of water than sites upstream, indicating unwanted inputs of rainfall or variable
tributary inflows. A total of 494 isolated flow peaks were identified that could be reliably
tracked downstream and occurred between January 2018 and November 2023. Results for
this group are graphically analyzed below.

Different velocities are distinguished below and are abbreviated as follows: celerity
(c), average water velocity (Vavg), and the propagation rates of flow peaks associated with
hydropower pulses (Vhp), normal, rainfall-driven floods (Vnflood), record natural floods
(Vrflood), and generic flow peaks (Vpk). All are theoretically and observationally different,
and all are relevant to the flood phenomenon.

3. Theoretical Predictions
3.1. Standard Theory

Theoretical studies of water waves are varied and extensive, so only a few basic results
are presented here. Because the effective wavelength of flood waves and hydropower
pulses on rivers is much greater than the water depth, the shallow water condition applies.
In this case, the celerity, also called the phase velocity or simply the “wave speed”, is
as follows:

c = Vavg +
√

gHcosα, (1)

where g is gravitational acceleration, H is the water depth, and α is the slope, which is
very flat for rivers, so cosα is very close to unity [17]. Equation (1) reduces to the familiar
result for ocean waves [18], because both α and Vavg are zero. In contrast, most treatments
of flood waves use a proportionality factor m to compare the celerity c with the average
velocity Vavg of water flowing in the channel [2] as follows:

c = mVavg, (2)

Values of m are typically predicted to be 1.5 ± 0.25, depending on channel shape and
other assumptions. For example, Whitham [17] states that m is 3/2 if the Chezy equation is
assumed and is 5/3 if Manning’s equation is assumed. Alternatively, reference [2] states
that m is equal to the exponent in the power law as follows:

Q = AVavg = kAm, (3)
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where Q is discharge, A is the area of the channel cross-section, and k and m are constants.
The values for m in Table 1 were calculated from a graph of LogQ vs. Log A using available
field data [27] and are provided only if the correlation coefficient of the plot exceeds 0.9.
Values of m must be greater than unity for any channel because both Vavg and A increase
with water level. For a triangular weir, m equals 1.25, whereas m is about 1.6 for a typical
river [33]. In all these cases, the evident prediction is that c > Vavg.

Empirical tests of the above equations are made below, and these show that not all
are supported for rivers. At the outset, note that Equations (1) and (2) are functionally
compatible only if Vavg is proportional to the square root of gH cosα. Also note that Equation
(1) predicts that celerity must exceed 3 m/s for any broad wave if the water depth exceeds
~0.9 m, given the magnitude of g.

3.2. Simple Diffusion

Flood waves do not move down river channels by diffusion alone, but because diffu-
sion contributes to this process, it is useful to consider the consequences of this endmember
mechanism as a starting point. The one-dimensional diffusion equation expressed for
hydraulic head h is as follows:

∂h
∂t

= +κ
∂2h
∂x2 , (4)

where κ is the hydraulic diffusivity (e.g., [34]). Criss and Winston [35] combined this
equation with Darcy’s law to obtain a solution for discharge as a function of time that is
generated by a sharp source pulse in the head (delta function) as follows:

Q
Qpk

=

(
2eb
3t

)3/2
e−b/t , (5)

where Qpk is the peak flow at the site, which occurs at time 2b/3, where b is the time
constant, which in turn equals the quantity x2/4κ. Equation (5) was originally derived
to simulate the diffusive delivery of rainfall runoff to the river channel or spring orifice
and not the flow of water down the channel, although it provides insight on the latter
process. For that case, the apparent velocity of a sharp flow peak between two sites located
at distances x2 and x1 below the source that have distinct time constants of b2 and b1 is
as follows:

Vpk =
3
2

(
x2 − x1

b2 − b1

)
, (6)

For unimpounded Missouri river basins, b in days is empirically proportional to
0.0135 times the square root of basin area in square km [36]. The rough estimate for peak
velocity approximates 1.5 times the reciprocal of this number, or about 100 km/d. Again,
because Equation (5) was developed to simulate the diffusive delivery of runoff and not
the much faster flow of river water down the channel, the values for b that characterize
river basins are much longer than those relevant to river channels, which are depicted in
Figure 2A.

Convolution integrals are used to simulate flows that arise in response to an extended
perturbation, such as the delivery of rainfall, by effectively integrating the responses to a
continuous series of source pulses. These integrals are defined by the product of a forcing
function Fτ that represents the causal perturbation, which is a function of time, and a
function Q* that represents the flow response to a unit perturbation [1]:

Q(t≤τ) =
∫ t

0
Fτ Q∗

(t−τ)dτ f or t ≤ τ , (7a)

Q(t≥τ) =
∫ τ

0
Fτ Q∗

(t−τ)dτ f or t ≥ τ , (7b)
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Equations (7a,b) differ only in the upper limit of integration. Criss [36] provides a
solution to this pair of integrals using the normalized form of Equation (5) as the unit
response function for a situation where the perturbation Fτ represents the rate of water
delivery to the watershed, assumed to be constant from time zero up to time τ, and zero
thereafter. These solutions can simulate streamflow variations caused by steady rainfall
delivered over a stated interval, but they can also be used to simulate the flow downstream
of a hydropower dam, which releases a high flow (Qi) for a discrete period and then shuts
down power production. The paired, dimensionless solutions are as follows:

Q(t≤τ)

Qi
= Er f c

√
b
t

, (8a)

Q(t≥τ)

Qi
= Er f

√
b

t − τ
− Er f

√
b
t

, (8b)

For the hydropower application, t in these paired equations is the time since the
initiation of the high flow release (Qi) at the source (dam), and τ represents the time when
this high release was terminated. Note that τ as defined in this paper is a different quantity
than the identical symbol used to represent the hydrologic time scale of [32], which is
directly proportional to b in Equation (5). Figure 2A shows example flow calculations.
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Figure 2. (A) Graphs of flow vs. time for various choices of the time constant b, calculated with
Equation (8a,b) for diffusion only. The curve for b = 0 represents the rectangular, unit flow pulse that
issues from the source (dam), while the curves for increasing values of b simulate the flow variations
at increasing distances downstream. (B) Flows calculated with Equation (11a,b) that incorporate both
celerity and diffusion for different indicated distances.

3.3. Diffusion-Advection

According to Yen and Tsai [11], the appropriate form of the one-dimensional diffusion-
advection equation for a “linear diffusion wave” is as follows:

∂Q
∂t

= −c
∂Q
∂x

+ κ
∂2Q
∂x2 , (9)

where Q represents the “perturbed flow”, c is the celerity, and κ is the hydraulic diffusivity.
The solution to this equation for flows following a sharp pulse is [12,16] as follows:
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Q =
Vol

2
√

πκ

( x
t3/2

)
e−(x−ct)2/(4κt) , (10)

where Vol equals the total, integrated volume of water in the flow pulse. As noted by Yang
and Endreny [16], this result reduces to Equation (5) if celerity is zero.

Analogous to the approach taken above, a solution to the convolution integral that
uses Equation (10) as the unit response function was sought to simulate flows downstream
of a hydropower dam, again for the case where constant flow Qi is released from the dam
over the interval 0 to τ and thereafter is stopped. The new dimensionless solutions are
where Q is normalized to Qi at the source, as follows:

2Q(t≤τ)

Qi
= Er f c

[
x − ct√

4κt

]
+ e

xc
κ Er f c

[
x + ct√

4κt

]
, (11a)

and

2Q(t≥τ)

Qi
= −Er f

[
x − ct√

4κt

]
− e

xc
κ Er f

[
x + ct√

4κt

]
+ Er f

[
x − c(t − τ)√

4κ(t − τ)

]
+ e

xc
κ Er f

[
x + c(t − τ)√

4κ(t − τ)

]
(11b)

Note that these expressions reduce to Equation (8a,b) if c = 0. Figure 2B shows some
representative curves for increasing distances below a dam.

The comparison of Figures 2A and 2B shows the contrasting effects of c and κ. As
expected, c controls the propagation speed of the wave, as there is very little downstream
progression when c is zero (Figure 2A). However, the general similarity of the evolving
curve shapes in Figure 2A,B proves that shape is primarily controlled by κ and also, of
course, by the shape of the wave at the source.

Given the complexity of Equation (11a,b), compact analytical equations for the relative
magnitude (Qpk/Qi), propagation rate (dx/dt)pk, and arrival times (tpk) of the flow peaks at
any site could not be found, but the predicted values for these peak attributes at any site and
parameter choices can be found by iterating or plotting Equation (11a,b). Interestingly, these
particular properties are not very sensitive to the magnitude of κ. Rough approximations
for these important quantities are therefore useful, and those found to best conform to
Equation (11a,b) are as follows:

Qpk

Qi
≃ e−

x
4cτ , (12a)(

dx
dt

)
pk

≃ c
(

1 +
4κτ

x2

)
, (12b)

tpk ≃ τ + 2b
3

(
1 − e−

√
b
τ

)(
−1 +

√
1+4z
2z

)
where z =

( xc
6κ

)2 and b = x2

4κ ,
(12c)

Equation (12a) represents the relative attenuation of the peak flow at a gauge located at
distance x downstream of the source, which provided a flow of Qi. Exponential attenuation
of flow with distance, typically multiplied by some alleged “decay constant”, has been sug-
gested previously (e.g., [14]), but it is also shown here to inversely depend on the duration
τ of the square source pulse. Further, because the ratio x/c is a rough approximation for
the time required for the flow peak to travel to the downstream site (cf. Equation (12b)),
the indicated dimensionless power depends directly on the ratio of that time interval to the
duration of the source pulse.

Two empirical tests are made of these dependences below. One regards the predicted
dependence of attenuation on elapsed time. Regarding the other test, note that the predicted
dependence of attenuation with distance can be isolated for any two sites (subscripts 2 and
3) located downstream of a third (subscript 1). Specifically, because τ is constant for any
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event and c has been presumed constant along the channel for any event, Equation (12a)
can be expressed in terms of the flow magnitudes and positions of the three sites:

Qpk3

Qpk1
≃
(

Qpk2

Qpk1

)x13/x12

, (12d)

Approximations (12a–d) have limited accuracy because Equation (11a,b) shows that
discharge depends in a complex manner on time, distance, and channel properties. Nev-
ertheless, these approximations confirm that the peak propagation rate (dx/dt)pk exceeds
the celerity c at small distances below the dam but closely approximates it downstream.
This small excess occurs because peaks can move slowly downstream by diffusion alone,
as seen for the c = 0 case that is illustrated by Figure 2A, so both celerity and diffusivity
contribute to peak propagation, though celerity greatly dominates. Approximation (12c)
for tpk combines less obvious terms related to the timing of the response function peaks
(Equations (5) and (9)), but was found in most cases to be more accurate than the integral
of the reciprocal of the approximation for dx/dt in Equation (12b). Table 2 illustrates the
qualitative effects of the master parameters on the predicted character of the flow peak,
with the strength of an effect being indicated if it is comparatively strong or weak.

Table 2. Dependence of peak character on model parameters.

Factor Peak Velocity Attenuation Peak Shape

Greater distance Slower More More symmetrical
Longer τ Faster Less (strong) Ditto
Higher c Faster (strong) Less Ditto
Larger κ Faster Less (weak) Less symmetrical

4. Results
4.1. Comparison of Multiple Rivers

A dedicated search revealed several rivers that have multiple stream gauges at dif-
ferent distances below hydropower dams (Figure 1a; Table 1). In what follows, data for
these rivers are compared to reveal overarching trends, and then a more detailed analysis
is made of the data along the Osage River.

Several years of archived stage data at 15 min intervals are available for most of the
gauges listed in Table 1, and most of these sites have been calibrated for discharge. The
characteristics of these sites that are provided in Table 1 were assembled as described in
Section 2, using a combination of published site descriptions, satellite images, and DEMs.
The tabulated values for peak velocity were determined as described in Methods, using
all available data for 2022. Exceptions are (1) the Snake River, where an interval of March
to August 2023 was used due to limited data availability for the upper site, and (2) the
Missouri River below Gavins Point Dam, whose flow is typically confused by multiple
tributary inputs, but a distinctive series of dam releases in June 2023 could be traced for a
considerable distance downstream.

Importantly, most values for Vhp in Table 1 are less than 3 m/s, and thus are far
lower than the predictions of Equation (1). Also and surprisingly, for the suite of rivers in
Table 1, the negative correlation of the observed peak velocities Vhp with channel tortuosity
(correlation coefficient R2 = 0.61), and its positive correlation with the hydrologic time
constant (R2 = 0.59) are stronger than their correlation with channel slope (R2 = 0.37). It is
likely that a tortuous path robs energy from the flood wave, which would reduce both the
theoretical celerity and the observed peak velocity.

On a given river, the observed peak velocities (Vhp values) can either increase or de-
crease with distance downstream of the hydropower dam. Average water depths generally
increase in this direction, which would tend to increase Vhp. However, channels tend to
widen and hydrologic time constants increase downstream, which would tend to increase
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attenuation and decrease Vhp. Both the Chezy and Manning equations indicate that the
average water velocity Vavg increases with slope and hydraulic radius, yet the former
decreases while the latter tends to increase downstream, again producing opposing effects.
This assemblage of multiple, contrary effects precludes strong correlations of Vhp with any
single factor, so scatter plots provide little information.

Field measurements made for flow calibration are available for most stream gauges
in Table 1. The available data commonly include the velocity Vavg of water in the channel
on selected dates, and the mean values of these intermittent velocity determinations are
tabulated. The field data can also be used to calculate values of m with Equation (3), and
these tend to increase with channel slope (Table 1). Note that the values of Vhp determined
for all available 2022 data typically exceed the tabulated values of Vavg, by a factor of about
1.7 ± 0.4. Thus, available data confirm the theoretical expectation that celerity should
exceed Vavg and also lend support to the assertion [2] that values of m calculated with
Equation (3) correspond to m in Equation (2). Better data are needed to accurately test these
important details.

No consistent way was identified to determine the average water depth along the long
flow paths between sites. Additional complexity arises because most stream gauges are
located on bridges, where bathymetric profiles are atypical due to scour holes near piers.

4.2. Osage River
4.2.1. Available Data, Osage River

The velocity of individual flow pulses along the Osage River channel below Bag-
nell Dam is documented by archives of hourly flow releases from the dam [37] and
by 15 min data available for three stream gauges located 2.1, 24.6, and 75.9 km down-
stream [27] (Table 1). These gauges are hereafter termed “Osage City” (06926000), Tus-
cumbia (06926080), and St. Thomas (06926510). All available 15 min data between January
2018 and November 2023 were downloaded, processed, and visually examined, as de-
scribed under Methods. A total of 494 isolated peaks were identified that could be reliably
traced downstream.

4.2.2. Peak Velocity, Osage River

The observed velocity of hydropower peaks along the Osage River correlates positively
with river stage. This is shown for the reach between the Osage City gauge and the
Tuscumbia gauge, located 22.5 km apart, and also for the reach between Tuscumbia and
the St. Thomas gauge, located 51.3 km mi apart. Because the difference between local
stage and water depth is small for the Osage River gauges (small S0 estimates in Table 1),
rendering the uncertainty rather large compared to the size of the suggested correction, no
correction to local stage was made in Figure 3, so the trends cannot be expected to project
perfectly to the origin. Also, the correlations shown are similar and could be improved if
various linear combinations were made of the stages at the various gauges, so the measured,
uncorrected stage at Tuscumbia is used for simplicity on the x-axis in this plot. Also note
that as stage increases, the relative differences (scatter) among the Vhp values increase. This
is partly because the faster the peak moves downstream, the greater the relative uncertainty
in timing caused by the 15 min data interval. For example, the fastest peaks arrive at
Tuscumbia only a single, 15 min time step after they pass the Osage City gauge, so the Vhp
values calculated for this case would be uncertain by a factor of two.

The data in Figure 3 do not conform to the standard expectation of Equation (1) that
celerity c increases with the square root of water depth, as such a trend would have down-
ward curvature on this plot. Specifically, the correlation of Vhp with the stage at Tuscumbia
has a strong positive curvature. In fact, available data show that the average velocity of
water in many Midwestern river channels increases linearly with water depth [33], but not
in the manner predicted by the Chezy or Manning equations or in a manner consistent
with Equation (1).
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along the Osage River plotted against the observed, uncorrected, local stage of those flow peaks at
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4.2.3. Peak Attenuation, Osage River

Hydropower flow peaks become lower and wider with increasing distance and travel
times below dams. On the Osage River, the fractional loss of peak discharge magnitude
between Osage City and Tuscumbia, corrected for the minimum flow at Osage City, is
strongly correlated with the greater fractional loss between Osage City and St. Thomas
(Figure 4). The data trend conforms well with Equation (12d), which predicts that the ratio
of the inter-site distances, which for this case is 22.5/73.9, is the relevant power. Highly
attenuated flows diverge from this line, in part because these are most sensitive to the
background correction, are most dependent on the accuracy of the rating curves, and are
most dependent on variable tributary inflows. The fractional losses also correlate with
several other factors, including the travel time of the peak (Figure 5), which is inversely
related to peak velocity. As mentioned above, peak velocity in turn depends on water
depth and the duration of the causal pulse.
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494 pulse events selected for study, 20 are offscale.
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4.2.4. Comparison of Osage River Data with Convolution Integral

The shapes of Osage River hydrographs qualitatively resemble those provided by the
convolution integrals of the diffusion-advection equation (Figure 2B), but their agreement
with predicted quantitative details is only fair. An example from May 2023 was selected
for this comparison because the initial pulse released from the dam approximated the
rectangular shape assumed in those integrals, had a modest height, and was superimposed
on low river flow. Examination of large flow peaks is not optimal due to the greater
uncertainty of Vhp values for such events (Figure 3).

In particular, the Osage River hydrographs (Figure 6) evolve and attenuate down-
stream in the general way indicated by Equation (11a,b) and Figure 2B. Parameter combina-
tions can doubtless be found where the latter closely resemble the data for any individual
gauge, but little would be gained here from individualized, ad hoc curve matching. No
single set of parameter choices, along with the known distances and the known τ values,
can accurately explain the May 2023 data for all four sites. For example, peak velocities are
much higher at Osage City than downstream (Figure 3), so using a single value of celerity
for all reaches is inappropriate. It is also likely that changes in channel character with
distance affect the site-specific parameter values. For example, the channel width just below
the dam is much wider than that typical downstream. As a result, the hydraulic diffusivity
for the reach between Bagnell dam and the Osage City gauge would be lower than that
downstream because the channel storage is higher, and diffusivity indicates the ratio of
transmissivity to storativity. A detailed study would be required to determine whether
the various parameters vary with flow conditions, in which case, the actual differential
equation would be non-linear and much more complicated than the underlying differential
equation (Equation (9)) assumed here, and the convolution problem would be impossible
to solve in closed form with known analytical methods.
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Figure 6. Hydrographs at Osage City (red; 2.1 km; USGS 06926000), Tuscumbia (green; 24.6 km;
USGS 06926080), and St. Thomas (blue; 75.9 km; USGS 06926510), driven by the 8 h, rectangular
flow pulse of 22 May 2023 released from Bagnell Dam (black; 0 km; Ameren 2023). The USGS gauge
data [27] are reported at 15 min intervals, but the Ameren data [37] are hourly. Note the progressive
attenuation and delay of the peaks with distance downstream of Bagnell Dam. Compare these data
with the theoretical predictions in Figure 2B for similar thalweg distances and source pulse durations.

4.3. Comparison with Flood Hydrographs

Natural flood waves are driven by precipitation, which is aggregated in tributaries
that contribute flow to the trunk river channel. The behavior of the flood peaks depends on
the amounts and spatial and temporal distribution of rainfall delivered to the watershed,
the transport mechanisms and rates of surface and subsurface runoff, and the locations of
the sub-watersheds and confluences of the various tributaries. Additional complexities are
introduced by overbank flows, levee breaks, etc. If the river is a tributary of a larger river
that is also undergoing flooding, flows in its lower reaches can be retarded or even reversed,
and under backwater conditions, peak arrivals at multiple sites can be nearly simultaneous.

The propagation rate of typical, individual flood peaks (Vnflood) created by rainfall
events is easily determined by plotting the thalweg distance of different stream gauges
against the peak arrival times. For rivers where multiple gauges are available, the trend lines
for some floods are almost linear, indicating that peak velocities remain nearly constant,
even as the slopes of both the channel bottom and the water surface flatten downstream.
Interestingly, the peak velocities (Vrflood) of huge record floods of rivers progress more
slowly than typical floods, with available data showing that they typically are even slower
than the average velocity (Vravg) of channel water during those record events (Table 3). This
is likely due to the contributions of slow, shallow overbank flows and the greatly increased
storage of water on and below the inundated floodplains (cf. [21,22]).

In contrast to the progressive attenuation of hydropower peaks or dam breaks, the
peak discharges of natural, rainfall-driven floods typically increase downstream. In fact,
except for rare losing streams, the mean, median, and record flows of rivers all increase
downstream, in proportion to some power of the basin area, which must increase down-
stream [38]. Only in the special case where heavy precipitation occurs in the headwaters
or upper reaches while dry conditions prevail in the lower basin can peak discharges of
natural floods on normal rivers decrease downstream.
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Processing of multiyear data along the same rivers (see Section 2) confirms that typical
flood peaks move more rapidly than the peaks of record floods (Table 3). Considering
all the data together, this study finds that the hierarchy of the various flow velocities is
as follows:

Vhp ~ c > Vnflood > Vavg > Vrflood. (13)

Table 3. Propagation speeds of normal and record flood peaks compared to the average water velocity
measured for the record flood.

River Distance
km

Slope
m/km Tortuosity Vnflood * m/s Vravg † m/s Vrflood

‡ m/s Reference ‡

Middle Mississippi, 1993 219 0.095 1.30 2.1 2.1 0.42 [20]
Lower Missouri, 1993 860 0.17 1.70 2.2 2.1 1.1 This paper

Yellowstone, 2022 871 1.14 1.44 1.9 2.6 1.6 This paper
Meramec, 2015 291 0.47 2.76 1.3 1.4 0.85 [39]

Upper River des
Peres, 2022 5.5 2.44 1.35 2.3 2.4 1.1 [40]

Note(s): * Results for several floods since 2020, whose peaks were tracked over the thalweg distance given in the
second column. † Measured average water velocity from USGS field data [27] for the record flood only, whose
year is given in the left column. ‡ Propagation rate for the record flood peak based on its arrival at multiple
gauges, per indicated reference.

5. Discussion

The results documented above are based on the systematic processing of several mil-
lion measurements of river stages, most gathered at 15 min intervals and accompanied by
estimated discharge, representing 60 monitored sites used in Tables 1 and 3. An unexpected
richness of dynamic behaviors was revealed when these results were compared to each
other, to various site characteristics, to well-known theoretical results, and to the new
solutions and approximations to the diffusion-advection equation.

The diffusion-advection equation is clearly capable of simulating realistic hydrograph
shapes below hydropower dams. This equation also reveals the major variables that
control peak attenuation, and an important new finding is that this strongly depends on
the duration of the source pulse. It follows that the short list of variables, parameters,
and specific derivatives embodied in the diffusion-advection equation, together with
convolution integrals for appropriate source pulse shapes, describe the most important
behaviors of hydropower waves.

Perhaps the most surprising finding is the hierarchy of different velocity types codified
in Equation (13). This hierarchy is only partly consistent with theoretical expectations for
these velocities, now discussed from fastest to slowest. First, hydropower peaks move in a
small excess of celerity, especially just below dams, because diffusion effects also contribute
to the peak velocity, as seen in Approximation (12b). Clearly, diffusion alone can cause
some peak propagation, as evident in Figure 2A.

Second, celerity exceeds the average velocity of channel water, as is well known and
predicted by both Equations (1) and (2). It is also well known from weirs, etc. that the
average velocity of channel water increases with the stage. Thus, the behavior of record
flood peaks is very surprising, because even though flood water levels are very high,
these huge peaks typically move more slowly than the average velocity of water in the
channel. It appears that natural flood peaks move more slowly the bigger they are, so the
higher and deeper the water, the slower they are, contrary to average channel velocity. The
likely explanation is that precipitation must move overland and underground to reach the
channel, and the associated mechanisms of delivering water to the channel differ from the
movement of water down the channel. Tributary effects, overbank flows, and details of
rainfall delivery provide many additional complications to the behavior of natural floods.

Another surprise is the weak dependence of peak velocities on channel slope. It is as
if hydropower pulses acquire a momentum of their own and that these masses then move
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at a constant bulk velocity that is independent of the localized accelerations produced by
channel variations. Indeed, conservation of momentum might explain this behavior of
hydropower pulses, which widen and flatten but do not gain mass as they travel. Again,
the behavior of most natural floods is far more complex than hydropower pulses, as the
total mass of floodwater greatly increases with downstream distance.

The correlation between pulse speed and tortuosity is new and requires more study.
As mathematically defined, tortuosity is the ratio of the lengths of an arc to its cord, and in
physical studies, it is the ratio of the actual path (or channel) length to the direct distance.
Tortuosity is easier to consistently define than river sinuosity, which is a similar quantity
defined as the ratio of channel length to the length of the valley [41].

Finally, the differential equations used in this report require comment. The diffusion
and diffusion-advection equations are widely used in physics, chemistry, and engineering
to simulate the transfer of heat or matter. The hydrologic diffusion equation (Equation (4))
embodies analogous principles as it describes the diffusion of hydraulic head h, which is
proportional to the energy per unit mass. In contrast, Equation (9) describes the combined
diffusive-advective transport of discharge (Q), which is a flux. Temperature, concentration,
and head are routinely analyzed with the diffusion and diffusion-advection equations, but
these quantities represent amounts, and amounts are fundamentally different than fluxes,
which involve the derivatives of amounts. Sources cited above argue that Equation (9) is
applicable to channel flow, but its difference with the conventional diffusion-advection
equation requires more study. Additional problems arise for any of these equations if the
celerity or diffusivity are not simple constants along the channel, as seems to be the case
for the Osage River. Non-linear differential equations are needed to describe the dynamic
behavior of such systems, and analytical solutions are probably impossible. These issues
may explain some of the differences between real rivers and the idealized predictions of
the convolution integrals.

Future Work

The rich database of river gauge observations that is now available is underutilized.
Only 25 years ago, compiling gauge data needed for river analysis required weeks of
tedious searches of library catalogs, but such data can now be acquired in a few hours
from online sources. The massive amount of data in these online resources (e.g., [3,27,42])
represents many man-centuries of sustained, commendable efforts to document river
behavior and provides the means to test both models and theories. As an example, such
data demonstrate that Manning’s equation does a poor job of simulating actual field
measurements of average channel velocity in rivers [33], yet Manning’s equation is central
to the HEC-RAS algorithm [43]. Perhaps this explains why the FEMA’s probabilistic stage-
discharge pairs for St. Louis streams [44], which are based on HEC-RAS calculations, differ
from the on-line USGS rating curves [27] for most of the same sites, sometimes by a factor
of two.

Commendable though it is, the river gauge data base can be improved. The current
redaction of pre-2008 or even pre-2016 stage measurements from the online USGS database
is unjustified, as stage is the measurement that is most accurately made and is the one
that is most relevant to flood risk. The documentation of gauged sites is also inadequate,
and even the posted values for “gauge zero” are sometimes inaccurate and, in the worst
cases, would even suggest that water flows uphill [31], yet these values are needed to
convert local stages to elevations. Channel cross-sections that include bathymetric profiles
are needed for every gauged site and would greatly further the understanding of river
dynamics and the improvement of rating curves. Moreover, the important phenomenon of
stage-discharge hysteresis, of which convincing examples are abundant (e.g., [19,33,45]), is
not accommodated by USGS rating curves and by ratings based on HEC-RAS.

The convolution integral problem outlined here should be solved for different shapes
of the source pulse. For example, it seems likely that dam releases featuring a slow, linear
initial ramp would progress more slowly and be less destructive and erosive than those
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featuring the sudden ramp-up of the rectangular pulse. Perhaps the aquatic ecosystem
would benefit from a highly varied pattern of pulse shapes on successive days. In short,
quantifying a larger class of these behaviors could provide new insights on river dynamics
while suggesting valuable ways to improve dam management.

More exact, closed-form analytical solutions to the equations of river dynamics are
needed. Though analytical solutions are possible only for idealized, simplified situations,
they provide fundamental insights, have great educational value, and precisely quantify
the endmember cases needed to test and improve numerical algorithms. The use of
the exponential integral in the “well equation” [46] and the extension of solutions to
Laplace’s equation to regional groundwater flow [47] revolutionized the understanding
and visualization of groundwater processes. These idealized solutions are widely used,
grace numerous textbooks, and are fundamentally grounded in the simplest terms of
transport theory.

6. Conclusions

This paper shows that the diffusion-advection equation describes the major dynamic
behaviors and evolution of flow pulses released by hydropower dams, including their
basic shapes, propagation speeds, and attenuation. Considering these pulses simplifies
the analysis of natural flood waves, as hydropower pulses arise from a single source
and their subsequent behavior depends only on channel conditions and character and
not on flow augmentations by tributaries or variable rainfall. This study confirms that
hydropower pulses move downstream at a nearly constant rate that exceeds the average
velocity of water in the channel. Hydropower peak velocities tend to increase with water
level, as does the average velocity of channel water, and appear to decrease with increasing
channel tortuosity and to increase weakly with channel slope. Peak flows attenuate in
an approximately exponential manner with downstream distance as peak shapes flatten,
widen, and become smoother and more symmetrical. This study also shows, and confirms
with data, that attenuation also increases as travel times become longer. Hence, between
two sites, small, slow-moving flow peaks diminish proportionally more than large, fast-
moving peaks. Another new finding is that attenuation diminishes as the duration of the
source pulse increases. Many of these basic behaviors are explained by the convolution
integral of the fundamental solution of the hydraulic diffusion-advection equation and,
in particular, by the exact expression for the dynamic evolution of a “rectangular” source
pulse that is provided here.

Natural, precipitation-driven flood waves are affected by factors in addition to channel
character, especially by the spatial and temporal variations in rainfall delivery and by the
complicated paths and mechanisms that deliver this water to the trunk river. Unlike
hydropower pulses, the heights and discharges of most natural flood peaks increase
downstream rather than attenuate. Surprisingly, the propagation speeds of natural flood
peaks tend to decrease with stage and become quite slow for huge floods. Part of this
delay may be due to storage effects in overbanked areas. Moreover, for natural floods, the
slow transport of runoff across and beneath the entire watershed is probably much more
important than the simple flow of water down the channel.

A comparison of theoretical results and observational data suggests the following rich
hierarchy of different velocities that define the dynamics of river water waves:

Vhp ~ c > Vnflood > Vavg > Vrflood

Finally, the flow releases of hydropower dams are usefully considered a type of
“water mining”, as these releases extract potential energy from the water via a process that
degrades water quality and riverine ecosystems.
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