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Abstract: The present work explores the process of mathematical representation for the complex
geometry of a wide alluvial river with high braiding intensities. It primarily focuses on an approach
to developing a numerical solution algorithm for representing the complex channel geometry of the
braided Brahmaputra River. Traditional elliptic PDEs with boundary-fitted coordinate transformation
were deployed, converting the non-uniform physical plane into a transformed uniform orthogonal
computational plane. This study was conducted for the river channel reach with upstream and
downstream nodes at Pandu and Jogighopa (reach length ~100 km), respectively, within the Assam
flood plain in India, with fourteen measured river cross-sections for the year of 1997. The geo-
referenced image covering the river stretch in 1997 was delineated using a ArcGIS software 9.0 tool
by digitizing the bank lines. Stream bed interpolation was conducted by interpolating bed elevation
from a bathymetrical database onto code-generated mesh nodes. Discretization of the domain was
performed through the developed computer code, and the bed-level matrix was generated by the
IDW method as well as the MATLAB tool using the nearest neighborhood technique. A mathematical
representation of a digital terrain model was thus developed. This generated model was employed as
a geometrical data input to simulate secondary flow utilizing 2D depth-averaged equations with the
flow dispersion stress tensor as an extra source component, coming from curvilinear flow patterns
caused by severe river braiding. The developed model may further be useful in mathematically
representing the geometrical complexities of braided rivers with a relatively realistic assessment of the
various parameters involved if deployed with improved river modeling with morphometric evolution.

Keywords: grid generating functions; Laplace equations; boundary-fitted coordinates; braiding
intensity; secondary flow; depth-averaged flow equations

1. Introduction

The Brahmaputra River is a trans-Himalayan River. All along its course, it registers
significant changes in discharges and planform [1]. The river runs for 2880 km through
China, India, and Bangladesh. In Assam’s alluvial plains, the river has a braided channel
throughout its course. The variation in the bank line causes shifting confluences with its
tributaries. The river gradient at Dibrugarh is around 0.09–0.17 m/km. It then drops to
around 0.1 m/km at Pandu in the Assam flood plain. The Brahmaputra in the Assam
valley flows from east to west for 640 km before it enters Bangladesh. Figure 1 depicts
the Brahmaputra River’s position in India. In this stretch, it receives 103 tributaries: 65 on
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the right (north) bank and 38 on the left (south) bank. The Brahmaputra, along with the
drainage network of its tributaries, controls the geomorphic regime of the region.
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Two sets of Survey of India toposheets (1914 and 1975) and a set of IRS satellite photos
encompassed the cloud-free time to study a portion of the Brahmaputra’s reach [2]. The
area of Majuli Island has shrunk by 39.30 km2 in the Brahmaputra valley over the last
12 years [3]. Studies are being reported from time to time for a better understanding of the
morphodynamics of the Brahmaputra River.

Braided River Modeling

Secondary flow structures associated with bed topography and water surface gra-
dients exist in rivers that braid and are induced by planform changes. When there are
considerable flow changes in cross-stream directions, such as those caused by flow cur-
vature or turbulence, computational hydraulic analysis with topographic 1D modeling
fails. As a result, 1D models may accurately predict the volume and timing of bank flow.
However, when it comes to interest within reach flows with cross-stream flow changes, a
2D, if not a 3D, treatment is required [3,4].

Secondary flows exist in the plane perpendicular to the dominant flow’s axis. They
are the result of interactions between primary flow and gross channel characteristics [5]. A
vertical change in main flow velocity causes an imbalance between the transverse water
surface gradient force and centrifugal forces over depth, resulting in a secondary transverse
flow [3]. Most channel changes in braided rivers are linked to changes in bed morphology,
which occur at high flows when observation is difficult [6]. Several attempts have been
made to simulate the realistic flow field, including transverse components in complex geom-
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etry like bends and curves [5,7–10]. More recently, the hydrodynamic model has been used
to represent the evolution mechanism of a meandering river [11]. However, the assessment
of flow fields in braided rivers with ‘secondary flow correction’ in complex morphometry
is yet to be fully understood. Many researchers have attempted to represent braided river
morphodynamics to understand the physical processes involved. Braided channels do not
explicitly originate simultaneously with the braided channel network, but rather through
a protracted process of channel migration and avulsion [12]. It is observed that, due to
the intricate system of channels and bar formation processes, there are significant local
and transient changes in bedload transit rates. Recent advancements in image processing,
sensor technology, and portable remote-sensing systems provide the opportunity to create
terrain models with survey-quality data at a fraction of the cost and without the traditional
deployment and logistical challenges. They studied distributed, depth-averaged flows in a
broad, shallow, gravel-bed braided river using higher-dimensional hydrodynamic model-
ing. Digital elevation models (DEMs) created by utilizing optical bathymetric mapping and
structure-from-motion on two linked stretches of the Ahuriri River in New Zealand formed
the basis for the topography used in the simulations conducted [13]. These simulations
reportedly facilitated a powerful demonstration of the suitability of terrain models for
hydrodynamic applications. Similarly, in braided rivers, Ref. [14] investigated the morpho-
dynamic impacts of rising yearly peak discharges. The chosen study site was a braiding
stretch of the Upper Yellow River. They assessed the effects on floodplains, smaller-scale
bars, channel branching, and the overall channel structure. From the model results, the
influence of median grain size was found to have a negligibly small impact on the modeled
channel pattern, which was found to be particularly sensitive to the parametrization of
the bed slope effect [14]. Time-lapse images of the proglacial, gravel-braided Sunwapta
River in Canada were used to evaluate planimetric change on daily hydrographs over two
meltwater seasons [15]. The outcomes demonstrated the possible use of planimetric change
measurements using time-lapse imaging as a low-cost, high-frequency monitoring tool
for braiding dynamics and also as a stand-in for bedload transport measurement. Simi-
larly, researchers further investigated the crucial role dunes play in regulating processes
at the bar and channel scales, as well as river morpho-dynamics [16]. With implications
for morphodynamic modeling, the findings of a numerical modeling and field monitor-
ing study that were integrated to isolate the influence of dunes on depth-averaged and
near-bed flow structures were presented. They concluded that models must take into
account the impact of near-bed flow and sediment transport resulting from both dune- and
bar-scale morphology. More recently, Ref. [17] published a study on the effects of climate
change on the Qinghai–Tibet Plateau (QTP), which accelerated the melting of glaciers
and caused significant changes in water and sediment flux in the Yangtze River’s Source
Region (SRYR). The research provided insight into how braided rivers on the QTP are
changing morphologically in response to runoff changes that are mostly brought on by
climate change.

The transnational Brahmaputra River originates in China, flows through India, and
eventually falls into the Bay of Bengal in Bangladesh. As stated earlier, the severe braiding,
numerous laterals, mid-channel bars, and islands of this large river’s mid-reaches, which
extend up to around 622 km, are located in the Assam flood plains of the northeastern
region of Indian territory. Previous research on the Brahmaputra River relied significantly
on field observations and physical modeling due to these features. Similarly, relations be-
tween stream power, braiding intensities, and bank erosion with a quantitative assessment
of the spatiotemporal behavior of the channel braiding process in certain stretches of the
Brahmaputra River were reported based on the spatial analysis of remote sensing images
for the discrete years of 1990, 1997, and 2007 [18]. After the 1980s, numerical modeling,
particularly 1D modeling, was extensively used in the Brahmaputra River for flow sim-
ulation and silt prediction. However, the actual use of 2D depth-averaged modeling in
Brahmaputra River reaches in the Assam Plains is rare due to topographical difficulties
and the difficulty of numerically replicating geometric data. Several attempts were made
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by researchers to transform and incorporate complex geometries into mathematical models
for different but specific types of engineering problems. Some works, such as [19–22],
can be referred to. According to [19], a continuum technique was attempted that used
shock waves that were either captured or fitted. Although shock-capturing codes have
straightforward algorithms, they frequently experience numerical issues, which become
especially problematic when shocks are powerful and the grids are unstructured. They
demonstrated how recent developments in computational mesh generation enable the alle-
viation of some of the challenges associated with shock capture and contribute to making
shock fitting on unstructured meshes a versatile technique. The modeling and meshing
of such a fractured network system are typically time-consuming and challenging due
to the geometric complexity of the computational domain brought on by the existence
and extension of fractures [20]. The method was reportedly applied to model two- and
three-dimensional discrete fractured network (DFN) systems in geological problems to
demonstrate its effectiveness and high efficiency. A three-dimensional manifold cutting
program algorithm was developed by [21], and it can produce any three-dimensional
manifold element under tetrahedral and hexahedral mesh covers. It can, however, result in
numerical complexity and is restricted to smaller-scale flow regions. Researchers proposed
a derivative-free mesh optimization algorithm, aiming to enhance the mesh’s worst element
quality [22]. More recently, an analytical–numerical model for predicting the evolution
of gravel bars in conditions of dynamic equilibrium was reported [23]. Numerical results
showed that the proposed mesh optimization algorithm outperforms the existing mesh
optimization algorithm in terms of improving the worst element quality and eliminating
inverted elements on the mesh. There have been numerous attempts at complex mesh
creation algorithms featuring complex geometries; nonetheless, mesh generation with
complex morphometries and a very large-scale flow domain is still limited. In other words,
efficient mesh generation for a highly complex river planform of a braided river with highly
varied bed elevations, such as the Brahmaputra River, is hardly found in the literature.

Hence, this paper explores an attempt to develop a mathematical model for the highly
complex planform of a braided river with a relatively realistic assessment of its geometric
features. The model was then tested on a 100 km river stretch using a numerical 2D
depth-averaged model with an improved flow dispersion stress tensor as an additional
source term. To simulate the flow field, the model employs a finite-volume method with
the SIMPLEC algorithm and Rhie and Chow’s momentum interpolation technique [24]
on a curvilinear, non-staggered grid to solve non-homogeneous Poisson’s equations for
boundary-fitted domain discretization. In order to simulate the river’s braiding process,
the wetting and drying process [10] was added to the model.

2. Materials and Methods
2.1. Grid Generation Algorithm

The governing differential equations for engineering problems are derived and ex-
pressed in a Cartesian (rectangular) coordinate system. We must discretize the continuous
physical space into a uniform orthogonal computational space to solve these differential
equations [25]. A detailed flow chart is presented in Figure 3.

However, the applications of boundary conditions require that the boundaries of the
physical space fall on the coordinate lines (surfaces) of the coordinate system. Furthermore,
accurate solutions necessitate that grid points be dispersed in small-gradient regions and
clustered in large-gradient regions. The general procedure adopted for grid generation was
widely referred from [25]. For mapping the body-fitted, non-uniform physical plane (x, y, t)
onto the transformed uniform orthogonal computational plane (φ, ψ, t), the following
elliptic PDE (Poisson’s equation) was used for grid generation.

∇2φ = M(φ,ψ) (1a)

∇2ψ = N(φ,ψ) (1b)
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where M and N are non-homogeneous terms. Coordinates (φ,ψ) are known and (x, y) are
not known. The objective of the grid generation process is to determine the grid in the x, y
space. The inverse transformation is

x = x(φ,ψ), y = y(φ,ψ) (2)

One can obtain the transformed equations in following condensed form as

αxφφ − 2βxφψ + γxψψ = −I2(Mxφ + Nxψ) (3a)

αyφφ − 2βyφψ + γyψψ = −I2
(

Myφ + Nyψ
)

(3b)

where, α = x2
ψ + y2

ψ, β = xφxψ + yφyψ, γ = x2
φ + y2

φ; φx = ∂φ/∂x, ψx = ∂ψ/∂x,
φy = ∂φ/∂y, ψy = ∂ψ/∂y, I = xφyψ − xψyφ.

Furthermore, for the orthogonal condition [21], one has β = xφxψ + yφyψ = 0.

2.1.1. Numerical Discretization and Algorithm

These are elliptic PDEs with Dirichlet boundary conditions. Writing the equation
in finite-difference form using second-order centered-difference approximations of the
exact partial derivatives, one may obtain the following final numerical equations (based on
finite-difference grid shown in Figure 2) (considering ∆φ = ∆ψ = 1):

For x direction:

xi−1,j−1

(
−βi,j

2

)
+ xi−1,j

(
αi,j − 0.5I2

i,jMi,j

)
+ xi−1,j+1

(
βi,j
2

)
+ xi,j−1

(
γi,j − 0.5I2

i,jNi,j

)
− 2xi,j

(
αi,j + γi,j

)
+xi,j+1

(
γi,j + 0.5I2

i,jNi,j

)
+ xi+1,j−1

(
βi,j
2

)
+ xi+1,j

(
αi,j + 0.5I2

i,jNi,j

)
+ xi+1,j+1

(
−βi,j

2

)
= 0

(4a)

For y-direction:

yi−1,j−1

(
−βi,j

2

)
+ yi−1,j

(
αi,j − 0.5I2

i,jMi,j

)
+ yi−1,j+1

(
βi,j
2

)
+ yi,j−1

(
γi,j − 0.5I2

i,jNi,j

)
− 2yi,j

(
αi,j + γi,j

)
+yi,j+1

(
γi,j

∆ξ2

∆η2 + 0.5I2
i,jNi,j

)
+ yi+1,j−1

(
βi,j
2

)
yi+1,j

(
αi,j + 0.5I2

i,jMi,j

)
+ yi+1,j+1

(
−βi,j

2

)
= 0

(4b)
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Using the ADI (Alternating-Direction Implicit–Explicit) scheme, one can obtain
Equations (5a) and (5b) in tridiagonal matrix form for unknowns (row-wise):

xi−1,j

(
αi,j − 0.5I2

i,jMi,j

)
− 2xi,j

(
αi,j + γi,j

)
+ xi+1,j

(
αi,j + 0.5I2

i,jMi,j

)
= Oi (5a)

yi−1,j

(
αi,j − 0.5I2

i,jMi,j

)
− 2yi,j

(
αi,j + γi,j

)
+ yi+1,j

(
αi,j + 0.5I2

i,jMi,j

)
= Pi (5b)

Similarly, one can obtain Equations (6a) and (6b) in tridiagonal matrix form (column-wise):

l
xi,j−1

(
γi,j − 0.5I2

i,jNi,j

)
− 2

l
xi,j

(
αi,j + γi,j

)
+

l
xi,j+1

(
γi,j + 0.5I2

i,jNi,j

)
=

l−1
Oj (6a)

l
yi,j−1

(
γi,j − 0.5I2

i,jNi,j

)
− 2

l
yi,j

(
αi,j + γi,j

)
+

l
yi,j+1

(
γi,j + 0.5I2

i,jNi,j

)
=

l−1
Pj (6b)

(a) Convergence Criteria

Iteration continues until the following condition is fulfilled:

Max.
∣∣∣∣ (l)xi,j −

(l−1)
xi,j

∣∣∣∣&&Max.
∣∣∣∣ (l)yi,j −

(l−1)
yi,j

∣∣∣∣ ≤ ε0 (7)

where l is the number of iterations.
Using appropriate terminologies, Equations (5a) and (5b) can be written in the follow-

ing format.
At the lth iteration,

l
Aixi−1,j + Bi

l
xi,j + Ci

l
xi+1,j =

*
Oi (8a)

l
Aiyi−1,j + Bi

l
yi,j + Ci

l
yi+1,j =

*
Pi (8b)

where ∗ is evaluated on the latest best-known values of x and y and Ai = αi,j − 0.5I2
i,jMi,j,

Bi = −2
(
αi,j + γi,j

)
, and Ci = αi,j + 0.5I2

i,jNi,j.
One can compute intermediate variables (TDMA) to obtain the solution. The solution

in steps are as follows: (i) assign a number of boundaries and constraints; (ii) select the
corresponding degree of polynomial; (iii) generate simultaneous equations of Ai, Bi, Ci, Oi,
Pi, and so on by putting boundary values in polynomial equations; (iv) solve simultaneous
equations through matrix inverse multiplication for Ai, Bi, Ci, and Pi; (v) using polynomials,
determine the value of x for corresponding integer values in the range of (fixed by the
user appropriately to obtain the desired mesh resolution); (vi) evaluate the corresponding
values of y from cubic interpolation of the curve data; (vii) the same procedure is adopted
if the boundary is aligned by and large along the y axis. One can refer the detailed flow
chart as shown in Figure 3.

2.1.2. Numerical Computation of Non-Homogeneous Terms

(a) Interior grid point control.

Poisson’s equation that is used in grid generation essentially contains non-homogeneous
terms M and N. The finite-difference forms also naturally contain these terms. To optimize
orthogonality, one must choose specific functional forms to control the interior grid points
to the desired level of their distribution [25]. The literature has found numerous numerical
approaches to address this specific problem. For detail, readers may refer to [26–28]. The
technique for implementing the interior grid control was implemented in [28], although
it is not absolute. It is an iterative approach that is quite comfortably implemented to
evaluate M(φ, ψ) and N (φ, ψ). After the values are determined at the boundaries, interior
values are extrapolated exponentially to achieve the desired effect in the interior grid points
as follows:
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Initially, M (φ, ψ) and N (φ, ψ) are not known. So, the initial values of M and N are set
to zero and Poisson’s equation is solved to obtain interior points and updated recursively
while evaluating M and N for each iteration as follows:

Let us say that at the nth iteration, M and N are Mn and Nn.
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So, at the n + 1th iteration, the new values of M and N will be

Mn+1 = Mn + ∆Mn (9a)

Nn+1 = Nn + ∆Nn (9b)

n denotes the iteration level. The initial values of M and N are set to zero.
Let us define some terminologies:
→
Tφ = Tangent vector to the φ-line at the boundary.

→
Tψ = Tangent vector to the ψ-line

at the boundary. The dot product will give the angle between tangent vectors.

→
Tφ•

→
Tψ =

∣∣∣∣→Tφ∣∣∣∣ · ∣∣∣∣→Tψ∣∣∣∣cosα (10a)
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One then has

α = cos−1


→
Tφ ·

→
Tψ∣∣∣∣→Tφ∣∣∣∣ · ∣∣∣∣→Tψ∣∣∣∣

α (10b)

Let α* be the desired angle of intersection. Then, the required correction ∆Mn to Mn is

∆Mn = +tan−1
(
αn − α*

α*

)
(11)

To make the line orthogonal to α*, π
2 is taken. The spacing ∆S between the boundary

point and the first interior point on the φ line is given by

∆S =

((
xi,j−1 − xi,j

)2
+
(

yi,j−1 − yi,j

)2
) 1

2
(12)

Let ∆s* be the desired spacing; then, the required correction ∆Nn to Nn is

∆Nn = +tan−1
(

∆sn − ∆s*

∆s*

)
(13)

∆S* may be set as per the domain resolution or may conveniently be taken by the user
as the smallest permissible spacing of the domain between the boundary point and the
first interior point on the φ-line. Either or both of the corrections ∆Mn. and ∆Nn. can be
over-relaxed or under-relaxed.

(b) Top boundary implementation.

For the top boundary, one can calculate
→
Tφ and

→
Tψ as follows:

Tφ =

(
xi,jmax−1

− xi,jmax

)
∆s1

→
i +

(
yi,jmax−1

− yi,jmax

)
∆s1

→
j (14)

∆s1 =

[(
xi, jmaxi,jmax

2 +
(

yi, jmaxi,jmax

2
) 1

2
)]

(15)

→
Tψ =

dx
dt

→
i +

dy
dt

→
j (16)

where
→
i and

→
j are unit vectors along the x and y axis. dx

dx and dy
dx can be determined as

follows:

dx
dt

=

(
1

∆t+ + ∆t−

)[(
∆t−
∆t+

)
.
(

xi+1,jmax
− xi,jmax

)
+

(
∆t−
∆t+

)
.
(

xi,jmax
− xi−1,jmax

)]
(17a)

dx
dt

=

(
1

∆t+ + ∆t−

)[(
∆t−
∆t+

)
.
(

yi+1,jmax
− yi,jmax

)
+

(
∆t−
∆t+

)
.
(

yi,jmax
− yi−1,jmax

)]
(17b)

After computing
→
Tφ and

→
Tψ, one can compute α from Equation (10b) and ∆Mn from

Equation (11). Using the value of ∆S1 from Equation (15), ∆Nn is computed. Then, M and
N for the next step are updated.

(c) Bottom boundary implementation.
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For the bottom boundary, one can calculate
→
Tφ and

→
Tψ as follows:

→
Tφ =

(xi,1 − xi,2)

∆s2

→
i +

(
yi,1 − yi,2

)
∆s2

→
j (18)

∆S2 =

[
(xi,1 − xi,2)

2 +
(

yi,1 − yi,2

)2
] 1

2
(19)

→
Tψ =

dx
dt

→
i +

dy
dt

→
j (20)

where
→
i and

→
j are unit vectors along the x and y axis. dx

dt and dy
dt can be determined as

follows:

dx
dt

=

(
1

∆t+ + ∆t−

)[(
∆t−
∆t+

)
.(xi+1,1 − xi,1) +

(
∆t−
∆t+

)
.(xi,1 − xi−1,1) (21a)

dy
dt

=

(
1

∆t+ + ∆t−

)[(
∆t−
∆t+

)
.
(

yi+1,1 − yi,1

)
+

(
∆t−
∆t+

)
.
(

yi,1 − xyi−1,1

)]
(21b)

After computing
→
Tφ and

→
Tψ, one can compute α from Equation (10b) and ∆Mn from

Equation (11). Using the value of ∆s1 from Equation (19), ∆Nn is computed. Then, M and
N for the next step for the bottom boundary are updated.

(a) Extrapolation of boundary values to interior points.

Extrapolation of the boundary values of M(φ,ψ) and N(φ,ψ) into interior points of
the domain is performed to achieve the desired effect in the interior grid points. For this,
exponential extrapolation is adopted herein [25].

M(φ,ψ) = M(φ, 1)e−
a(ψ−1)

(ψmax−1) + M(φ,ψmax)e
− b(ψ−1)

(ψmax−1) (22a)

N(φ,ψ) = N(φ, 1)e−
c(ψ−1)

(ψmax−1) + N(φ,ψmax)e
− d(ψ−1)

(ψmax−1) (22b)

where the first term represents the boundary control on the bottom boundary and the
second term represents the boundary control on the top boundary. A large value of the
exponential term gives rapid decay and vice versa. In this model, the adopted values
of coefficients were 9.0. Similarly, for downstream, upstream boundaries M and N were
evaluated and extrapolated. M and N were averaged to include the effect of all four
boundaries of the domain.

(e) Improved mesh generation system.

A good balance of orthogonality and smoothness without distortion and overlapping
is represented in the method proposed by [29], which was applied by introducing the effect
control factor on non-homogeneous terms M and N as follows.

For each grid point factor, (1−rm) and (1−rn) were applied to the terms M and N to
obtain improved M and N for incorporation of smoothness as

M* = (1− rm)M (23a)

N* = (1− rn)N (23b)
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In Equations (9a) and (9b),

rm =

∣∣∣hφ − hφ
∣∣∣

hφ
(24a)

rn =

∣∣∣hψ − hψ
∣∣∣

hψ
(24b)

where M* and N* are improved terms, and hφ and hψ are locally averaged scale factors
along the φ and ψ directions.

2.1.3. Quality of the Generated Grid

There are three indices to evaluate the quality of a mesh system: uniformity, or-
thogonality, and adaptivity [29]. Uniformity indicates how uniform the mesh spacing is;
orthogonality is a measure of to what extent the mesh lines are perpendicular to each other;
and adaptivity indicates the degree of the mesh density distributed in areas where higher
resolution and accuracy are desired. These are measured by the following functions:

IW =
∫

D
w(x, y)IdA (25a)

Is =
∫

D

[
(∇φ)2 + (∇ψ)2

]
dA (25b)

Io =
∫

D
(∇φ · ∇ψ)

2
I3dA (25c)

where Iw, Is, and Io are measures for adaptivity, uniformity, and orthogonality, respectively.
The Jacobian I represent the area of a mesh cell in two dimensions and w(x, y) is the
weighing factor. When this integral is minimized, w(x, y)I (with w(x, y) > 0) should have a
uniform distribution, so when the weighting function is large, the mesh size should be small.
The weighting function is often formulated using water depth or bed bathymetry to handle
complex hydrodynamic problems. If the numerical solutions such as the concentration
or the velocity gradients are selected, the mesh shall be adaptive dynamically with the
numerical solution [29]. The factor I3 is added to enforce the orthogonality with higher
weighting for large cells in Equation (11c). If the three indices approach their minimum
values, the mesh would have the optimal combination of uniformity, orthogonality, and
adaptivity. In general, a mesh can be generated by minimizing the sum of the three integrals
with a relative weighing factor with each integral. Since it is impossible to achieve optimized
weighing factors at the same time, for a particular mesh, one needs to select the appropriate
combination of these coefficients. In this study, orthogonality was emphasized more than
other indices for the numerical ease of hydrodynamic solution. It should be mentioned here
that topographical variations were irregular and large, and the mesh used in this study was
of fixed domain. Hence, optimizing indices like adaptivity and uniformity may increase
complications in obtaining feasible mesh generation with nearly orthogonal grids.

2.1.4. Mesh Evaluation

Several indices to quantitatively evaluate mesh quality by several indicators were
suggested [29]. These were the Maximum Deviation Orthogonality (MDO), Averaged
Deviation from Orthogonality (ADO), Maximum Aspect Ratio (MAR), and average grid
aspect ratio (AAR), as given in the following equations:

MDO = max
(
θi,j
)

(26a)
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ADO =
1

(ni− 2)
1

(nj− 2)

ni−1

∑
2

nj−1

∑
2

max
(
θi,j
)

(26b)

MAR = max(max(
hφi,j

hψi,j
,

hψi,j

hφi,j
) (26c)

where ni and nj are the maximum number of mesh lines in the φ and ψ directions, respec-
tively; and θ is defined as

θi,j = arccos
(

β

hφhψ

)
i,j

(27a)

AAR =
1

(ni− 2)
1

(nj− 2)

ni−1

∑
2

nj−1

∑
2

max(
hφi,j

hψi,j
,

hψi,j

hφi,j
) (27b)

For the generated mesh to be perfectly orthogonal, ADO and MDO should be 1.57(π/2).
For a perfectly smooth mesh, MAR and AAR should be the same.

2.1.5. Computation of Coefficient Matrices for the Generated Curvilinear Mesh

Difference formulas for derivatives were developed to compute coefficient matri-
ces, which are various derivatives or combinations of derivatives between independent
variables x and y with φ and ψ depending upon the availability of neighborhood nodes.

C++ computer code was developed using the finite-difference method with the al-
gorithm presented in the previous section, and it was coupled with the flow simulation
numerical scheme to facilitate a prime input for domain geometry variables and coordi-
nate transformation coefficients to be used in the governing equations for flow simulation
on the boundary-fitted domain. Arbitrarily chosen curvilinear domains with known
boundary coordinates and mesh evaluation are presented in Figure 4 from the developed
computer code.
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2.2. Depth-Averaged Flow Model

The governing equations are RANS (Reynolds-averaged Navier–Stokes) equations
with a depth-averaged approximation of continuity and momentum equations
(Equations (28a)–(28c)) in the Cartesian coordinate system [30].

∂ρh
∂t

+
∂

∂x
(ρhVx) +

∂

∂y
(
ρhVy

)
= 0 (28a)

∂

∂t
(ρhV) +

∂

∂x

(
ρhVx

2
)
+

∂Dxx

∂x
+

∂

∂y
(
ρhVxVy

)
+

∂Dxy

∂y
= −ρgh

∂H
∂x
− fρUx

√
Vx

2 + Vy
2 + ρhνt

(
∂2Vx

∂x2 +
∂2Vx

∂y2

)
(28b)

(
ρhVy

)
+

∂

∂x
(
ρhVxVy

)
+

∂Dxy

∂x
+

∂

∂y

(
ρhVy

2
)
+

∂Dyy

∂y
= −ρgh

∂H
∂y
− fρVy

√
Vx

2 + Vy
2 + hρνt

(
∂2Vy

∂x2 +
∂2Vy

∂y2

)
(28c)

where Vx and Vy are depth-averaged velocity components in the x and y directions; t is
time; ρ is the density of water (kg/m3); H is water surface elevation; h is the depth of the
flow; g is the acceleration of gravity; f is the frictional stress coefficient (for friction shear

stress at the bottom in the x and y directions) and is n2ρg

h
1
3

with n = Manning’s coefficient and

νt = eddy viscosity. The components of dispersion stress terms in Cartesian coordinates
which can be included in momentum transport equations are Dxx, Dxy, and Dyy. These
terms can be expressed as follows [31,32]:

Dxx =
∫ h+z0

z0

ρ(vx −Vx)
2dz (29a)

Dxy =
∫ h+z0

z0

ρ(vx −Vx)
(
vy −Vy

)
dz (29b)

Dyy =
∫ h+z0

z0

ρ
(
vy −Vy

)2dz (29c)

where z0 is the zero-velocity level.
Cohesive terms are insignificant in an open-channel free-surface gravity flow and can

be ignored. For the turbulence term, the depth-averaged parabolic eddy viscosity model
(zero-equation model) is used. Equation (30) estimates the depth-averaged eddy viscosity.

Nt =
1
6
κV*h (30)

where κ is the von Karman’ coefficient and V* (Shear velocity) =
[
f
(

V2
x + V2

y

)]1/2

.
The transformed governing equations in the curvilinear coordinate system (φ, ψ, τ)

(Equations (31a)–(31c)) are derived as follows [33]:

∂

∂τ
(ρhI) +

∂

∂φ
(ρhIv̂φ) +

∂

∂ψ
(ρhIv̂ψ) = 0 (31a)

∂
∂τ (ρhIVx) +

∂
∂φ [ρhIv̂φVx] +

∂
∂ψ [ρhIv̂ψVx]− ρhIνt

(
α11

∂2Vx
∂φ2 + α22

∂2Vx
∂ψ2

)
= −ρghI

(
φx

∂H
∂φ +ψx

∂H
∂ψ

)
− fρI(Vx)

√
(Vx)

2 +
(
Vy
)2

+ ρhIνt

(
α12

∂2Vx
∂φ∂ψ

)
−
(
φx

∂Dxx
∂φ +ψx

∂Dxx
∂ψ +φy

∂Dxy
∂φ +ψy

∂Dxy
∂ψ

) (31b)
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∂
∂τ

(
ρhIVy

)
+ ∂

∂φ

[
ρhIûφVy

]
+ ∂

∂ψ

[
ρhIûψVy

]
− ρhIνt

(
α11

∂2Vy

∂φ2 + α22
∂2Vy

∂ψ2

)
= −ρghI

(
φy

∂H
∂φ +ψy

∂H
∂ψ

)
− fρI

(
Vy
)√

(Vx)
2 +

(
Vy
)2

+ ρhIνt

(
α12

∂2Vy
∂φ∂ψ

)
−
(
φx

∂Dxy
∂φ +ψx

∂Dxy
∂ψ +φy

∂Dyy
∂φ +φy

∂Dyy
∂ψ

) (31c)

In Equations (31a)–(31c), v̂θ (θ =φ,ψ) are the components of velocity in the curvilinear
coordinate system (φ,ψ,τ) which are related to Vx, Vy as(

v̂φ
v̂ψ

)
=

(
φx φy
ψx ψy

)(
Vx
Vy

)
and α11 = φx

2 +φ2
y,α22 = ψx

2 +ψ2
y,α12 = 2

(
φxψy +φyψx

)
(32)

Numerical Solution

The finite volume method was used to discretize the controlling partial differential
equations described in the previous section on a curvilinear, non-staggered grid. In the
curvilinear coordinate system, the mass and momentum equation may be stated in conser-
vative tensor notation. Readers can refer to [33] for the complete numerical scheme to solve
the above sets of equations with implemented boundary conditions.

3. Mathematical Representation of Complex Morphometry: Study River Reach

For application of the developed hydrodynamic model, the reach between measured
cross-section numbers 22 (location at Pandu near Guwahati) and 9 (Jogighopa) released by
the Brahmaputra Board, Government of India (spanning over about 100 km in the state of
Assam in Indian Territory), was chosen as the flow domain and extracted from a satellite
image of the study reach. Fourteen measured cross-section data points (cross-section 22
to cross-section 9) for the year of 1997 were used. The location of the study reach of the
Brahmaputra River is shown in Figure 5. The flow domain (Primary Flood Plain) of the
study area is delineated from a geo-referenced satellite image (IRS-LISS-III satellite imagery)
from 1997 using GIS tools. Figure 5 displays the delineated image of the river’s study
reach. Figure 6 depicts the geo-referenced image of the extracted flow domain for further
pre-processing.
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Along the Brahmaputra River, there are three to four restricted nodal sites where the
cross-sections remain constant in time and space. Therefore, due to its division by well-
defined nodal points (with invariant width), the Brahmaputra reach presents a relatively
simple 2D mathematical model application for both upstream and downstream border
implementations. The existence of various 3D flow structures inside the flow domain
makes the process of modeling a fully evolved braided stream a difficult undertaking. This
analysis was conducted using data sets for a river stretch with two restricted nodal points,
namely Pandu and Jogighopa, of roughly 100 km in reach length of the Brahmaputra River,
with fourteen measured river cross-sections and 1997 hydrological data points.

3.1. Hydrographic Data

As stated, domain boundaries (main channel and largely low flood plain) for the
study period were extracted in a geographical coordinate system from the remote sensing
imagery shown in Figure 6 and transformed into a Cartesian coordinate system to accurately
represent the domain in the Cartesian plane (Figure 7). The main waterway, low flood
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plains, and high flood plains were all cross-sectioned. Some segments within the river study
stretch have dikes built for flood protection purposes. Poor maintenance often leads to
breaches in these dikes during high-flood seasons. Low- and medium-flood periods result
in inundation of the main channel and low flood plains. Keeping this in view, care was
taken to extract the flow domain to include the primary flood plain, and then cross-sections
were fitted.
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The bank lines were delineated on a geo-referenced image covering the river reach in
the year of 1997 through identifying river sandy bed fringes with vegetative cover along
the bank lines. The coordinate system of the geo-referenced image was WGS 84 (Word
Geodetic System 1984). Thus, x and y of the boundary grid points were obtained.

Additionally, boundary grid points were uniformly redistributed using an algebraic
approach into 451 points along the positive x-axis (south and north limits) and 51 points
along the y-axis. For convenience of sign convention, the domain was re-oriented with the
positive x-axis aligned with the flow direction. Some of the extreme grid points upstream
and downstream of the flow domain were corrected and rectified to fit the measured cross-
section in the given orientation, which may have crept in due to a manual digitization error.
Boundaries were slightly smoothed through a three-point finite Fourier transform (FFT)
using math-processing software to generate an efficient mesh without changing the basic
characteristics of the domain (Figure 7).

The reduced levels of the river cross-sections of the post-monsoon period for the year
of 1997 were collected for all fourteen pre-defined river cross-sections from the Brahmaputra
Board, Government of India. The positioning of the measured cross-sections and mid-
central line (in blue) into the domain is represented in Figure 8 and are depicted in graphical
form in Figure 9. The data were normalized. The bearing at cross-section 22 (C/s-22) was
zero and was the physically identified position on the imagery used to extract the domain.
Taking reference to C/S-22, cross-sections could be positioned and oriented if chainage
and bearing were known. To characterize the flow-carrying capacity of a stream and its
associated floodplain, measured cross-sections were placed at intervals along the stream as
per their orientations. They extended across the entire floodplain and were perpendicular
to the anticipated flow lines. Every effort was made to obtain interpolated stream bed data
at mesh nodes based on these measured cross-sections so that the data would accurately
represent the stream and floodplain geometry. The adopted process of bed interpolation
appropriate for the available data set is discussed in subsequent sections.
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As discussed earlier, cross-sections were fit at the position and bearing as per Table 1.
The measured cross-sectional data from the left bank of the river were normalized, and 101
points were extracted through the linear interpolation technique to obtain nodal points for
a structured matrix for bed interpolation, discussed in the subsequent section.
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Table 1. Study reaches of Jogighopa–Pandu of Brahmaputra River.

S. No. Name of River
Gauge Site Cross-Section Number Chainage (km) Downstream Reach

Length (km)
Bearing of
X-Section

1 Jogighopa 9 82.62 0 0◦30′

2 - 10 92.82 10.2 24◦40′

3 Dubapara 11 100.98 8.16 16◦00′

4 Dalgoma 12 109.65 8.67 5◦30′

5 Simlitola 13 119.85 10.2 358◦30′

6 Nagarbera 14 128.01 8.16 310◦30′

7 Rangapani 15 137.70 9.69 340◦30′

8 Rangapani 16 146.37 8.67 349◦30′

9 Barakhat 17 156.06 9.69 22◦00′

10 Bitartari 18 167.28 11.22 3◦00′

11 Ganimara 19 175.95 8.67 13◦30′

12 Palasbari 20 182.50 6.55 3◦00′

13 Dharapur 21 189.21 6.71 356◦00′

14 Pandu 22 197.37 8.16 0◦00′

3.2. Stream Bed Interpolation

Stream bed interpolation is a way to add bed elevations from a topology or bathymetri-
cal database to mesh nodes. Several methods and algorithms are available in the literature.
For the type of observed data available, the Inverse Distance Weighing (IDW) method with
a structured database was applied as described by [29]. Refinement was performed by
normalizing and expanding to desired data points in the transverse direction along each
cross-section using linear interpolation. Thereafter, each cross-section was divided into
three parts, left over bank (LoB), main channel, and right over bank (RoB), appropriately as
per the cross-section configuration. An equal number of points in these three parts was
distributed. Furthermore, the database in the longitudinal direction between cross-sections
was normalized and expanded to the desired data points between cross-sections. Linear
interpolation was used between the corresponding parts of each cross-section to obtain
interpolated data points. Adopting this procedure, a ‘structured matrix’ of data points from
the measured data points was generated. Now, from the quadrilateral formed from these
matrix elements, each grid points to be interpolated was identified, and using the IDW
method, bed elevation was determined for known x and y coordinates. As discussed above,
the cross-section was positioned and oriented as per the chainage and bearing given in
Table 1, numbered from cross-section 9 (downstream) to 22 (upstream) in Figure 8. Out of
the measured data for each cross-section, data were normalized, and 101 equally distanced
data points were extracted for each cross-section.

From the normalized data point of each cross-section, 21 data points were linearly
interpolated for each set of two adjacent cross-sections through HEC-RAS (Hydrological En-
gineering Center-River Analysis System) geometric interpolation application software [34]
to interpolate the data along the deepest bed level, ensuring flow continuity in the main
channel. Thus, a structured matrix of dimension 101 × 261 data points was generated. It is
presented graphically in Figure 10a, and the corresponding contour plot of bed-elevation is
presented in Figure 10b.

Discretization of the domain was performed through the developed computer code
(Figure 11a) using the method described in the previous section, and a bed-level matrix
(51 × 451) was generated using the IDW (Inverse Distance Weighting) method. Bed in-
terpolation was also performed for discretized array [x, y] using the MATLAB tool using
the ‘nearest neighborhood technique’ for comparing and checking the accuracy of the
interpolated bed elevation using the IDW method. Data generated by the IDW method
did contain some localized discrepancies in comparison to the ‘nearest neighborhood
technique’ as generated from MATLAB code. Hence, a MATLAB-generated matrix was
preferred and is presented in Figure 11b as a contour map with interpolated bed elevation,
further presented in Figure 12 as a 3D view for clarity. Thus, the flow domain was dis-
cretized, and an appropriate digital terrain model with a chosen meshing array and fineness
was generated.
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4. Results and Discussion

The hydrologic data are composed of water discharges and flow durations. The discharge
hydrograph is approximated by a sequence of steady inflow discharges, each of which occurs
for a specified number of days or hours, depending upon the acquisition of data. Water
surface profiles are computed by using the 2D depth-averaged mass momentum equations.

The river geometry of the study stretch is reproduced mathematically using the
available observed field cross-sectional data. Bed interpolation is performed mathematically
to determine the bed elevation at each grid point of the generated mesh for the study flow
domain, which is otherwise impossible to acquire from the field for grid points with such a
fine grid spacing in both stream-wise and transverse directions.

The developed grid generation for the complex geometry of Brahmaputra River was
successfully tested and verified using the 2D depth-averaged improved hydrodynamic
model underlined in Section 2.2. The Brahmaputra follows an aligned channel arrangement
throughout this study. Long stretches of the river have a three-dimensional flow that is
practically unsteady. Simulating the 2D flow for such a long reach with widths ranging from
2 km to 22 km requires a large amount of data. The data required to model unsteady flow
in 2D for a large alluvial river like the Brahmaputra are difficult to come by. Nonetheless,
a steady flow simulation utilizing a 2D model for a large alluvial river gives valuable
information and a sufficient grasp of actual flow conditions for practical engineering
applications. Comparing observed water levels at Pandu (upstream node) with model-
simulated water levels for the implemented stage discharge rating curve at the downstream
node was utilized to validate the model.

In channels characterized by sloping banks, sandbars, and islands, the water’s bound-
ary undergoes continual change over time, potentially leaving portions of the area exposed.
Various strategies have been documented in the literature to address this issue. One such
approach is the utilization of a ‘fixed grid’ method, which encompasses the largest sub-
merged area (primary floodplain) and considers dry regions as part of the computational
domain [10]. This method incorporates the ‘small imaginary depth’ technique, which em-
ploys a minimum flow depth threshold (e.g., 0.02 m in natural waterways and 0.001 m in
controlled flumes) to determine the presence of dry or wet conditions at each time interval.
Dry regions are assigned zero velocity, and the interface between dry and wet zones is
treated as an internal boundary where the wall function methodology is applied. Similarly,
the dry zones in the flow domain were simulated for various flow discharges using the
wetting and drying technique.

The wetting and drying technique was incorporated to judge whether an individual
grid was wet or dry by assigning a threshold depth of 0.02 m. In the pressure solver, all
wet and dry grids participated in the solution. While computing water surface elevation,
the H value of those nodes where the computed WSL was less than or equal to the bed
elevation (i.e., H ≤ zb) was assigned a numerical threshold value of 0.02 m for solving
momentum equations. In the final results, for practical purposes, H values of 0.02 or less
were considered dry nodes with a water depth assigned to zero. Figure 13 shows the
correlation of WSL for upstream location and discharge for downstream location when
compared with the observed values suggesting the accuracy and validation. Figure 14
depicts the dry zones with zero water depth in black hues. Looking at Figure 14, it was
observed that braiding intensity increased with decreasing discharges, and more and
more braid bars and side bars evolved, thereby increasing the proportionate flow zone
in the flow domain. Even though the flow-fields at channel bifurcations are essentially
three-dimensional, the developed model with a computer-generated flow domain was able
to approximate braid bars or side bars with reasonable accuracy through implementing
wetting and drying techniques without developing a numerically more expensive 3D model
for such a macro-scale flow field scenario.
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5. Conclusions

1. This work establishes a stepwise, freshly developed procedure and algorithm to
mathematically evolve mathematic-fit boundary-fitted bathymetric mesh generation
with quality and chosen fineness for a braided river flow domain with highly complex
morphometric structures with realistic assessment to create intensive geometric data
for multidimensional river flow/sediment transport modeling with bank erosion and
morphological changes.

2. A realistic assessment of bank erosion and riverbed development/braid bars for
alluvial rivers could be conducted using enhanced and realistic flow-field estimates
and secondary flow correction in terms of dispersion stress tensors and developed
morphometric data as major inputs. Braiding was found to intensify when the
incoming discharge into the reach diminishes over time.
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