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Abstract: Dams are complex systems that involve both the structure itself and its foundation. Rheolog-
ical phenomena, expansive reactions, or alterations in the geotechnical parameters of the foundation,
among others, result in non-reversible and cumulative modifications in the dam response, leading
to trends in the monitoring data series. The accurate identification and definition of these trends to
study their evolution are key aspects of dam safety. This manuscript proposes a methodology to
identify trends in dam behavioural data series by identifying the influence of the time variable on
the predictions provided by the ML models. Initially, ICE curves and SHAP values are employed to
extract temporal dependence, and the ICE curves are found to be more precise and efficient in terms
of computational cost. The temporal dependencies found are adjusted using a GWO algorithm to
different function characteristics of irreversible processes in dams. The function that provides the
best fit is selected as the most plausible. The results obtained allow us to conclude that the proposed
methodology is capable of obtaining estimates of the most common trends that affect movements
in concrete dams with greater precision than the statistical models most commonly used to predict
the behaviour of these types of variables. These results are promising for its general application to
other types of dam monitoring data series, given the versatility demonstrated for the unsupervised
identification of temporal dependencies.

Keywords: trends; irreversible behaviour; dam’s monitoring data analysis; machine learning; ICE
curves; partial dependence; dam safety

1. Introduction and Background

Dams, like any other infrastructure, respond to external and internal loads. The
anisotropy and evolution of the mechanical properties of the materials they are composed
of and their foundations make the whole system complex and evolutionary.

The mechanical response of the dam to variations in external variables exhibits re-
versible behaviour as long as the materials remain in the elastic zone. However, plasticiza-
tion of materials, rheological changes, expansive chemical reactions, or degradation due
to external factors impose irreversible deformations. Identification and definition of these
trends are key to dam safety.

Traditional tools for trend detection in time series, such as dam monitoring data, are
based on univariate analysis. A large number of scientific references on this topic can be
found applied to various fields [1–3].

These methods, as univariate, do not consider possible trends in loads as the temper-
ature increases or the water levels decrease due to global climate change. Therefore, the
trends of the behavioural variables of a dam defined by such univariate models may be
influenced by the trends that the causal variables may exhibit and, consequently, may not
adequately reflect the irreversible variations in its structural response mode, leading to a
misinterpretation of the structural health of the dam.
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Therefore, it is necessary to identify irreversible variations in the dam response (trends)
using models that consider both behavioural variables and loads.

The most common models that relate causal and behavioural variables in current
practice for dam safety monitoring are statistical models such as HST, HTT, variants thereof,
or other types of multiple linear regression [4,5].

Numerical models, because of the significant heterogeneity of materials and complex-
ity of the physical processes governing the dam’s response to external solicitations, as well
as their high computational cost, are less widely used in monitoring instrumentation data.

The use of artificial intelligence (AI) models applied to dam safety has proliferated in
recent times. Numerous scientific references related to the use of ML, DL, or hybrid models
with other types of models such as statistical, time series, or physics-based numerical
models can be found [6–12]. Machine Learning models have shown good performance
in monitoring data prediction and are more accessible to interpretation than DL models.
However, despite the fact that these types of models generally provide better accuracy in
predictions than any of the former, the practical application of such models is currently far
from commonplace. This may be due to their label as black-box models.

For the consideration of irreversible effects attributable solely to the time variable,
statistical models incorporate a series of terms that depend exclusively on this variable.
The response part corresponding to these terms is then interpreted as the trend in the
behaviour of the target variable. If the actual trend does not correspond to the shape of the
function incorporated in the regression through the terms dependent on the time variable,
the irreversible behaviour obtained with the model will lead to a misinterpretation of the
structural response, not only because it cannot adjust to the actual trend, but also because it
affects the coefficients of the other terms during least squares fitting.

Behaviour models based on Machine Learning do not impose any predetermined form
of relationship between variables on the model and can incorporate time as just another
feature among the dataset with which they are trained. In this way, data-driven models
based on Machine Learning can learn, during their training stage and from monitoring
data, how the dam’s response changes over time while considering the rest of the causal
variables at the same time.

In these black-box models, the interpretation of the relationships between different
variables and the target variable is not direct, as it is in statistical models, and requires
specific methods. In the literature, multiple references can be found on the interpretation
or explanation of these types of complex models.

Cortez et al. [13], proposed different Sensitivity Analysis (SA) methods mainly focused
on determining the importance of the inputs. He suggested the use of a Variable Effect
Characteristic (VEC) curve to visualise the average impact of a given input in the model
response based on the mean or median values of the rest of the inputs.

Based on this work, Lin et al. [14] proposed a method for explanation of an Optimized
Sparse Bayesian Learning. The explanation was focused on the relative importance of the
input variables.

Lundberg et al. [15] presented the Shapley Additive Explanations (SHAP) method to
interpret predictions in complex models. Based on additive feature attribution methods
and game theory, SHAP values provide the expected change in model prediction when a
particular feature is conditioned.

Shao et al. [16] used SHAP methods to evaluate the importance of factors involved
in a multiple monitoring point (MMP) model orientated to predict settlements in a CFRD
dam and to gain control of the settlement trends in this type of dam.

Tursunalieva et al. (2024) [17] conducted a review of techniques for interpreting
ML models, fundamentally classifying them into different categories: model-based,
representation-based, and post hoc models. Within this latter group, they include methods
such as the aforementioned SHAP, the Local Interpretable Model-Agnostic Explanations
(LIME) introduced by Ribeiro et al. (2016) [18], or the GradCAM focused on Deep Learning
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models proposed by Selvaraju et al. (2019) [19], as model explanation techniques that allow
understanding the logic behind complex ML models.

Individual Conditional Expectation curves (ICE), introduced by Goldstein (2015) [20],
are a visual tool used in the analysis of regression models to understand the relationship
between a specific predictor variable and the response variable. These curves show how
the conditional expectation of the target variable changes for a specific record, as the
explanatory variable under analysis varies while keeping the other variables constant.
In other words, they provide a graphical representation of the relationship between an
independent variable and the response at an individual level.

The use of ICE curves has become popular in the context of Machine Learning model
interpretability [21,22] and enables the acquisition of a detailed perspective on how a
particular variable influences the predictions of the model.

Appley (2020) [23] warns about the use of this type of analysis in data sets with
strongly correlated variables due to the possibility of considering unlikely combinations
of these variables in the calculation of partial dependence and proposes the alternative
Accumulated Local Effects plots (ALE plots). Baucells (2021) [24] compared ICE and PDP
with other alternatives, including ALE plots, preferring the former.

The use of ICE curves or PDP in dam safety to interpret the relations found by ML
models between target variables and regressors, including time as a trend indicator, has
been proposed by authors [25–28]. These authors interpret the temporal dependence
obtained by these methods as the part of the behaviour that is related only to time or the
existing trend. However, since the real trend is not known, the validity of this interpretation
cannot be evaluated.

More complex and difficult to explain Deep Learning models can also be used for
predicting the behaviour of dams. Several authors have included interpretability within the
main objectives of their research [29]. In these cases, the explanation has also been aimed at
determining the importance of the inputs in the predictions provided by the models.

Given the expressed need to understand and evaluate dam behaviour in terms of their
safety, particularly those behaviours that do not constitute a response to the measured
causal variables and result in irreversible behaviours, the objective of this research is to
define an effective methodology capable of identifying and properly defining trends in
dam behaviour. To achieve this, the following actions are necessary:

• Determine whether the partial dependency or conditional expectation obtained by
methods of interpreting complex ML models is representative of the actual trend
existing in dam behaviour.

• Evaluate whether these dependencies respond as expected from an engineering
perspective, and if not, define a method to rationalise the results obtained from
this perspective.

• Compare the results with those that would be obtained from a conventional statisti-
cal model, such as multiple linear regression commonly used today to monitor the
evaluation of this type of dam [30,31].

2. Overview of the Methodology

Although data on dam behaviour showing irreversible movements are available,
trends are not known a priori, making it impossible to verify the goodness of identification
carried out by ML models.

Therefore, to evaluate the ability of ML models to identify the irreversible part of
movement behaviour, it is necessary to have data sets that incorporate known trends. Given
the complexity of the processes behind dam monitoring data, the problem is addressed in
two phases of increasing complexity.

In the first phase, the generic capacity of ML methods to identify trends coupled with
pure periodic synthetic series is evaluated. A set of synthetic cases is created by adding
different trend laws to a pure periodic carrier series. Predictive models of these series are
developed using various ML methodologies. The part of the model response corresponding
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to the time variable is extracted through a conditional expectation method and compared
with the trend introduced in the series. The analysis of the results obtained provides
information on the theoretical capacity of the ML models and interpretation methods to
identify the trend.

In the second phase, the complexity inherent in dam monitoring data series is intro-
duced. To obtain a series similar to that corresponding to real behaviour in which the
real trend is known in advance, the same trend laws applied in the previous phase are
introduced into a set of real data that do not show temporal dependence or irreversible
behaviours. Since it is not known a priori if the data obtained from the monitoring of a real
dam exhibit any trend, an HTT model is developed on a series of real movements in the
pendulum of an arch dam. When time-dependent polynomial terms are removed from the
HTT model, the resulting series is taken as a stationary behaviour series (without trend).
Different trend laws are added to these series to proceed in the same way as with the pure
synthetic cases.

The workflow for both phases of the study would proceed as follows.

1. Creation of synthetic stationary data series: pure oscillatory functions in Phase I and
stationary series based on real dam behaviour data in Phase II;

2. Selection of trend shape functions and creation of trend series;
3. Generation of experiments: synthetic data series with a trend developed by combining

the two above;
4. Development of prediction models for the series: neural networks (NN), Support

Vector Machines (SVM), Boosted Regression Trees (BRT), and HTT models;
5. Extraction of the response part associated with the time variable using both ICE

curves and SHAP values, methods for interpretation of ML models in three tests,
measurement and comparisons of results, selection of the interpretation method to
use, and application to all the experiments of the phase;

6. Fitting functions to the different extracted trends through regression;
7. Determination of the error obtained on the real irreversible components.

The work concludes with an analysis and discussion of the results obtained.
In Figure 1, a general outline of the methodology followed is provided.

Water 2024, 16, x FOR PEER REVIEW 5 of 26 
 

 

 
Figure 1. Proposed methodology scheme. 

3. Methodology 
This section outlines the approaches taken for the development of each of the tasks 

that make up the methodology followed. 

3.1. Generation of Stationary Series 
As indicated, to evaluate the trend identification capability of the different ML meth-

ods analysed, it is necessary to have series where the trend is known. To achieve this, the 
approach is to create stationary series to which the irreversible term of the predefined 
trend is added, thus creating time series with known trends. 

Two types of synthetic stationary series were proposed: 
• Pure synthetic stationary series: stationary oscillatory series with constant frequency. 
• Behaviour-based stationary series: series based on real behaviours of stationary dams. 

3.1.1. Pure Synthetic Stationary Series 
To create a stationary oscillatory synthetic series, hereafter referred to as a pure syn-

thetic series, a dataset of n real data points was taken from monitoring the radial move-
ment of a direct pendulum in an arch dam. For this movement, a multiple linear regression 
model of the type HTT was trained, producing the coefficients of the corresponding pol-
ynomial. 𝑧 = 𝑎 + 𝑎 ℎ + 𝑎 ℎ + 𝑎 ℎ + 𝑎 ℎ + 𝑎 ℎ + 𝑎 𝑇 , + 𝑎 𝑇 _ , + 𝑎 𝑇 _ , + 𝑎 𝑇 _ ,+ 𝑎 𝑇 _ , + 𝑎 𝑇 + 𝑎 𝑒  𝑖 ∈ 1: 𝑛  

where 𝑧  is the radial movement of the pendulum at register i; 

Figure 1. Proposed methodology scheme.



Water 2024, 16, 1239 5 of 25

3. Methodology

This section outlines the approaches taken for the development of each of the tasks
that make up the methodology followed.

3.1. Generation of Stationary Series

As indicated, to evaluate the trend identification capability of the different ML methods
analysed, it is necessary to have series where the trend is known. To achieve this, the
approach is to create stationary series to which the irreversible term of the predefined trend
is added, thus creating time series with known trends.

Two types of synthetic stationary series were proposed:

• Pure synthetic stationary series: stationary oscillatory series with constant frequency.
• Behaviour-based stationary series: series based on real behaviours of stationary dams.

3.1.1. Pure Synthetic Stationary Series

To create a stationary oscillatory synthetic series, hereafter referred to as a pure syn-
thetic series, a dataset of n real data points was taken from monitoring the radial movement
of a direct pendulum in an arch dam. For this movement, a multiple linear regression model
of the type HTT was trained, producing the coefficients of the corresponding polynomial.

zi = a0 + a1hi + a2h2
i + a3h3

i + a4h4
i + a5h5

i + a6Tair,i + a7Tair_mm15, i + a8Tair_mm30, i + a9Tair_mm60, i
+a10Tair_mm90, i + a11Ti + a12eTi i ∈ [1 : n]

where
zi is the radial movement of the pendulum at register i;
ak is the coefficient of term k in the polynomial;
hi is the water level at register i;
Tair, i is the air temperature at register i;
Tair_mmdd, i is the moving average of the last dd registers of the air temperature at

register i;
Ti is the temporal index of register i.
Two sinusoidal oscillatory series

(
xj

i

)
, j ∈ [1, 2], i ∈ [1 : n] were generated within

the ranges covered by the water level (j = 1) and temperature (j = 2) variables of the dam
dataset (y j

i

)
using the following expression:

xi,j = sin
2πTi
365

(
ymax,j − ymin,j

)
+ ymed,j

Using these series, a synthetic stationary oscillatory series was constructed employing
the same regression polynomial trained on the monitoring data:

∼
z i = a0 + a1xi,1 + a2x2

i,1 + a3x3
i,1 + a4x4

i,1 + a5x5
i,1 + a6xi,2 + a7xi,2_mm15 + a8xi,2_mm30 + a9xi,2_mm60

+a10xi,2_mm90 + a11Ti + a12eTi i ∈ [1 : n]

where
∼
z i is the synthetic oscillatory variable at register i;
xi,2_mmdd is the moving average at register i of xi,2 over the last dd registers.
The pure synthetic stationary series obtained show the data Statistics and appearance

as shown in Table 1 and Figure 2 below:

Table 1. Data Statistics of the pure synthetic stationary series

Min. 1st Qu. Median Mean 3rd Qu. Max. SD

−17.641 −7.288 −3.528 −0.940 −0.242 32.006 12.486
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3.1.2. Behaviour-Based Stationary Series

The behaviour of monitored variables in dams, while exhibiting seasonal components
and oscillatory characteristics, deviates from pure synthetic stationary series as it responds
to a much more complex system. Therefore, the development of synthetic series that, while
stationary, captures this behaviour is proposed in order to assess the ability of ML models
to identify trends.

To obtain this kind of series, we started with the HTT model trained on a data set of n
real data points from the radial movement of a direct pendulum in an arch dam, using the
same expression as used to create the pure synthetic series.

This HTT model incorporates two time-dependent terms . . . + a11Ti + a12eTi . . .. By
setting the calibrated polynomial coefficients a11 and a12 to zero, the series of predicted
movement without considering the temporal effect will be obtained.

The behaviour-based stationary series obtained show the data Statistics and appear-
ance as shown in Table 2 and Figure 3 below:

Table 2. Data Statistics of the behaviour-based stationary series

Min. 1st Qu. Median Mean 3rd Qu. Max. SD

−8.829 −6.527 −4.848 −4.864 −3.489 0.549 2.030
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3.2. Generation of Trend Series

With the aim of evaluating the generality of the methodology, the use of different trend
laws was proposed: linear, exponential, sigmoidal, and expansive reaction in concrete.
These types of law are the most common in the movements recorded in dams. Depending
on the process that governs these drifts and their degree of development, different types of
trends can be encountered.

Geotechnical instability of the foundation can lead to linear creep phenomena over
very long periods of time or to faster collapse phenomena in which the deformation rate
increases exponentially over time. Other processes, such as expansive reactions in concrete,
exhibit a slow onset in their development, which increases until a maximum expansion
rate is reached and then gradually decreases until they practically stop. Thus, they respond
to sigmoidal functions. Depending on the start point of the dam movement records, the
data period, and the reactivity of the process, observations will generally cover a portion of
these functions. Two sigmoidal formulations are used: a generic formulation in which the
complete form of the function is developed, and another, proposed by Araujo (2005) [32]
for the characterisation of residual movements observed on the crest of dams affected by
internal reactions, which is introduced only for decreasing slope ranges.

Consequently, the corresponding series of n records was constructed according to the
following formulations:

• Linear Trend: tl,i = m·Ti + kl , where Ti is the time variable, m is the slope of the line,
and kl is the y-intercept.

• Exponential Trend: te,i = d·pTi + ke, where Ti is the time variable, d is the amplification
parameter, p is the parameter associated with the growth rate of the trend, and ke is
the y-intercept.
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• Sigmoidal Trend: ts,i = q·
[

1

1+e
− Ti−k1

k2

]
− ks, where Ti is the time variable, q is the

parameter controlling the total increment in the y-axis, k1 is the parameter defining the
time position of the inflection point of the function, k2 is the parameter defining the
slope at the inflection point, and ks is the y-intercept at time zero.

• Expansive Reaction Trend: tr,i = ka + B
[

1− e−(
Ti
C )

p]
, where Ti is the time variable,

ka is the value of the y-intercept, B is the value of the y-intercept corresponding to
the maximum increment, C is the time of the inflection point, and p is the parameter
influencing the shape of the curve.

3.3. Generation of Experiments

Using the defined stationary series and trends, a battery of experiments is generated
by their combination to evaluate the ability of ML models to identify trends in the series.

Thus, the experiments are divided into two main groups to be developed in Phase I and
Phase II, based on the pure synthetic series and the stationary behaviour series, respectively.

Each type of base series is combined with the different trends, resulting in four series
in each phase, to which the base series without trend of each type is added. In total, five
series compose each of the two phases.

3.4. Development of Prediction Models

For each series, four types of prediction model are trained: SVM, BRT, NN, and HTT,
resulting in a total of 20 experiments per phase, 40 experiments in total.

To avoid overfitting of the models during calibration, the cross-validation (CV) method
was used. With this method, the training data set is divided into a series of n folds and
n models are trained, each using one of the folds for training and the remaining fold
for validation.

The division of the folds can be performed randomly or by sequential blocks. In this
case, the latter strategy was employed, which is more suitable for modelling the behaviour
of dams because, in time series where various regressors are involved, random division
may provide the model with information from neighbouring records that could influence
its interpretation.

Thus, in this research, one fold was taken for each year of data in the series.
To select the hyperparameters of each model, a brute-force algorithm or a grid search

was employed.
The hyperparameters tuned by grid-search in each ML model were the following:

• SVM;

# sigma ∈ 0.001, 0.01, 0.1, 0.5, 1.
# cost ∈ 1, 20, 50, 100, 200, 500, 1000.

• BRT;

# interaction depth ∈ 2, 3, 4, 5, 6, 7, 8.
# N_trees ∈ 500, 1000, 2000, 5000.
# Shrinkage ∈ 0.01, 0.001.
# Nmin obs in node ∈ 5, 10, 15.

• NN;

# Size ∈ [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].
# Decay ∈ [0.1, 0.2, 0.3, 0.4, 0.5].

The parameters of the terms used for the HTT model were tuned by least squares.

3.5. Extraction of ML Trends

The hypothesis is that the ICE curve with “time” as the mobile explanatory variable,
or the SHAP values corresponding to this variable, provides the part of the behaviour
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captured in the target variable that cannot be explained through the remaining explanatory
variables, namely, the part that depends solely on time, the trend.

The determination of the trend based on the ICE curves relative to time in the different
models is carried out following the following process.

• For each record in the dataset, the target variable is predicted with the trained models,
while keeping all explanatory variables constant, except for the time variable, which
varies throughout its domain in the data set. This provides a set of as many curves as
there are records in the dataset, reflecting the variation of the model’s response when
only the time variable changes, while keeping the values of the remaining variables
fixed for each record.

• For each value of the time variable in the dataset, the average value of the values
obtained for that instant in the set of ICE curves is obtained.

• The hypothetical trend curve is defined by these averaged values.

In this study, there are strong correlations between explanatory variables, since inte-
grations of level or temperature are used over different time periods. However, the time
variable does not show this strong correlation with any of them, and the combinations of
values of strongly correlated variables are not altered in the process, making the method of
ICE curves applicable. In any case, any doubts are dispelled by observing the procedure’s
capability obtained from the test campaign conducted, beyond any theoretical discussion.

SHAP values corresponding to the variable ‘time’ are obtained following this process:

• For each instance in the dataset, SHAP values are calculated by performing the follow-
ing actions:

# Evaluating the prediction of the model when the ‘time’ variable is included
(active) and when it is excluded (inactive).

# Compare these predictions to determine the impact of the feature.
# Considering all possible combinations of features to ensure fair attribution.

• The SHAP values for the variable ‘time’ represent the average marginal contribution
of this feature across all possible combinations of features.

Trends are determined by both methods on a sample of three experiments in each
phase. The RMSE, MAE, and R2 values of the trends obtained are compared with the real
ones, and the method that provides the best result is selected.

The trends for the remaining experiments in each phase are determined using the
selected method.

3.6. Adjustment of ML Trend Laws

The trends obtained with each model will be different from each other and will
respond to the nature of each model’s algorithm and the relationships found between the
explanatory variables and the target variable. While SVMs, by adjusting hyperplanes, or
the employed neural networks (perceptron) provide smoother curves, BRT, being based on
decision trees, provides stepped lines.

Adjusting these trend lines to the expected, or more common, trends in dam behaviour
described in Section 3.2 is carried out with the following coefficients as the variables to
be adjusted:

Linear Trend: tl,i = m·Ti + kl Coef.: m, kl
Exponential Trend: te,i = d·pTi + ke Coef.: d, p, ke

Sigmoidal Trend: ts,i = q·
[

1

1+e
− Ti−k1

k2

]
− ks Coef.: q, k1, k2, ks

Expansive Reaction Trend: tr,i = ka + B
[

1− e−(
Ti
C )

p]
Coef.: B, p, C, ka

Adjustment of the trend lines to these laws is carried out using the Grey Wolf Optimiser
(GWO) algorithm [33]. For each trend extracted from the ML models, the four laws are
fitted, and the RMSE, MAE, and R2 of each fit are measured. The trend with the lowest
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errors and better performance is selected as the most plausible. The correctness of the trend
selection is analysed.

3.7. Determining Error in Real Trends

Once the type of law that best fits each trend line extracted from the different ML
models is selected, they are compared with the real trends introduced in the base series,
measuring RMSE, MAE, and R2.

RMSE =

√√√√ n

∑
i=1

(ŷi − yi)
2

n

MAE =
1
n∑n

i=1|ŷi − yi|2

R2 = 1− ∑n
i=1(ŷi − yi)

2

∑n
i=1(y− yi)

2

where ŷi represents the predicted values, y represents the mean of the actual values, yi
represents the ith actual value, and n is the number of records in the sample.

4. Results and Discussion

In this section, the results obtained from the application of the methodology described
to the series comprising the experiments of Phase I and Phase II are presented.

4.1. Phase I Study on Pure Synthetic Series

In Figure 4, the base of the pure synthetic series of the experiments in this phase can
be observed, generated from the criteria outlined in Section 3.1.1., and the series obtained
by adding them to the trends generated from the expressions described in Section 3.2. In
each graph, both the resulting series and the trend employed can be observed.
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Figure 4. Pure synthetic series and Applied Trends. The pure synthetic series corresponding to the
different experiments in Phase I can be observed in grey. Each of these series is the sum of the pure
synthetic series for the “Without Trend” case and the introduced trend, which is plotted in black for
each case.

In each of these series, the four types of predictive models indicated in Section 3.4 are
trained. In this way, a total of 20 models are generated, the results of which are presented
graphically in Figure 5, along with a summary of the errors committed by each model in
Table 3.
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Table 3. RMSE, MAE, and R2 calculated for each of the ML and HTT models trained on the different
experiments of Phase I. The best ML model for each type of trend is highlighted in bold.

Without Trend Linear Trend Exponential Trend Sigmoidal Trend AAR Trend
RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

SVM 0.824 0.712 0.996 1.057 0.932 0.996 1.746 1.155 0.987 1.179 0.953 0.996 1.133 0.881 0.995
BRT 0.001 0.000 1.000 1.982 1.675 0.993 3.005 1.603 0.963 1.967 1.455 0.989 2.405 1.612 0.983
NET 0.154 0.111 1.000 0.807 0.623 0.998 1.691 0.944 0.988 0.652 0.492 0.999 0.984 0.671 0.996
HTT 0.000 0.000 1.000 0.000 0.000 1.000 5.957 4.402 0.831 3.231 2.894 0.966 3.404 2.932 0.947

The trends obtained using ICE curves and SHAP values on a sample of three exper-
iments in this phase are shown in Figure 6 alongside the corresponding real trend for
each experiment.

Table 4 below presents the RMSE, MAE, and R2 values obtained by each of the methods,
highlighting in bold the best result in each case. ICE curves provide better results while
requiring substantially less computational effort and, therefore, will be used to identify the
trend in experiments of this phase.

Table 4. RMSE, MAE, and R2 of the trends obtained using the ICE curves and SHAP values in Phase
I with respect to the real trend artificially introduced in the data series. It can be observed that the
results provided by the ICE curves improve in almost all cases compared to those obtained with the
SHAP values. The best performance indexes are highlighted in bold.

Type Trend Type Model
Type

ICE SHAP
RMSE MAE R2 RMSE MAE R2

P AA BRT 1.231 0.855 0.991 1.567 1.460 0.996
P EX NET 0.424 0.265 0.998 1.348 1.024 0.972
P SG SVM 1.124 0.922 0.997 2.499 2.036 0.986



Water 2024, 16, 1239 13 of 25

Water 2024, 16, x FOR PEER REVIEW 13 of 26 
 

 

Table 3. RMSE, MAE, and R2 calculated for each of the ML and HTT models trained on the different 
experiments of Phase I. The best ML model for each type of trend is highlighted in bold.  

  Without Trend Linear Trend Exponential Trend Sigmoidal Trend AAR Trend 
  RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 

SVM 0.824 0.712 0.996 1.057 0.932 0.996 1.746 1.155 0.987 1.179 0.953 0.996 1.133 0.881 0.995 
BRT 0.001 0.000 1.000 1.982 1.675 0.993 3.005 1.603 0.963 1.967 1.455 0.989 2.405 1.612 0.983 
NET 0.154 0.111 1.000 0.807 0.623 0.998 1.691 0.944 0.988 0.652 0.492 0.999 0.984 0.671 0.996 
HTT 0.000 0.000 1.000 0.000 0.000 1.000 5.957 4.402 0.831 3.231 2.894 0.966 3.404 2.932 0.947 

The trends obtained using ICE curves and SHAP values on a sample of three experi-
ments in this phase are shown in Figure 6 alongside the corresponding real trend for each 
experiment. 

 
Figure 6. Conditional expectation relative to time variable, or trends, obtained using ICE curves and 
SHAP values in a sample of three experiments of Phase I. Lower local variability and better fit to 
real trend can be observed in the trends obtained with ICE curves. 

Table 4 below presents the RMSE, MAE, and R2 values obtained by each of the meth-
ods, highlighting in bold the best result in each case. ICE curves provide better results 
while requiring substantially less computational effort and, therefore, will be used to iden-
tify the trend in experiments of this phase. 

Figure 6. Conditional expectation relative to time variable, or trends, obtained using ICE curves and
SHAP values in a sample of three experiments of Phase I. Lower local variability and better fit to real
trend can be observed in the trends obtained with ICE curves.

Using the ICE curves as the best option, the temporal dependency lines of all the
experiments in this phase are obtained, as shown in Figure 7, along with the trend line used
for each set of models.

The lines of temporal dependence are obtained as the average of the ICE curves of
each model, and therefore, the initial value of these curves will generally be different from
zero. Considering that, in a behaviour affected by a trend, the irreversible increments that
can be observed are relative to the value of the moment when the series begins, the initial
value of this trend can be taken as null. For this reason, the initial value of each model’s
lines of temporal dependence is subtracted from them so that they start at zero.

On each of these lines of temporal dependence, the adjustment is made to the types of
function established according to the methodology described in Section 3.6, and the error of
each adjustment is measured with its line of temporal dependence. The one with the lowest
RMSE is selected as the best approximation. The table compares the selected fitting laws
with the laws actually introduced in each case. In Figure 8, the adjusted laws of temporal
dependence with the lowest error are shown for each type of ML model, along with the
trend introduced in each case. Table 5 shows the errors made by each fit with respect to the
introduced trend.
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each case is highlighted in thicker red lines.



Water 2024, 16, 1239 15 of 25

Table 5. RMSE, MAE, and R2 of the fits to the different types of functions representing potentially
expected irreversible behaviour patterns in dam data, according to engineering criteria, of the lines
of conditional expectation relative to the time variable determined by each ML and HTT model
trained in each of the experiments corresponding to Phase I. The best fit of each model type has been
highlighted in bold, and the fit with the lowest error and model has been underlined in grey.

Without Trend

Model
Linear Adjustment Exponential Adjustment Sigmoidal Adjustment AAR Adjustment

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

SVM 0.331 0.331 0.332 0.332 0.342 0.332 0.346 0.335
BRT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
NET 0.055 0.051 0.049 0.044 0.054 0.051 0.053 0.049
HTT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Linear Trend

Model
Linear Adjustment Exponential Adjustment Sigmoidal Adjustment AAR Adjustment

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

SVM 0.277 0.268 1.000 0.269 0.259 1.000 0.281 0.271 1.000 0.279 0.254 1.000
BRT 0.714 0.714 1.000 0.713 0.712 1.000 0.710 0.710 1.000 0.736 0.721 1.000
NET 1.696 1.670 1.000 1.609 1.581 1.000 9.626 8.304 1.925 1.838 0.997
HTT 0.000 0.000 1.000 0.157 0.131 1.000 0.019 0.016 1.000 0.098 0.082 1.000

Exponential Trend

Model
Linear Adjustment Exponential Adjustment Sigmoidal Adjustment AAR Adjustment

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

SVM 5.488 3.169 0.684 0.458 0.317 1.000 0.696 0.496 0.995 0.711 0.529 0.995
BRT 5.809 3.201 0.684 0.764 0.490 1.000 0.930 0.597 1.000 0.955 0.613 0.997
NET 5.046 3.143 0.684 4.859 3.153 0.687 0.410 0.226 0.998 0.587 0.401 0.994
HTT 4.981 3.407 0.709 4.890 3.333 0.723 4.970 3.398 0.710 5.002 3.426 0.706

Sigmoidal Trend

Model
Linear Adjustment Exponential Adjustment Sigmoidal Adjustment AAR Adjustment

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

SVM 3.092 2.593 0.951 3.052 2.575 0.952 1.125 0.958 0.997 1.133 0.973 0.997
BRT 2.857 2.524 0.951 2.852 2.497 0.951 0.454 0.356 0.999 0.811 0.590 0.998
NET 2.945 2.590 0.951 2.910 2.559 0.952 1.713 1.444 0.990 1.687 1.368 0.990
HTT 3.151 2.611 0.957 3.159 2.605 0.956 3.150 2.614 0.957 3.044 2.511 0.962

AAR Trend

Model
Linear Adjustment Exponential Adjustment Sigmoidal Adjustment AAR Adjustment

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

SVM 3.237 2.710 0.862 3.343 2.718 0.858 1.164 1.143 1.000 1.189 1.143 0.999
BRT 3.238 2.681 0.862 3.273 2.713 0.858 0.856 0.735 1.000 0.760 0.674 0.999
NET 3.299 2.517 0.862 3.483 2.555 0.856 0.172 0.123 1.000 0.160 0.118 1.000
HTT 4.224 3.341 0.876 4.326 3.359 0.863 4.221 3.341 0.876 4.203 3.330 0.878

4.2. Phase II—Study on Series of Real Complexity

In this second phase, the methodology used for Phase I is replicated but applied to the
stationary behaviour series described in Section 3.1.2. In this case, the series resulting from
the addition of the different trends to the base series can be observed in Figure 9 below.

The results of the prediction models developed in these series provide the results
shown in Figure 10 and Table 6.
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Figure 9. Behaviour-based stationary series and Applied Trends. The behaviour-based stationary
series corresponding to the different experiments in Phase II can be observed in grey. Each of these
series is the sum of the pure synthetic series for the “Without Trend” case and the introduced trend,
which is plotted in black for each case.

Table 6. RMSE, MAE, and R2 calculated for each of the ML and HTT models trained on the different
experiments of Phase II. The best ML model for each type of trend is highlighted in bold.

Without Trend Linear Trend Exponential Trend Sigmoidal Trend AAR Trend
RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

SVM 0.142 0.124 0.995 0.194 0.168 0.996 0.263 0.210 0.991 0.468 0.387 0.981 0.291 0.224 0.989
BRT 0.142 0.108 0.995 0.329 0.257 0.990 0.372 0.264 0.985 0.346 0.249 0.990 0.295 0.210 0.989
NET 0.104 0.077 0.997 0.132 0.093 0.998 0.267 0.179 0.991 0.251 0.182 0.995 0.234 0.164 0.993
HTT 0.000 0.000 1.000 0.000 0.000 1.000 0.737 0.600 0.929 1.201 1.097 0.875 0.802 0.659 0.914
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Figure 10. Predictions obtained with the different models trained in each Phase II experiment. Poorer
performance of the HTT models can be observed in cases of non-linear trends.
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The trends obtained using ICE curves and SHAP values on a sample of three experi-
ments in this phase are shown in Figure 11 alongside the corresponding real trend for each
experiment.
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Figure 11. Conditional expectation relative to time variable, or trends, obtained using ICE curves
and SHAP values in a sample of three experiments of Phase II. Lower local variability and better fit
to the real trend can be observed in the trends obtained with the ICE curves.

Table 7 below presents the RMSE, MAE, and R2 values obtained by each of the methods,
highlighting in bold the best result in each case. ICE curves provide better results while
requiring substantially less computational effort and, therefore, will be used to identify the
trend in experiments of this phase.

Table 7. RMSE, MAE, and R2 of the trends obtained using the ICE curves and SHAP values in Phase
II with respect to the real trend artificially introduced in the data series. A generally better outcome of
ICE curves can be observed compared to SHAP values. The best performance indexes are highlighted
in bold.

Type Trend Type Model
Type

ICE SHAP
RMSE MAE R2 RMSE MAE R2

M LI NET 0.050 0.039 1.000 0.110 0.104 0.999
M SG BRT 0.154 0.102 0.995 0.125 0.085 0.997
M AA SVM 0.594 0.550 0.975 0.818 0.794 0.976
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From the trained models and following the method described in Section 3.5 for the ICE
curves, the temporal dependence curves are obtained, which can be observed in Figure 12.
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Figure 12. Real trends and lines of conditional expectation with respect to the time variable obtained
in each of the ML and HTT models trained for each experiment in Phase II.

The best fits of the different temporal dependence curves to the real trends are shown
graphically in Figure 13, and the errors committed are listed in Table 8.
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Figure 13. Real trends and best fits to typical irreversible behaviour functions of dams for each type
of ML and HTT model trained for each of the experiments in Phase II. The best fit to the real trend of
each case is highlighted in thicker red lines.

Table 8. RMSE, MAE, and R2 of the fits to the different types of functions representing potentially
expected irreversible behaviour patterns in dam data, according to engineering criteria, of the lines
of conditional expectation relative to the time variable determined by each ML and HTT model
trained in each of the experiments corresponding to Phase II. The best fit of each model type has been
highlighted in bold, and the fit with the lowest error and model has been underlined in grey.

Without Trend

Model
Linear Adjustment Exponential Adjustment Sigmoidal Adjustment AAR Adjustment

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

SVM 0.084 0.080 0.084 0.078 0.085 0.078 0.084 0.078
BRT 0.007 0.006 0.002 0.002 0.007 0.006 0.008 0.007
NET 0.034 0.030 0.034 0.030 0.034 0.030 0.034 0.030
HTT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Table 8. Cont.

Linear Trend

Model
Linear Adjustment Exponential Adjustment Sigmoidal Adjustment AAR Adjustment

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

SVM 0.069 0.068 1.000 0.097 0.089 1.000 0.069 0.068 1.000 0.116 0.100 0.999
BRT 0.045 0.038 1.000 0.050 0.043 1.000 0.045 0.038 1.000 0.250 0.217 0.984
NET 0.040 0.033 1.000 0.039 0.027 1.000 0.040 0.033 1.000 0.049 0.043 1.000
HTT 0.000 0.000 1.000 0.037 0.030 0.999 0.004 0.003 1.000 0.003 0.002 1.000

Exponential Trend

Model
Linear Adjustment Exponential Adjustment Sigmoidal Adjustment AAR Adjustment

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

SVM 0.785 0.582 0.810 0.383 0.337 0.987 0.398 0.361 0.990 0.387 0.337 0.986
BRT 0.641 0.492 0.810 0.356 0.303 0.982 0.356 0.303 0.982 0.389 0.314 0.978
NET 0.609 0.479 0.810 0.608 0.479 0.810 0.141 0.119 0.996 0.157 0.130 0.995
HTT 1.157 1.036 0.810 1.147 1.036 0.830 1.157 1.036 0.810 1.158 1.036 0.810

Sigmoidal Trend

Model
Linear Adjustment Exponential Adjustment Sigmoidal Adjustment AAR Adjustment

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

SVM 1.149 1.006 0.762 1.153 1.009 0.760 1.150 1.006 0.762 0.623 0.571 0.986
BRT 1.085 0.917 0.762 1.088 0.919 0.762 0.535 0.396 0.935 0.051 0.039 1.000
NET 1.065 0.913 0.762 1.078 0.928 0.756 0.631 0.484 0.914 0.170 0.142 0.999
HTT 1.309 1.030 0.762 1.310 1.031 0.762 1.312 1.035 0.759 1.307 1.027 0.764

AAR Trend

Model
Linear Adjustment Exponential Adjustment Sigmoidal Adjustment AAR Adjustment

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

SVM 0.848 0.715 0.681 0.850 0.717 0.681 0.848 0.715 0.681 0.570 0.533 0.978
BRT 0.818 0.646 0.681 0.825 0.651 0.672 0.818 0.646 0.681 0.374 0.354 0.997
NET 0.825 0.617 0.681 0.825 0.617 0.679 1.310 0.894 0.000 0.370 0.362 0.998
HTT 2.823 2.729 0.681 2.822 2.728 0.681 2.823 2.728 0.678 2.823 2.729 0.681

4.3. Discussion of the Results
4.3.1. Regarding the Representativeness of Conditional Expectation Compared to the Trend

The first specific objective of this study was to verify whether the conditional expecta-
tion relative to the time variable that can be extracted from the interpretation methods of
ML models, considered black-box models, such as ICE curves or SHAP values, were repre-
sentative of the existing trends in dam monitoring data series derived from the irreversible
evolution phenomena of their behaviour.

Experiments conducted on pure synthetic series and series based on the real behaviour
of radial movements of a pendulum in a dam reveal that the partial dependencies of the
response of ML models with respect to the time variable found using both ICE curves and
SHAP values do indeed have a close relationship with the real trends artificially introduced
in both phases of the study.

The results obtained show how conditional expectation curves follow a behaviour
similar to real trends. From a quantitative perspective, it is observed that the part of the ML
model response attributed to the time variable using the interpretation methods employed
significantly aligns with the real values. This demonstrates that it is possible to consider
these conditional expectations as a representative reference of the real trend that may be
integrated into dam behaviour series.

From the comparative study conducted on a sample of three experiments from each
phase on the results obtained following the methodology of ICE curves and SHAP values,
it is evident that better results are obtained when the former is used. While the morphology
and general amplitude of the temporal dependencies found by both methods follow the
real trends introduced, the SHAP values present greater local variability and poorer fit than
the ICE curves.

An important factor in the results obtained is that there is no strong correlation
between the time variable and the rest of the causal variables. In cases where this occurs,
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the procedure followed by the ICE curves results in the calculation of the model response for
combinations of causal variables that cannot occur in reality, which can significantly affect
the result. Therefore, extrapolating the validity of the result obtained with the time variable
using this method to other explanatory variables and considering that the conditional
expectation associated with a strongly correlated variable is a good representation of the
dam’s response to that variable may not be valid.

4.3.2. On the Engineering Significance of the Temporal Dependencies Found

The second specific objective was to evaluate whether the conditional expectations
obtained respond to the irreversible behaviour characteristics of dams, equivalent to those
used to generate trends artificially. In this regard, it is observed that although the ranges and
general shapes of the conditional dependencies identified respond to the introduced trends,
substantial differences are observed from the dam engineering perspective, necessitating a
review of the extracted conditional dependencies for engineering interpretation.

The conditional expectations found in BRT models provide a staggered pattern derived
from their own nature based on decision trees. These shapes might suggest an irreversible
behaviour of the dam subject to strong punctual increases in movements, which, given that
the solution to the problem is known in this study, is not correct.

On the other hand, SVM provides opposite slopes at the ends of the behaviour predic-
tion series compared to the real ones.

Neural networks also show a divergence from the real trends, especially at their
final ends.

These behaviours observed in ML behaviour models are particularly evident when
there is no trend. In these cases, studying the expected future evolution of the trend would
result in significant errors if the result were extrapolated beyond the data cutoff date. In
the case of SVM or neural network models, differences in slopes would lead to increasing
errors over time or even changes in the trend direction. In the case of BRT models, the
results of the conditional expectation for values of the time variable outside the data range
would remain constant at their last value.

Given this disparity of results compared to what is expected from an engineering per-
spective, it becomes necessary to adjust the conditional expectations found to mathematical
functions that meet engineering criteria.

It is observed that, once the conditional expectations are adjusted to the shape func-
tions, these problems are logically resolved, resulting in the final trends thus defined being
highly representative of the real trends introduced, making them useful for assessing the
existing trend.

However, it should be noted that for cases without trends, ML models tend to identify
a linear trend, albeit generally with a reduced slope.

The ML models that provide better approximations to real trends, outside of cases
without trends or with linear trends, are BRT and neural networks. Although the overall
accuracy of SVM models is not much worse than that of the others, it is penalised by the
interpretations it makes at the ends of the prediction series.

In general, the type of formula that best fits is the same as that that defines the trend.
However, in the case of exponential trends, both in Phase I and in Phase II, sigmoidal-type
trend formulas best fit. For the conditional expectations found by the SVM and BRT models,
however, the best fit is achieved using the exponential function in both cases.

In the case of sigmoidal trends, in phase II, the best fit was achieved with an AAR-type
function. Note that both formulations respond to a sigmoidal-type function.

4.3.3. On the Comparison of Results Obtained with the Most Common Statistical Methods
in Dam Safety

It is observed that, for cases without trends or with linear trends, it is the HTT-type
multiple linear regression model that provides a perfect fit both in prediction and trend.
This is because the carrier series of the two phases were created from HTT models with
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the same term structure. Since the form imposed on the response model incorporates the
specific terms of a linear trend, it is logical that in these two cases, the fit is perfect.

In these cases, ML models, although logically worse than HTT, provide a fairly similar
overall fit of the trend, with little impact on the study period, but with types of fit formulas,
sometimes, different from the real ones.

However, when the introduced trend deviates from a straight line, we see how the
restrictions imposed by the polynomial structure on HTT have a greater impact on trend
identification. It is observed that in these cases, HTT models assign almost straight align-
ments to the temporal part of the behaviour, deviating significantly from the real trend
in these cases. The trends obtained from the ML models clearly fit more closely to the
real trends, thus showing significantly greater utility for detecting and defining trends in
dam behaviour.

4.3.4. Limitations of Methodology and Future Research Lines

In both phases of the study, trained ML models provide good predictions, as reflected
in the errors and R2 obtained. This provides an indication of how well the regressors em-
ployed are able to explain the modelled behaviour. In real cases, sometimes, the information
necessary for explaining the modelled behaviours is not complete or sufficiently precise,
resulting in vaguer behaviour models. The conditional expectation extracted from these
models may then be influenced and lose representativeness. Therefore, further research is
needed to study the impact of the quality of ML models on trend identification.

5. Conclusions

Through this study, it was demonstrated how the conditional expectation relative to
the time variable extracted from ML models that predict dam behavior responds to the
existing trend.

It has been verified that it is possible to define the trend in the series consistent with
the knowledge of dam engineering by adjusting the conditional expectations extracted
from the models to mathematical functions corresponding to different types of known
irreversible phenomena in dams.

The greater versatility and detection capability of this method were evidenced com-
pared to common practices used in dam safety.

Therefore, the proposed methodology provides a useful tool for dam safety experts
in identifying, defining, and studying the irreversible phenomena to which a dam can be
subjected, which is fundamental to its safety.
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Nomenclature

AAR Aggregate Alkali Reaction
AI Artificial Intelligence
AAR Aggregate Alkali Reaction
ALE Accumulated Local Effects
ANN, NN, NET Neural Networks
BRT Boosted Regression Trees
CV Cross-Validation
DL Deep Learning
GWO Grey Wolf Optimiser
HTT Hydrostatic-Temperature-Time
ICE Individual Conditional Expectation
MAE Mean Absolute Error
ML Machine Learning
R2 Coefficient of Determination
RMSE Root-Mean-Square Error,
SVM Support Vector Machine
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