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Abstract: Population growth, industrialization, excessive energy consumption, and defor-
estation have led to climate change and affected water resources like dams intended for
public drinking water. Meteorological parameters could be used to understand these effects
better to anticipate the water quality of the dam. Artificial neural networks (ANNSs) are
favored in hydrology due to their accuracy and robustness. This study modeled climatic
effects on the water quality of Doganci dam using a feed-forward neural network with
one input, one hidden, and one output layer. Three models were tested using various
combinations of meteorological data as input and Doganci dam’s water quality data as
output. Model success was determined by the mean squared error and correlation co-
efficient (R) between the observed and predicted data. Resilient back-propagation and
Levenberg—Marquardt were tested for each model to find an appropriate training algo-
rithm. The model with the least error (1.12-1.68) and highest R value (0.93-0.99) used
three meteorological inputs (air temperature, global solar radiation, and solar intensity),
six water quality parameters of Doganci dam as output (water temperature, pH, dissolved
oXygen, manganese, arsenic, and iron concentrations), and ten hidden nodes. The two
training algorithms employed in this study did not differ statistically (p > 0.05). However,
the Levenberg-Marquardt training approach demonstrated a slight advantage over the
resilient back-propagation algorithm by achieving reduced error and higher correlation
in most of the models tested in this study. Also, better convergence and faster training
with a lesser gradient value were noted for the LM algorithm. It was concluded that
ANNSs could predict a dam’s water quality using meteorological data, making it a useful
tool for climatological water quality management and contributing to sustainable water
resource planning.

Keywords: artificial neural networks; climate change; Doganci dam; training algorithms;
water quality

1. Introduction

Water quality has a crucial role in an aquatic system. The quality of the water depicts
the extent of water pollution. Likewise, the water quality of surface waters and dams
or reservoirs is of paramount importance because humans rely on them to fulfill their
daily requirements. In some areas, dam water is rapidly polluted due to the contaminants
and sediments from the flooded river water. Additionally, climate change could cause
eutrophication, resulting in algal blooms [1].
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An increase in the air temperature due to global warming is also altering the tem-
perature of water bodies, which is one of the main parameters that affect the growth and
development of aquatic organisms and the chemical processes occurring within the water
bodies [2]. The heating and cooling process of water bodies is highly affected by meteoro-
logical parameters, i.e., solar radiation, air temperature, and wind speed [3]. Under these
circumstances, predicting water quality would become crucial for ecosystem sustainability,
environmental monitoring, and human sustenance.

Artificial neural network modeling could provide a meaningful understanding of wa-
ter quality and meteorological parameters [4]. Based on the supplied data, ANNs can make
predictions about the changing trend of water quality at a specific point in the future [5].
Due to the complexity, traditional methods such as linear, dynamic, or stochastic program-
ming are not preferable for predictions, as these are not efficient enough to handle extensive
data [6]. Some previously established water quality prediction models, such as multiple
linear regression (MLP) or auto-regressive integrated moving average (ARIMA) models,
have been studied [7,8]. However, MLP is limited in capturing non-linear relationships
because of its inherently linear structure [9], while ARIMA also has the drawback of not
being able to analyze non-linear time series for predictions. Such conventional methods
have been reported to be incompetent in dealing with multipurpose reservoirs [10]. Earlier
studies claimed that evolutionary techniques were far more capable than classical tech-
niques and could successfully handle large data with various objective functions [11]. In
addition, unlike conventional statistical methods, ANNSs require fewer prior assumptions
and attain greater precision [12]. Multiple studies conducted on water quality indicated
the superiority of ANNs’ predictive performance over regression models [7,13,14].

Researchers have used ANNSs to predict water quality in dams. ANNs were chosen
for the Monte Novo dam in Portugal to estimate oxidizability, measuring pH, conduc-
tivity, dissolved oxygen (DO), water temperature, and stored water volume [15]. ANNs
were also used to estimate DO concentration in Feitsui reservoir in Northern Taiwan [16].
In 2017, an ANN predicted the total dissolved solids (TDS) in the Karaj dam [17]. One
study determined water quality in Taiwan reservoirs using ANNSs, support vector ma-
chines, classification and regression trees, and linear regression. Data from 1995-2016
(1635 values) were collected for surface water temperature, biological oxygen demand
(BOD), total suspended solids (TSS), chemical oxygen demand (COD), and ammonia (NH3)
concentration and pre-processed as inputs to the modeling system. The pre-processing was
completed by removing the rows with incomplete data for accurate modeling. The com-
parison showed that the ANN model was more accurate than conventional hydrological
statistical methods [18].

ANN s are also considered when studying the effects of climate change on water
quality. After applying previous hydrological climate change scenarios to the Namgang
dam basin precipitation—runoff model, water quality (suspended solids, total nitrogen,
total phosphorus, dissolved oxygen, biological oxygen demand, and chlorophyll-a) under
climate change was estimated [19]. In 2015, an ANN estimated eutrophication for the
Yugiao reservoir in North China, the city’s potable water source. The reservoir was found
to be threatened by eutrophication due to the changing climate [20]. Eutrophication and
temperature at Dez dam in Iran in 2015 were evaluated using feed-forward ANNSs [21].
In 2017, a study applied the ANN tool to Adelaide, South Australia’s drinking-water
semi-arid Millbrook catchment-reservoir system. Modeling took into account precipita-
tion, maximum and minimum temperature, solar radiation, relative humidity, and wind
speed [22]. Considering meteorological factors, an advanced dynamic regression neural
network predicted total nitrogen and phosphorus in the Shi River reservoir for 2021 [23].
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ANNSs have been employed to study Turkey’s changing water quality in certain
dams and water bodies. Eutrophication in Kdycegiz lake was evaluated using the ANN
approach [24]. The chlorophyll-a concentration in Keban dam was also estimated using
alkalinity, pH, water temperature, electrical conductivity, and dissolved oxygen, phosphate,
and nitrate concentrations as inputs to neural networks [25].

In terms of climate change, the effect of meteorological factors (precipitation, evapo-
ration, relative humidity, temperature, and wind speed) on the water quality of Sapanca
lake in long-term water supply was determined [26]. For the Mamasin dam, rainfall
measurements with the dam’s temperature, total suspended solids, and total nitrogen
concentrations were used to find the electrical conductivity and dissolved oxygen using
the ANN model with feed-forward and back-propagation architecture [27]. The change
in meteorological data over a long period of time is directly linked to climate change, i.e.,
the rise in the air temperature over the past few years is a sign of global warming, or the
shift in global precipitation patterns gives an indication of an imbalance in hydrological
cycles [28-30]. As a result, it also alters the water quality of dams, rivers, lakes, etc. [31].
Therefore, meteorological parameters are effectively used in hydrological modeling to
capture climatic impacts.

As predicted by the Intergovernmental Panel on Climate Change (IPCC) Representa-
tive Concentration Pathway (RCP) 8.5 scenario, the temperature will increase by 2 °C in the
summer months between 2020 and 2050, compared to 1970 to 2000 in the Mediterranean
climate zone, including Turkey [32]. Therefore, forecasting the quality of drinking-water
resources, one being dams, is essential for livelihood.

Doganci dam is one of the primary water resources, along with the Nilufer dam, for
the population residing in Bursa, Turkey. Bursa’s drinking-water resources had decreased
due to a population increase of 2.3% and unplanned urbanization [33]. Also, it was
observed that Doganci dam’s water quality had declined, especially with the increased
heavy metal concentration [34]. In the 21st century, the temperature in Bursa also increased
by 0.5 °C compared to the last century. A study was conducted using the standardized
precipitation index (SYI) for Bursa in 2019, and it forecasted a drought that would continue
for a while [35]. ANNs also modeled the meteorological drought in Bursa in a study named
“Meteorological Drought Analysis Using ANN for Bursa Province” [36], which predicted
the chances of drought in the city.

Because the scenarios regarding climate change are based on changes in meteorological
parameters over a 30-year period [29], the current research focused on evaluating the
impact of climate change on the water quality of Doganci dam, utilizing artificial neural
networks and modeling with a unique combination of meteorological parameters. Notably,
this study is novel in the local context for using artificial neural networks to assess how
different climate indicators affect the dam’s water quality. The analysis included specific
meteorological parameters like snow depth and evapotranspiration, which had not been
used in similar research, adding a distinct and innovative perspective for understanding
climate impacts on water quality.

As climate change continues to impact water resources throughout the globe, under-
standing its impact on water quality is critical for ensuring the sustainability of drinking-
water supplies. This research addressed the broader international concern of water scarcity
and quality degradation due to increasing temperatures, shifting precipitation patterns,
and other climatic effects, which threaten water security globally.
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2. Materials and Methods
2.1. Study Area

Doganc1 dam (Figure 1), situated in Bursa, Turkey, serves as an essential water supply
for the city’s population [37]. Bursa, Turkey’s fourth most populous city, is uniquely
positioned between the Marmara and Aegean regions, resulting in a climate that varies
from Mediterranean in the northern parts to continental in the southern and inner areas.
Bursa is divided into different districts: Osmangazi, Yildrim, Nilufer, Gursu, and Kestel [38].
The dam itself, crucial for the city’s water needs, boasts a body fill volume of 2,520,000 m?
and a height of 65 m from the riverbed and provides about 125 hm? of potable water
annually [39]. This study focused on the dam within the context of Bursa’s diverse climatic
conditions, emphasizing the importance of assessing climate change impacts on such a
vital water resource.

J'Doganci Baraj) o \<
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Figure 1. Satellite view of Doganci dam (acquired from Google Maps on 10 January 2024).

2.2. Modeling Data

In this study, the acquisition of valid data was of significant importance. Bursa has 16
meteorological stations distributed in different districts across the city. Monthly data from
these 16 stations were collected from the Meteorological Department in Bursa, working
under the Ministry of Forestry and Water Affairs. Likewise, monthly water quality data for
Doganci dam were obtained from Bursa’s Water and Sewage Authority. The meteorological
and water quality data obtained were noted from 1990 to 2019 and consisted of monthly
average values for each parameter. The use of monthly data is common in water quality
modeling, incorporating meteorological data, and using ANNs [9,40-42], as it reduces the
short-time noise and enables faster training of the models while capturing long-term trends.

The original data were initially available in scattered hard copies and had a few
occasional missing records. Hence, the data points for all the parameters were transferred
to an Excel (Version 2501) worksheet. Data imputation and removal were performed based
on its trend to ensure data consistency. A minor number of values in the dataset appeared to
be unrealistic (possibly due to manual reporting), so these outliers were removed. Likewise,
the missing values, which were very minimal, were filled using near data points and
applying interpolation. This approach preserved the local trend of the dataset and the
overall integrity of the data used for modeling. Linear interpolation has been evaluated as
a suitable method for treating time-series data [43].
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Meteorological data consisted of monthly average values of certain parameters, i.e.,
vapor pressure (hPa), relative humidity (%), air temperature (°C), wind speed (m/s),
precipitation (mm), global solar radiation (kWh/ m?), solar intensity (cal/ cm?), evapotran-
spiration (mm), snow depth (cm), and evaporation (mm). The long-term meteorological
data considered over 30 years [22] serve as an indicator of climate change. These meteo-
rological parameters have been reported in the literature as inputs to model the climatic
effects on the water quality of a water body. The meteorological parameters that best indi-
cate climate change are air temperature, solar radiation and intensity, wind, and pressure,
which are indicators of the forces that create air movements. Apart from these, the meteoro-
logical parameters that can most clearly show the hydrological cycle are total precipitation,
snow depth, relative humidity, and total evaporation [22,44]. For the water quality of
Doganci dam, the parameters included monthly average values of pH, turbidity (NTU),
water temperature (°C), TSS (mg/L), DO (mg/L), alkalinity (mg/L), and concentrations
of certain trace elements such as iron (ug/L), manganese (ug/L), and arsenic (ug/L). The
statistical values for the acquired data are listed in Tables 1 and 2.

Table 1. Statistics of Bursa’s meteorological data from 1990 to 2019.

Range for the Overall Data

Parameters (Mean + Standard Deviation)

Monthly average vapor pressure (hPa) (1%'82_:%:245%3)
Monthly average relative humidity (%) (299 1191 f77§s63)

) . 1.00-27.64
Monthly average air temperature (°C) (14.89 + 7.22)
Monthly average wind speed (m/s) (109’27£30326)

N 0.00-26.70
Monthly average of total precipitation (mm) (1.94 + 1.99)
Monthly average of total daily global solar radiation (kWh/m?) (393;%5£7£89)

Monthly average of total daily solar intensity (cal/cm?) (32523. 41;) ;:64%5?%19)

Monthly average of total evapotranspiration (mm) (40 7049 ;:3%13%)
Monthly average of total snow depth (cm) ((? 909 ;:3%%)52)
Monthly average of total evaporation (mm) (51 1020 _il?&?{,%)

Table 2. Statistics of monthly average values from 1990 to 2019 for water quality parameters of
Doganci dam.

Range for the Overall Data

(Monthll}’,aﬁg}leittirrse d Data) (Me ]aj IL Viiastg 2 2 ? ard USEPA E}tg]ndards a WHO S[tzfg}dards b Turkish[487ti'andards
pH (87(5@4;80‘%253) 6.50-8.50 6.50-8.00 6.50-9.50
Turbidity (NTU) (ggg’f%%) 1.00 5.00 1.00
Water temperature (°C) (13'.%_:235219) - - -
Total suspended solids (mg/L) ( f 9080 f%?é%) - - -
Dissolved oxygen (mg/L) (5(.)(5?10£9£§3) } _ -
Alkalinity (mg/L) (fgéfz(’fg%ﬁ%) ; ) )
Iron (ug/L) ( o 88;1252%%) 300.00 300.00 200.00
Manganese (jig,/L) ( igggf%%%%) 50.00 100.00 50.00
Arsenic (ug/L) (5%080;61(_)80) 10.00 10.00 10.00

Note(s): #P USEPA stands for the United States Environmental Protection Agency, and WHO is the abbreviation
for the World Health Organization.
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2.3. Artificial Neural Networks (ANNs)

After accessing the data, the next stage involved modeling using ANNSs. The software
used was MATLAB (Version R2022a). Similar in principle to the biological nervous system
of humans, ANNSs are a collection of detailed integrated processing elements that handle
a parallel and distributed information system [48]. The operation of the ANN method
includes the processing of information or inputs in specific components known as neurons
or nodes and the transmission of signals between neurons via communicating links (these
links have a particular weight represented as connection density), and, usually, the use of
activation functions by each neuron of the ANN architecture specifies the outputs for input
variables [49]. An ANN is well suited to fit the best relationships among parameters and
monitor all possible relationships based on previous information [50].

In this study, a feed-forward neural network was chosen for modeling the effects
of meteorological data on the water quality of Doganci dam. Types of ANN employed
in engineering applications include feed-forward neural networks, convolutional neural
networks, and recurrent neural networks. The feed-forward neural network has an output
layer and one or more hidden layers. The convolutional neural network has layers that
process the inputs to feature maps. It is utilized in image processing. Lastly, the recurrent
neural networks model deals with inputs in time series using feedback loops [51,52]. A
feed-forward neural network was chosen based on its successful application in relevant
studies [15,17,18,24,25,53]. A general architecture of a multi-layer feed-forward neural
network is given in Figure 2.

/ Hidden Layer/s /

Output Layer/s

. .

Figure 2. Feed-forward neural network (acquired from MATLAB).

In Figure 2, I represents the input; w and b are for the weight of neurons and bias
values, respectively; and O is for the output. The output of the neural network could be
equated to the following;:

Output = f(a) (1)

where f denotes the activation function, and a is the neuron signal that is defined as
z .
a = Zi:l wixj + bi (2)

where wj is the weight of the input neuron X;. Z represents the total number of inputs.
The summation stages occur at each hidden neuron i. Typically, the sum of every input
neuron is weighed and then processed through an activation function, which is a non-linear
function [54,55].

2.4. Training Algorithms

The present study used two training algorithms, i.e., resilient back-propagation and
Levenberg-Marquardt algorithms, to determine which algorithms train the model best
and present accurate models while using feed-forward neural networks. The main aim
of the training was to reduce the mean squared error (MSE) and obtain a higher value for
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regression coefficient R. A higher R value means a good correlation between observed and
predicted values. MSE is generally calculated as follows:

1
MSE = < Y3, (v 9)° 3)

N is the total number of output values, y; denotes the observed output value, and §; is
the predicted output value. The lower the value of error, the better the prediction would
be when comparing the training algorithms. The values would represent the minimum
difference between the actual and modeled output values [56].

2.4.1. Levenberg-Marquardt Algorithm
The Levenberg-Marquardt (LM) algorithm approximates the Hessian matrix as follows:

-1
A =ac— (1T +u1) TTe @)

where cy is the gradient of the algorithm, ] represents the Jacobian matrix (containing
first derivates of errors in line with weights and biases of the neurons), and e denotes the
vector of network errors. | is a scalar quantity of the algorithm. p is decreased after each
run by a reduction in the performance function in each algorithm iteration. Momentum
update (Mu) is a control or adaptation parameter of the LM algorithm for updating the
weights while training the neural networks and allowing proper convergence. The range
of Mu is between 0 and 1. The LM training algorithm is better at optimization when using
feed-forward networks than other conventional gradient-descent techniques [57].

2.4.2. Resilient Back-Propagation Algorithm

Sigmoid transfer functions are frequently used in hidden layers in multi-layer feed-
forward neural networks. The slope of sigmoid functions decreases as the input size
increases until it reaches zero. Because the gradient might have a very small magnitude
even when the weights and biases are far from their ideal values, this could result in
little changes to the weights and biases. The resilient back-propagation (RProp) training
method seeks to eliminate the variable effects of the partial derivative magnitudes. A
different updated value determines the extent of the weight shift. When the derivative of
the performance function for a weight has the same sign for two iterations, each weight
and bias is increased by a factor. The updated value is lowered by a factor whenever the
weight derivative changes sign. Zero derivatives keep the updated value the same [57].

3. ANN Application in the Current Study

As mentioned, a feed-forward neural network was employed, having one input layer,
an intermediate hidden layer, and an output layer. In this study, 70% of the provided
data were used for training the models (i.e., 252 values for each parameter), and the
remaining 30% was used for testing and validation [19,20]. Before training the models, data
normalization was performed using the following equation:

Di - Dmin

D=_— —mn
Dmax - Dmin

(5)
where D represents a dimensionless normalized value. In contrast, D; is the normalized
value for the ith measurement in the data, and Dnax and Dy, are the maximum and
minimum normalized scores, respectively, of all the training and testing data taken.

The software normally adjusts weights and bias values based on the error value during
training. If the network overfits the data, the MSE value increases during validation. On
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the other hand, the testing data verified the performance of the model. Here, the feed-
forward neural network used a sigmoid activation function in the hidden layer and a linear
activation function in the output layer, which was recommended for a robust result [58].
The target epochs were set to 1000 [59]. The number of nodes in the hidden layer was
selected on a hit-and-trial basis, which is a common technique used by most researchers
in ANN modeling [60-63]. Hidden nodes varying from one to fifty were tested. The
observations indicated that as the number of nodes increased from one to ten, there was a
noticeable improvement in performance of the models in terms of higher R? values and
lower MSEs. However, beyond ten nodes, the models” performance began to decrease,
which can be attributed to overfitting. So, ten hidden nodes were selected for each model.

In this study, meteorological parameters were taken as inputs, and the water quality
parameters of the dam were defined as the outputs of the neural architecture. In order
to better understand the effects of climate change, the meteorological parameters had
been grouped from three different perspectives. Inputs and outputs created according
to three groupings were modeled and tested. Temperature and pH were selected as
common parameters in the three-model structure to create the outputs. The first model
aimed to model trace elements, the second model to model trace elements together with
suspended solids and turbidity, and the third model to model only suspended solids and
turbidity. In the first model, to examine the variations in the effects of temperature and
solar radiation in climate change, air temperature, global solar radiation, and solar intensity
were taken as input parameters. In the second defined model, in order to examine the
effect of air movements in climate change, wind speed, evaporation, vapor pressure, and
evapotranspiration were the input parameters. Lastly, precipitation, snow depth, and
humidity parameters, which partly show the effects of the hydrological cycle in climate
change, were grouped as inputs. The modeling aimed to identify which model gave the
best predictions regarding output parameters, i.e., Doganci dam’s water quality. These
groupings in the inputs were made to show which meteorological events in the atmosphere
have the greatest impact on climate change and water quality.

4. Results and Discussion

It can be noted from Table 1 that the minimum monthly average air temperature from
1990 to 2019 was 1 °C. On the other hand, the minimum monthly average temperature
of the water over the considered study years was 5.21 °C (Table 2). Nevertheless, the
maximum monthly average temperature of the water was less than that of the air. This
could be because the water’s unique high heat capacity, i.e., hydrogen bonds, strongly
holds water molecules together. It can absorb high amounts of heat without increasing the
temperature. The second noticeable feature was the concentration of a few trace elements
in Doganci dam’s water. The highest monthly average concentration from 1990 to 2019 was
manganese (48 pg/L), while the lowest was arsenic (5 pug/L). The mean of the monthly
average values for manganese seemed to be just touching the limit prescribed by the USEPA
and TS 266 drinking-water quality standards, with the maximum monthly average value
(288 ng/L) exceeding all the considered drinking-water quality standards. This issue could
be alarming, as higher concentrations of manganese in drinking-water consumption could
lead to neurological diseases in humans [46]. The mean values for the monthly average
concentrations of iron and arsenic seemed to be well within the limits for drinking-water
standards. However, even in the case of arsenic, small concentrations could be threatening
with long-term exposure per USEPA guidelines [64]. Looking at the turbidity values, the
average value for Doganct dam was 6.378 NTU, which was higher than the limits for
drinking water defined by WHO, USEPA, and Turkish standards. The increase in turbidity
could be due to erosion resulting from stronger storms, higher water levels, or increased
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water velocity in the dam due to climate change. Nevertheless, this could potentially have
an adverse effect on the humans relying on the water from Doganci dam.

The results obtained from modeling using multi-layer feed-forward neural networks
are given in Table 3. Considering Model 1, for the three meteorological inputs (air tempera-
ture, global solar radiation, and solar intensity) and six corresponding outputs of Doganci
dam’s water quality (water temperature, pH, dissolved oxygen, manganese, arsenic, and
iron concentrations), we concluded that the run was quite successful. The R values for
the training, testing, validation, and whole dataset were between 0.93 and 0.99, showing a
strong correlation between the observed and the predicted data. The mean squared error
(MSE) achieved in this study was notably low, with an approximate value of 1.20 when
using the LM algorithm and 1.68 with the RProp algorithm.

Table 3. Results obtained from modeling using the feed-forward neural networks.

Performance Checks

ANN
Model Output Structure R-Value sk
Training Testing Validation ]g\; 1t1aosleet
Monthly average:
. water temperature (°C)
Monthly average: . pH
° air temperature (°C) ¢ concentration of RProp: RProp: RProp: RProp: RProp:
. e total daily global solar dissolved oxygen (mg/L) 3106 099031 093702 097481 098246  1.680
radiation (kWh/m?) ®  concentration of arsenic it LM: LM: LM: LM: LM:
. total daily solar intensity (ng/L) 0.99252 0.93271 0.98139 0.98419 1.1995
(cal/cm?) . concentration of
manganese (u1g/L)
. concentration of iron
(ng/L)
Monthly average:
° water temperature (°C)
Monthl : > pH
onthly average: e turbidity (NTU)
. wind speed (m/s) U concentration of RProp: RProp: RProp: RProp: RProp:
2 . total evaporation (mm) dissolved oxygen (mg/L) 4-10-7 0.81675 0.85025 0.74738 0.80832 11.905.
. vapor pressure (hPa) ° concentration of LM: LM: LM: LM: LM:
. total evapotranspiration suspended solids (mg/L) 0.89479 0.73438 0.84478 0.85980 6.2589
(mm) . concentration of arsenic
(ug/L)
. concentration of iron
(ng/L)
Monthly average:
. water temperature (°C)
. pH
. alkalinity (mg/L)
. turbidity (NTU)
Monthly average: ° concenga(tilonlf)cli /L RProp: RProp: RProp: RProp: RProp:
5 * total precipitation (mm) suspended solids (mg/L) 069934 051604 074147 066439 1101
. snow depth (cm) ° concentration of LM: LM: LM: LM: LM:
. dissolved oxygen (mg/L) 0.68462 0.35175 0.74684 0.57835 11.1604

relative humidity (%)

concentration of arsenic
(ng/L)

concentration of
manganese (ug/L)
concentration of iron

(ng/L)

In Model 2, the R value, indicating the correlation between observed and predicted
data, ranged from 0.81 to 0.86 using both training algorithms. This model showed a good
but slightly weaker correlation compared to Model 1. Additionally, the MSE was higher in
Model 2, with values ranging from 6.26 to 11.91 for the algorithms tested.

In the final model, nine water quality parameters were analyzed, including water
temperature, pH, alkalinity, turbidity, dissolved oxygen, suspended solids, arsenic, man-
ganese, and iron, with precipitation, snow depth, and relative humidity as inputs. This
model exhibited a lower correlation coefficient for the entire dataset, ranging from 0.58 to
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0.66, suggesting a weaker predictive accuracy compared to the first two models. The MSE
values were higher in this model, recorded at 11.01 using the RProp algorithm and 11.16
with the LM algorithm, surpassing the values observed in Model 1.

Comparing all the tested models, we observed that Model 1 showed a greater relia-
bility in prediction with a lower MSE (1.20-1.68) and a higher R (0.93-0.99) between the
observed and predicted values for all stages of neural networking. It must be noted that the
algorithms used in the modeling were the same; the results differed because of the choice
of input parameters. ANNs modify the internal weights and biases according to the input
data, which results in varying output results [65-67].

The better correlation in Model 1 could also be explained by the direct impact of the
input parameters on the output parameters. The air temperature, global solar radiation,
and solar intensity directly influence water quality parameters such as temperature, pH,
and dissolved oxygen. Research by Soro, et al. [68] showed that an increase in the air
temperature leads to an increase in the water temperature and, simultaneously, a decrease
in the dissolved oxygen levels of a freshwater body. Also, temperature and solar radiation
were the most important parameters in modeling climate change [29]. Therefore, the
selection of model input variables enhanced the predictive capability of ANNSs in water
quality modeling [65]. Additionally, Model 1’s architecture was the simplest; it involved
only three input parameters and, correspondingly, six output parameters, which could
have reduced complexity, offered better generalization, and reduced prediction errors. A
complex architecture in ANNSs is shown to display high training time and higher prediction
errors [69]. Therefore, relevant input parameters, maintaining model simplicity, and
utilizing an efficient training algorithm could significantly enhance the performance of
ANN models.

This argument is further strengthened by looking at Figure 3, which compares the R
values obtained for the whole datasets of all the models. The term ‘data’ in Figure 3 repre-
sents the actual target values from the dataset, while ‘fit’ gives the predictions generated
by the ANN. The dotted line (Y = T) is the line of perfect fit, where the predictions exactly
match the actual values.

It was seen that the data points are homoscedastic (with very few outliers) in Model
1, which demonstrates its reliability in prediction. The close spread of the data points
across the line of perfect fit (Y = T) and the solid ‘fit’ line sitting exactly on the dotted line
demonstrate consistency between the observed and predicted values. However, the solid
line can be seen to deviate from the dotted lines in Model 2 and Model 3, suggesting less
accuracy due to a difference between the predicted and actual data.

Mean squared error graphs are depicted in Figure 4. The graphs for the mean squared
errors provided critical insights into the models regarding their training dynamics and
generalization capabilities. Model 1 displayed a rapid decline in MSE values for the training
dataset in the early epochs (particularly while using the LM training algorithm), indicating
efficient learning. However, as the training progressed, a divergence was seen between
the training error and the test/validation errors, indicating overfitting. Despite that, the
validation and test errors stabilized at relatively lower values, which showed that Model 1
achieved accurate predictions across datasets and prioritized high accuracy.
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Figure 3. Graphs of the correlation coefficients of models using the RProp ((a) Model 1, (c) Model 2,
and (e) Model 3) and the LM ((b) Model 1, (d) Model 2, and (f) Model 3) training algorithms.

In contrast to Model 1, Model 2 exhibited lower divergence. The training, validation,

and test errors decreased steadily. Nevertheless, the overall MSE values were higher than

those of Model 1, which suggested that Model 2 may not capture the complexity of the

datasets, resulting in slightly less accurate predictions. Model 3 performed the poorest
of the three models. The MSE values for Model 3 using the LM and RProp algorithms
remained higher across all the datasets, and there was a divergence between the training,

validation, and test errors noted. Therefore, Model 3 had limited predictive accuracy and

weak generalization capabilities.
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Figure 4. Mean squared errors of the models using the RProp ((a) Model 1, (c) Model 2, and

(e) Model 3) and the LM ((b) Model 1, (d) Model 2, and (f) Model 3) training algorithms.

Additionally, higher fluctuations could be seen in the MSE graphs of Model 2 as com-

pared to Model 1. The fluctuations indicated that the model is less stable and less reliable

for effective predictions. Thus, Model 1 emerged as the best model, as previously described.

The results can be further validated by comparing the parameters of the training

progress for the models, as listed in Table 4. The parameters examined included the

gradient at the point of ending of the training. The stop epoch represented the number of

epochs required for training to conclude.
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Table 4. Training state parameters for the models using the defined algorithms.
o . Training Progress Parameters
Models Training Algorithms
Gradient Mu Stop Epoch
Levenberg-Marquardt 0.143 0.001 10
Model 1 Back-propagation 0.397 - 56
Levenberg—Marquardt 4.26 0.01 12
Model 2 Back-propagation 6.4 - 35
Levenberg-Marquardt 4.47 0.1 10
Model 3 Back-propagation 20.1 - 23

Model 1, trained with Levenberg-Marquardt, exhibited the most efficient training,
achieving a minimum gradient value of 0.143 and completing the training in just 10 epochs.
This performance was better than when it was trained with back-propagation. In terms of
the other tested models, Model 3 demonstrated the least effective convergence, particularly
when trained with a back-propagation algorithm. Models 2 and 3 had higher gradients
than Model 1 at the termination point.

The results from the training progress also demonstrated that Levenberg-Marquardt
consistently required fewer epochs to reach convergence, as seen by the stop epoch values
ranging from 10 to 12 across all the models. Hence, LM was found to be computationally
more efficient compared to back-propagation, which required significantly more training
epochs (23 to 56 epochs). The gradient values from the LM algorithm were also generally
smaller, with Model 1 achieving the smallest gradient of 0.143, suggesting closer proximity
to an optimal solution. The gradient was notably higher in the case of back-propagation,
particularly for Model 3, where it reached 20.1. The findings suggested that Model 1
performed better in terms of training when using the Levenberg-Marquardt algorithm.

Mu is specific to the Levenberg-Marquardt algorithm, which reflects the adjustment
factor during optimization. Model 1 shows the lowest Mu value of 0.001, followed by
Model 2 at 0.01 and Model 3 at 0.1. As seen in Model 1, a smaller Mu value corresponded to
faster convergence and better optimization stability. This conclusion also aligned with the
observation that Model 1 had the smallest gradient and needed the fewest epochs among
the other models to complete the training step.

The graphs for the gradients during the training of the models are given in Figure 5.
The gradient of Model 1 settled at a smaller value of 0.143-0.397. Based on the trends,
Model 1 stood out as the most optimized configuration due to its rapid and reasonably
stable gradient reduction and minimum gradient value, followed by Models 2 and 3 under
the LM algorithm. RProp demonstrated slower and inconsistent performance in gradient
graphs across all the models when comparing the training algorithms.

It has also been documented in the literature that the resilient back-propagation
algorithm has several limitations, including slow training time, the need for extensive
training, temporal instability that may cause oscillations during the learning process, and
a tendency to become trapped in local minima. In contrast, the LM algorithm undergoes
faster convergence, making it more efficient and reliable for training ANNs [70,71].

A comparison was made between the current study’s performance checks (R and
MSE) with those of similar studies from the literature (Table 5). The correlation coefficient
range for a similar study by Kang, et al. [19] was between 0.66 and 0.71 for testing and
validation. Likewise, in the study by Park, et al. [72], the value for correlation lay between
0.71 and 0.74. The correlation coefficient acquired in this study for Model 1 (0.93 to 0.99)
was higher than that in previously mentioned studies. Also, comparing the attained R
values with those of the analysis by Zhang, et al. [20] for all the stages of neural networking,
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i.e, training, testing, and validation, we observed that the values for the proposed Model 1

remained higher.

Model Resilient back-propagation algorithm Levenberg-Marquardt algorithm
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Figure 5. Gradients during training progress using different algorithms for the tested models.
Table 5. References for previous studies predicting the water quality of dams using meteorological
parameters.
Input Output (Water Structure of .
Study No. (Meteorological Quality Parameter/s Feed-Forward g::;filc?zfﬂ Error 4 Reference
Parameter/s) for the Dam) Neural NetWork
Precipitation, Suspended solids, . .
1. temperature, and total nitrogen, and alnlcrllllni)?ltl ilﬁieg« 0.66-0.71 0.11-3.12 [19]
humidity total phosphorus P y
Temperature, Water temperature, . .
2. precipitation, and total phosphorus, ;nl(?ll)ut{l?’ ilﬂjen’r 0.59-0.99 0.003-0.01 [20]
sunshine hours and chlorophyll-a outp ye
Solar radiation and 1input, 1 hidden,
3. wind speed Chlorophyll-a and 1 output layer 0.71-0.74 - [72]
. Conductivity and 1 input, 2 hidden, B g
4. Precipitation dissolved oxygen and 1 output layer 0.05-0.06 (271

Note(s): @ The range for error and correlation coefficient values is for training, testing, and validation.

Another factor considered was the error values, which, in previously reported studies,
were as low as 0.003 and reached 3.12 (Table 5). The error values for Studies 2 and 4 listed
in Table 5 were lower than those for the proposed Model 1. However, they were within the
range of those found for Study 1, with the upper limit (3.12) being higher than that of the
proposed model (i.e., 1.20-1.68).
Therefore, it could be concluded that the model proposed is sufficiently valid for
future predictions of the water quality of Doganci dam. It was also noted that the R and
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MSE values relied on the inputs and outputs taken. The inputs taken for the proposed
Model 1 differ from those in the past studies mentioned. The effects that precipitation, air
temperature, atmospheric pressure, humidity, wind speed, and solar radiation may have
on water quality were typically evaluated. However, in the mentioned best Model 1 of
this study, the monthly average air temperature, monthly average total daily global solar
radiation, and solar intensity were considered as inputs to analyze their impacts on Doganci
dam’s monthly average water temperature, pH, and monthly average concentrations of
dissolved oxygen, arsenic, manganese, and iron. It gave reliable results compared to the
other models tested in this study and the previous studies discussed.

Moving to the analysis of the resilient back-propagation and Levenberg-Marquardt
training algorithms, statistical evaluation (analysis of variance; ANOVA) showed no sig-
nificant difference between the two training algorithms. This is justified by the p values
in Table 6, which were greater than 0.05 at a 95% confidence level (p = 0.946 for Rand p =
0.209 for MSE). Also, the effect sizes were very small (0.001 to 0.05), further emphasizing
that the difference between the algorithms was negligible. This statistical examination was
conducted on JASP (Version 0.16.3) [73].

Table 6. Comparing (a) R values and (b) MSE of the models for training algorithms using ANOVA.

(a)
Cases Sum of Squares df Mean Squared F P n?
Algorithms 1.796e 4 1 1.796e 4 0.005 0.946 0.001
Residuals 0.137 4 0.034
(b)
Cases Sum of Squares df Mean Squared F P n?
Algorithms 5.956 1 5.956 0.209 0.671 0.050
Residuals 113.746 4 28.437

However, through visual analysis, it could be said that the Levenberg-Marquardt
training algorithm had the edge over the resilient back-propagation algorithm based on the
correlation and mean squared error values. Looking at the best model, i.e., Model 1, we can
see that the correlation coefficient for the whole dataset was 0.984, and the MSE was 1.20
using the Levenberg-Marquardt algorithm. The values were 0.982 and 1.68, respectively,
using resilient back-propagation. Although these values were sufficiently near one another,
the LM algorithm improved performance comparatively.

Additionally, for the models, when trained with a resilient back-propagation algorithm,
the gradient reduction exhibited a generally decreasing pattern (Figure 5), but the process
was uneven and slower. There were fluctuations throughout the training process, indicating
less stability in the optimization process when using the RProp algorithm. In contrast,
the LM algorithm demonstrated a more consistent and efficient reduction in gradients
across all the models. The epochs at which a comparatively lower gradient was achieved
were also fewer than those needed for the RProp algorithm. Therefore, the LM training
algorithm was found to be comparatively more efficient for optimization when compared
to the RProp algorithm.

The current study, while providing valuable insights into water quality modeling us-
ing artificial neural networks, had some limitations as well. This study employed historical
meteorological data and did not incorporate future climate change projections, which could
give water quality predictions for long-term hydrological management. Hence, future
research could focus on this perspective. Additionally, more training algorithms could be
explored and compared. Likewise, the models were trained on the meteorological data of
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Bursa and the water quality data of Doganci dam. However, different environmental and
climatic conditions elsewhere may result in slightly different output results. Nevertheless,
generally, based on the overall results, it could be concluded that artificial neural network-
ing could be applicable in predicting the water quality of a drinking-water dam. It helped
evaluate the effects of the changing climate on water characteristics.

5. Conclusions

In this study, artificial neural networks (ANNSs) were effectively applied, mirroring
the success seen in prior research. A feed-forward neural network with a distinct layer
structure was utilized, and Model 1 emerged as the most effective, demonstrating superior
correlation, minimal error, and faster training with a minimum gradient compared to
other models. It used key climatic parameters as inputs to predict critical water quality
metrics of Doganct dam. The Levenberg-Marquardt algorithm outperformed the resilient
back-propagation algorithm. This research provides valuable insights into the influence
of climate indicators on water quality, offering a useful tool for water management and a
proactive approach to sustaining drinking-water resources. The developed ANN model
could essentially assist engineers and practitioners in government agencies in predicting
water quality parameters with the changing weather and atmospheric patterns. This would
enable timely interventions, resource planning, and informed decision-making for adaptive
strategies to mitigate the impacts of climate change on water resources. This study’s
methodology could be expanded to explore the effects of climate change on the water levels
of drinking-water bodies.
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