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Abstract: Nitrogen is a main contaminant of wastewater worldwide. Novel processes for 

nitrogen removal have been developed over the last several decades. One of these is the 

partial nitritation process. This process includes the oxidation of ammonium to nitrite 

without the generation of nitrate. The partial nitritation process has several advantages over 

traditional nitrification-denitrification processes for nitrogen removal from wastewaters. In 

addition, partial nitritation is required for anammox elimination of nitrogen from 

wastewater. Partial nitritation is affected by operational conditions and substances present 

in the influent, such as quinolone antibiotics. In this review, the impact that several 

operational conditions, such as temperature, pH, dissolved oxygen concentration, hydraulic 

retention time and solids retention time, have over the partial nitritation process is covered. 

The effect of quinolone antibiotics and other emerging contaminants are discussed. Finally, 

future perspectives for the partial nitritation process are commented upon. 
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1. Introduction 

One of the most important environmental problems today is the discharge of wastewater from urban 

and industrial sources, since human activities have greatly accelerated and extended the natural cycles 

of nitrogen in the soil, water and atmosphere. In this way, different technologies have been used for the 

removal of different environmental pollutants, such as nitrogen, organic matter and phosphorus. In 

wastewater treatment plants, nitrogen is often removed by conventional biological processes, such as 

nitrification and heterotrophic denitrification. In particular, the conventional processes are not suitable 

for the treatment of effluents, such as a dewatering concentrate stream, due to their toxic effects to 

those microorganisms able to degrade the nitrogen. For this reason, alternative systems have been 

developed for the removal of this nutrient, such as partial nitritation/anaerobic ammonium oxidation 

(anammox) technology. Thanks to these novel technologies, high ammonium-low carbon effluents, 

such as reject water from anaerobic digesters, can be treated within the sludge pipeline, therefore 

avoiding its treatment within the activated sludge processes. 

Antimicrobial agents are among the most commonly used pharmaceuticals. However, although 

antibiotics are of great importance for human health, they can also be a great problem for the 

environment. During wastewater treatment, antibiotics are drastically removed from the water stream, 

but their fate is associated with sewage sludge. In this sense, the biological processes of nitritation 

have been described as particularly sensitive to toxic substances, such as pesticides and antibiotics. 

The partial nitritation process is a technique in which nitrification is achieved with nitrite as the 

intermediate under stable processing conditions, where only 50% of the ammonium in the influent is 

converted into nitrite. This system and its combination with the anammox process have led to the 

development of a new technology of great interest in the treatment of effluent with high nitrogen content. 

The results obtained in partial nitritation bioreactors show that modifications to the operating 

conditions can dramatically affect the functioning of the partial nitritation technology. Specifically, a 

significant factor that produces changes in the microbial communities is hydraulic retention time 

(HRT) [1]. Thus, changes in the operating conditions, such as HRT, may produce changes in cellular 

physiology and the community level. Consequently, the performance of the biotransformation of 

ammonium into nitrite in a partial nitritation bioreactor can be directly affected by the HRT, which can 

be crucial for the optimization of nutrient removal rates and the implementation of control strategies.  

Antibiotics, such as fluoroquinolones, have been reported [2,3] as able to impact the performance of 

the partial nitritation process, suggesting that there is a negative correlation between antibiotic 

concentration in the influent and performance of the partial nitritation process. Furthermore, the 

microbial community inside the bioreactors suffers a period of adaptation or a deep change with a 

significant reduction of the ammonium-oxidizing bacteria in response to the antibiotic concentration in 

the influent [3]. Additionally, the presence of antibiotics in the bioreactor increases the number of 

antibiotic-resistant bacteria. In this way, it could be suggested that the presence of selected antibiotics, 

such as quinolones, can seriously affect partial nitritation systems and select microorganisms with 

antibiotic resistance [3]. 

The objective of our article is to evaluate the influence of different environmental parameters, such 

as HRT, and the concentration of fluoroquinolone antibiotics on the performance of partial nitritation 
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systems. We also review the effects of these parameters on the microbial communities growing in 

bioreactors using molecular biology techniques.  

2. Partial Nitritation Process: An Overview 

Contamination caused by wastewater discharge has increased during the last decades, due to the 

increasing global population [1]. Nitrogen, one of the main contaminants of wastewater, has been identified 

to cause oxygen depletion and eutrophication in aquatic environments [4]. Wastewater engineering has 

traditionally removed nitrogen from wastewater through complete nitrification-denitrification processing 

to meet the water quality criteria for treated wastewater [1]. More restrictive standards for nitrogen in 

wastewater effluent are being imposed by new regulations, such as the European Union (EU) Water 

Frame Directive 91/271/EEC (Table 1). To achieve these standards in a cost-effective way, autotrophic 

nitrogen removal technologies, such as partial nitritation/anaerobic ammonium oxidation (anammox), 

DEMON (deammonification), OLAND (oxygen limited autotrophic nitrification/denitrification), and 

CANON (completely autotrophic nitrogen-removal over nitrate) [5,6], have been developed. 

Autotrophic nitrogen removal technologies are based on anammox bacteria, which can eliminate 

nitrogen by utilizing ammonium as a substrate and nitrite as the terminal electron acceptor in molar 

ratios of 1:1 [7]. These technologies have been successfully utilized at full-scale wastewater treatment 

plants for the treatment of reject water from anaerobic digesters (e.g., the partial nitration/anammox 

process at Rotterdam wastewater treatment plant (WWTP) and the DEMON process at Apeldoorn 

WWTP and the CANON process at Olburgen WWTP, all located in The Netherlands). Anammox 

technologies can save up to 90% of costs with respect to traditional nitrification-denitrification processes 

for influents with a high ammonium concentration and low carbon content [8]. Among these 

technologies, the partial nitritation/anammox system has been developed as a two-step autotrophic 

nitrogen removal process. The first step involves the oxidation of ammonium to nitrite under aerobic 

conditions in such a way that roughly 50% of ammonium is oxidized [8]. This is achieved with partial 

nitritation technology. Today, there are six examples of full-scale partial nitritation plants in The 

Netherlands and one in the USA [9].  

Table 1. European Directive 91/271/EEC Requirements in Matter of Nutrients (from [10]). 

Parameter Concentration 
Minimum percentage 

of reduction 1 

Reference method of 

measurement 

Total 

Phosphorus 

2 mg/L (10,000–100,000 population equivalent) 

1 mg/L (more than 100,000 population equivalent) 
80 

Molecular Absorption 

Spectrophotometry 

Total 

Nitrogen 2 

15 mg/L (10,000–100,000 population equivalent) 3 

10 mg/L (more than 100,000 population equivalent) 3 
70–80 

Molecular Absorption 

Spectrophotometry 

Notes: 1 reduction in relation to the load of the influent; 2 total nitrogen means the sum of total Kjeldahl nitrogen 

(organic and ammoniacal nitrogen), nitrate-nitrogen, and nitrite-nitrogen; 3 these values for concentration are 

annual means, as referred to in Annex I, paragraph D.4[c]. However, the requirements for nitrogen may be checked 

using daily averages when it is proven, in accordance with Annex I, paragraph D.1, that the same level of 

protection is obtained. In this case, the daily average must not exceed 20 mg/L of total nitrogen for all of the 

samples when the temperature from the effluent in the biological reactor is higher than or equal to 12 °C. The 

conditions concerning temperature could be replaced by a limitation on the time of operation to account for 

regional climatic conditions. 
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In a partial nitritation system, ammonium is oxidized to nitrite (Figure 1). Partial nitritation systems 

were developed by the Delft University of Technology in 1996–1999 [11] and have several advantages 

over total nitritation-based technologies, such as 25% savings in aeration, 30% reduction of biomass 

generation, with a biomass yield of about 0.15 g biomass (g NH4
+-N)−1 [12], and 20% less CO2  

emission [11]. Partial nitritation bioreactors at the laboratory scale have been reported to successfully 

treat food processing and agriculture industry wastewater, reject wastewater and slaughterhouse 

wastewater or swine manure wastewater, among others [13–19]. 

Figure 1. Nitrogen cycle in the partial nitritation/anammox processes.  

 

Within a partial nitritation reactor, the main performance is the oxidation of ammonium to nitrite, 

and therefore, there is an accumulation of nitrite in the system. Although nitrite has been thought not to 

accumulate in ecosystems, some reports show that it can accumulate in natural and engineered 

environments, such as soils, sediments and wastewater treatment plants [20]. This is achieved by the 

metabolism of ammonium-oxidizing bacteria (AOB). 

AOB use ammonium mono-oxidase (AMO) enzyme to oxidize ammonium to hydroxylamine 

(NH2OH), using oxygen as an electron acceptor. Following this reaction, hydroxylamine is  

oxidized to nitrite with the mediation of hydroxylamine oxidoreductase (HAO), with hydrazine as an 

intermediate [11,21]. AOB are autotrophic microorganisms, so they utilize inorganic carbon as a 

carbon source. AOB communities belong to the β-Proteobacteria class, with species like Nitrosomonas sp., 

Nitrosospira sp., Nitrosolobus sp. and Nitrosovibrio sp., among others (Table 2). It has also been 

found that Nitrosomonas and Nitrosospira are the most popular genera among partial nitritation 

reactors, with Nitrosospira dominating under high-ammonium conditions [22]. Two different types of 

AOB bacteria have been differentiated so far: fast-growing AOB and slow-growing AOB. The 

difference between these two groups resides in the affinity for ammonium, which is higher in  

slow-growing AOB. Thus, slow-growing AOB, k-strategists, dominate in environments with an 

ammonium limitation. In partial nitritation reactors, the ammonium concentration is high, and 

therefore, fast-growing AOB, r-strategists, dominate [23]. Even though it is known that species of 

AOB can carry out denitrifying metabolism that reduces nitrite to nitric oxide, nitrous oxide and 

dinitrogen [9], it is thought that AOB only perform ammonium oxidation in partial nitritation reactors. 
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Table 2. References for the identification of ammonium-oxidizing bacteria (AOB),  

nitrite-oxidizing bacteria (NOB) and anammox bacteria in engineered and natural ecosystems. 

Species Ecological Role Class References 
Nitrosomonas sp. NH4

+ oxidizer β-Proteobacteria [1,11,22,24–26] 
Nitrosospira sp. NH4

+ oxidizer β-Proteobacteria [1,22,25] 
Nitrosolobus sp. NH4

+ oxidizer β-Proteobacteria - 
Nitrosovibrio sp. NH4

+ oxidizer β-Proteobacteria [1] 
Nitrosococcus sp. NH4

+ oxidizer γ-Proteobacteria [24,26] 
Nitrobacter sp. NO2

− oxidizer α-Proteobacteria [11,24] 
Nitrococcus sp. NO2

− oxidizer γ-Proteobacteria - 
Nitrospina sp. NO2

− oxidizer Nitrospinae - 
Nitrospira sp. NO2

− oxidizer Nitrospirae [26] 
Brocadia sp. Anammox Planctomycetia [27] 
Kuenenia sp. Anammox Planctomycetia [28,29] 
Scalindua sp. Anammox Planctomycetia [30,31] 

Nevertheless, AOB have to compete with other microbial communities inside a partial nitritation 

reactor. The main competitors of AOB are nitrite-oxidizing bacteria (NOB), which utilize oxygen for 

the oxidation of nitrite to nitrate (Table 2). As NOB metabolism utilizes nitrite as the metabolic 

substrate under aerobic conditions, partial nitritation systems represent viable environments for NOB 

to develop. The most common NOB species isolated from activated sludge systems belong to the 

genera, Rubrivivax, Rhodobacter and Pseudomonas [32,33]. NOB population development is the 

major problem related to partial nitritation operational performance. It has been stated that the 

achievement of the desired ammonium oxidation of a partial nitritation bioreactor depends on the 

understanding of the AOB and NOB community structure and the effect of operational conditions on 

AOB and NOB community dynamics [34]. If NOB communities are uncontrolled, nitrate will appear, 

due to complete nitritation of ammonium when ammonium loading declines from 0.5 kg N m−3 day−1, 

with the consequent loss in the performance of the system. Therefore, controlling the NOB population 

is needed in order to achieve the desired nitrogen removal [11,22]. The different characteristics of 

AOB and NOB have been studied in order to develop strategies for NOB control in partial nitritation 

systems. These are based on temperature, dissolved oxygen, hydraulic retention time (HRT) and solid 

retention time (SRT), or free ammonia (FA) and free nitrous acid (FNA) concentrations, among  

others [14,24,35,36]. When 50% ammonium is oxidized under steady-state conditions, partial 

nitritation reactors have a relative abundance of 64% AOB and less than 5% NOB [37]. 

3. Effect of Operational Conditions and Quinolone Antibiotic over the Partial Nitritation Process 

3.1. Effect of Influent Characteristics  

Partial nitritation reactors have been developed for the treatment of wastewater with low organic 

matter content and high concentrations of ammonium (Figure 2). The effects that different substances 

present in wastewater, such as ammonium and organic matter, have on the partial nitritation process 

have been extensively investigated. 
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Figure 2. Schematic of a fluidized bed partial nitritation reactor. 

 

The ammonia loading rate (ALR) has been shown to affect the chemical composition of the effluent 

generated in a partial nitritation reactor. In a continuously-stirred tank reactor (CSTR) configuration, at 

an ALR from 1.04 N-NH4
+ m−3 day−1 to 1.81 N-NH4

+ m−3 day−1, the composition of the effluent was 

stable and dominated by nitrite and ammonia, at a ratio of about 1.2:1, with a small fraction of nitrogen 

present as nitrate. A similar trend was observed in a biofilm reactor configuration at the ALR range of 

2.15 to 4.07 N-NH4
+ m−3 day−1. This effluent composition was suitable for a further anammox 

treatment for nitrogen elimination. Lower ALRs lead to an excess of nitrate in the effluent for this 

purpose, and higher ALRs achieve an excess of ammonia in the effluent. In this way, ALR has been 

proposed as a practical way to control the performance of partial nitritation reactors and has been 

claimed to be more practical than other control strategies, such as dissolved oxygen (DO) control [38]. 

Ammonium concentration has been shown to affect the performance of partial nitritation reactors, 

due to the production of FA and FNA. Both AOB and NOB can be inhibited by their metabolic 

substrates and/or by-products. It has been found that FA and FNA can inhibit AOB and NOB [39–41]. 

In any case, NOB are much more sensitive than AOB. The activity of NOB becomes inhibited at FNA 

concentrations from 0.26 mg HNO2-N L−1 [42], which is lower than the inhibition concentration for 

AOB, 0.49 mg HNO2-N L−1 [41]. Inhibition by FNA is related to the donation of a proton to the 

electron transport chain, which impedes the transmembrane pH gradient for the synthesis of ATP [21]. 

NOB is inhibited by FA at concentrations ranging from 1 to 7 mg NH3-N L−1, while AOB starts to be 

inhibited at 150 mg NH3-N L−1 [11]. Other authors have proposed different thresholds for the FA 

inhibition of NOB (1.75 mg NH3-N L−1) [42] and AOB (605 mg NH3-N L−1) [41]. Inhibition of NOB 

by FA is thought to result from the competition of FA with nitrite oxide reductase (NOR), an NOB 

enzyme involved in the oxidation of nitrite to nitrate [21]. It has been stated that AOB become 

inhibited by FA and FNA when nitrogen loading rates become higher than 1.5 kg/m−3 day−1 [43]. 

Regardless of this, the adaptation of NOB and AOB communities to FA concentrations has been 
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widely covered by several authors [44–46]. Some Nitrobacter spp. strains, typical NOB in partial 

nitritation reactors, have been found to resist up to 40 mg NH3-N L−1 FA [11], while AOB 

communities have been acclimated to FA concentrations of 122 –224 mg L−1 [24]. Therefore, control 

based on FA concentrations might not be an efficient, practical tool for the assessment of the 

performance of partial nitritation systems. 

Hydroxylamine, an intermediate in the oxidation of ammonium to nitrite, was reported to have the 

capability of stabilizing a partial nitritation system operating at a high chemical oxygen demand to 

nitrogen (COD/N) ratio, low temperature and high DO concentration, due to its inhibitory effect on 

NOB populations [47]. Hydroxylamine has an inhibitory effect on NOB communities at 250 µM and 

on AOB populations at 2,000 µM; therefore, it selects for AOB to thrive in the system [11]. 

A certain amount of organic matter can enter a partial nitritation reactor with the influent. Organic 

matter entering a partial nitritation reactor affects its performance. One of the reasons is that organic 

matter favors the development of heterotrophs, which have a shorter duplication time than AOB  

and could therefore outcompete them for oxygen inside the bioreactor [48]. It has been reported that 

the stability of the partial nitritation process is disturbed by high COD/N ratios, due to the promotion 

of heterotrophic bacteria inside the system [49]. It has been shown that the C/N ratio does not  

affect the performance of the partial nitritation process at ammonium volumetric loading rates of  

0.5 kg N-NH4
+ m−3 day−1. At higher ammonium volumetric loading rates, higher C/N ratios require 

higher DO concentrations if the same ammonium oxidation efficiency is desired [24]. In spite of the 

promotion of heterotrophic growth, the impact of total organic carbon (TOC) concentration on a partial 

nitritation system has been found to depend on carbon concentration. It has been reported that TOC 

concentrations are 0.2 g TOC L−1, as acetate stimulates ammonium oxidation in partial nitritation 

reactors, but also 0.3 g TOC L−1, as acetate decreases 10% ammonium conversion in these systems [6]. 

Another impact of organic matter on partial nitritation reactors is related to the  

carbonate-bicarbonate-carbon dioxide equilibrium. With the development of heterotrophs in the 

partial nitritation reactor, carbon dioxide is generated in the system. Given the pH range in which 

partial nitritation reactors operate (6.6–8.0), the equilibrium will select for HCO3
 as the dominant 

form of inorganic carbon. Carbonate will acidify the medium, thus reducing its capacity to balance the 

release of protons taking place during ammonium oxidation. Therefore, the addition of organic matter 

will lead to lower conversion rates of ammonium to nitrate [36]. 

In spite of this fact, it has been proven that the elimination of organic matter can be achieved in 

partial nitritation reactors at the same time as ammonium oxidation when carbon loading rates do not 

exceed 2 kg m−3 day−1 [48]. Accordingly, it has been proposed that, for the purpose of an anammox 

treatment train, a partial nitritation process following an anammox reactor is recommended when the 

influent contains a considerable amount of organic matter, which suggests the ability of partial 

nitritation systems to handle peaks of organic loading while maintaining a stable operational state [50]. 

In spite of this capacity, it has been found that the recovery of partial nitritation reactors after excessive 

loading of organic matter is a long process [42]. 

The addition of certain organic and inorganic compounds could play an important role in partial 

nitritation processes. It has been found that fulvic acid impacts nitrite accumulation in partial nitritation 

reactors, impeding ammonium oxidation when its concentration is below 0.002 mg L−1 or over  

0.07 mg L−1. It has also been reported that NOB are more sensitive than AOB to ortho-cresol, aniline 
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and phenol. ClO2
− has been proven to inhibit NOB activity at 3 mM; thus, chlorine could be used as a 

control strategy for NOB population development [21]. 

3.2. Effect of Temperature  

Temperature shows a clear relationship with ammonium oxidation in partial nitritation systems. It 

has been reported that, at a constant ammonium volumetric loading rate and DO concentration, higher 

temperatures lead to higher ammonium oxidation up to 35 °C. Beyond this point, higher temperatures 

lead to FA formation, and the activity of AOB becomes inhibited [24]. In similar studies, it was found 

that at 25 °C, ammonium oxidation reached values of up to 60% of those at 28–39 °C. At 41 °C, 

bacterial activity stops, and thus, ammonium oxidation does not take place. Furthermore, it has been 

observed that the ammonium uptake rate in partial nitritation reactors is maximum in the temperature 

range of 33–37 °C [51]. 

The bacterial community structure of partial nitritation reactors seems not to be influenced by 

temperature. Therefore, a difference in microbial activity due to temperature has been proposed as an 

explanation of differences in the performance of the system at different temperatures [52]. 

It has been found that NOB have slower growth rates than AOB when temperatures go up from  

24 °C, while at temperatures as low as 15 °C, NOB attain domination over AOB in partial nitritation 

reactors [15,21]. It was reported that temperatures above 30 °C led to a prevalence of AOB over NOB, 

due to the faster growth rate of the former, so operating at temperatures higher than 30 °C will select 

for AOB [53]. 

Furthermore, the effect of temperature on the performance of a partial nitritation reactor has been 

explained by the formation of FA and FNA, due to shifts in the concentrations of FA and FNA 

produced in partial nitritation systems. In this way, while the FA concentration increases with 

temperature, from about 20 mg/L at 25 °C to 120 mg/L at 35 °C, FNA shows the opposite behavior, 

with 0.5 mg/L at 25 °C and 0.1 mg/L at 35 °C. Thus, at low temperatures, FNA is the main inhibitor of 

AOB, while at high temperatures, it is the combination of FA and FNA that inhibits  

ammonium oxidation [54]. 

In practice, partial nitritation reactors are commonly operated in the range of 30–35 °C to ensure 

that AOB outcompetes NOB [54]. However, even though partial nitritation reactors have been widely 

operated at 35 °C, there is not much difference in the practical operation between 25 °C and 35 °C in 

terms of growth of AOB and NOB; in practical operation, 25 °C is considered enough for the purpose 

of NOB control [21]. 

3.3. Effect of pH and DO  

The pH in a partial nitritation reactor has an impact on its performance. In fact, pH has been 

reported as a key parameter affecting influent quality in models for laboratory-scale partial nitritation 

bioreactors [55]. It has been proposed that the influence of pH on ammonium oxidation in partial 

nitritation reactors is driven by three processes: activation and deactivation of nitrifying enzymes; 

changes in inorganic carbon concentrations; and changes in FA and FNA concentrations [20,56]. At 

higher pH, carbonate and bicarbonate are present at higher concentrations, and thus, the buffer capacity 

of the system increases. On the contrary, as the pH drops below 7.7, the equilibrium tends to carbon 
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dioxide, leading to a loss of buffer capacity [36]. High pH has been related to the formation of FA, 

which is the primary substrate for AOB, and has also been related to a decrease in FNA concentration, 

which is the primary substrate of NOB communities [38]. On the other hand, it has been demonstrated 

that nitrification does not occur below pH 6 [11,20]. Therefore, control of the pH in partial nitritation 

systems can select for AOB and inhibit NOB, due to the formation of FA and the limitation  

of FNA [45,57]. 

It has been reported that the optimal pH for Nitrosomonas spp., typical AOB, ranges between 7.9 

and 8.2 and that for Nitrobacter spp., typical NOB, it ranges between 7.2 and 7.6, while the optimal pH 

for partial nitritation reactor operation ranges between 7.0 and 8.0 [11,38]. The higher tolerance of 

AOB to low pH is thought to result from their ability to develop thick extracellular polymeric 

substance (EPS) layers [58]. 

DO concentrations have an impact on the performance of a partial nitritation reactor. It has been 

found that ammonium oxidation increases with DO concentration, regardless of the C/N ratio, for the 

same ammonium volumetric loading rate [24]. 

Half saturation constant values for oxygen of AOB and NOB were reported to be 0.2–0.4 mg L−1 

and 1.2–1.5 mg L−1, respectively, which supports the hypothesis of the lower affinity for oxygen of 

NOB than AOB [11,21]. Following this, oxygen limitation inside partial nitritation reactors is an 

efficient way to control NOB development. Some studies state that the growth rate of AOB is higher 

than that of NOB when DO concentrations drop below 1 mg L−1 [22]. Therefore, DO concentrations 

lower than 1 mg L−1 are used to control NOB in partial nitritation reactors [59,60]. The accumulation 

of nitrite can be controlled in a short time by setting DO concentration to 0.4–0.8 mg L−1. Furthermore, 

at DO concentrations of 2 mg L−1 or higher, a substantial accumulation of nitrate occurs in partial 

nitritation bioreactors [49]. Some authors used aeration of lower than 0.1 (mair
3 day−1)/(kg N m−3 day−1) 

in order to control nitrate accumulation [22]. In addition, low DO concentrations are related to 

increasing NO and N2O emissions [11]. 

Partial nitritation processes have been reported as responsible for the emissions of CH4 and N2O to 

the atmosphere [61–64]. Even though CH4 emissions have been related to soluble CH4 stripped from reject 

wastewater treated in partial nitritation systems, N2O emissions have been correlated with DO 

concentration. In this way, higher DO concentrations inside the bioreactor will decrease the %N2O/Noxidized 

ratio. When normal operation parameters were used, emissions of 19.3% ± 7.5%N2O/Noxidized were found 

for a partial nitritation sequencing batch reactor (SBR) process [65]. 

3.4. Effect of HRT and SRT  

It has been reported that Nitrosomonas spp., typical AOB [24], have a maximum growth rate of 

0.54 ± 0.09 day−1, while Nitrobacter spp., typical NOB [24], have a maximum growth rate of  

0.67 ± 0.03 day−1 [66]. Other authors have reported similar values for a minimum doubling time of 

AOB (7–8 h) and NOB (10–13 h) [21]. Given the shorter doubling time of AOB compared with NOB, 

control of NOB populations can be achieved with the utilization of the HRT/SRT. If HRT is set shorter 

than the AOB doubling time, then no ammonium oxidation will occur, and if HRT is set longer than 

the NOB doubling time, then the system will undergo nitrate generation. For this reason, SRT should 

be set longer than the AOB doubling time, but shorter than the NOB doubling time. In addition to this, 
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partial nitritation bioreactors will avoid sludge retention, given that the recycling of biomass will make 

NOB persist in the system and, therefore, develop in it. For this reason, partial nitritation reactors are 

generally operated without sludge retention [8]. 

Conventionally, HRT and SRT are set up to be the same time in partial nitritation reactors. 

However, the development of non-coupled HRT and SRT partial nitritation bioreactors has been 

attempted by biofilter partial nitritation reactors. By setting up a biofilter process, SRT is increased 

with respect to HRT. It has been confirmed that biotransformation of ammonium to nitrite is  

three-times higher in biofilter partial nitritation reactors than in conventional partial  

nitritation reactors [1]. 

The impact of HRT on partial nitritation reactors has been evaluated by several authors. It was 

found that higher HRTs, at the same SRTs, led to higher oxidation of ammonium to nitrite [1,25,37]. 

Differences in ammonium oxidation at different HRTs are due to differences in microbial community 

structure inside the bioreactor at these HRTs. Differences in bacterial diversity have been reported in 

biofilter partial nitritation reactors for different HRTs. Within long HRTs of 12 h, the dominant 

phylotypes are Nitrosomonas europaea and Nitrosomonas eutropha, with the importance of 

Diaphorobacter sp. At moderately long HRTs of 9 h, the dominant species are N. europaea, Nitrosospira 

spp., and Paracoccus spp., with the presence of Nitrosovibrio spp., Rhodobacter spp. and 

Catellibacterium spp. [1,25]. A decrease in microbial diversity at high HRTs due to competition for 

ammonium has been observed, which links bacterial community structure to ammonium oxidation in 

partial nitritation reactors [1]. At high HRTs, the ammonium loading rate decreases in the system. 

Under these conditions, ammonium is scarce and bacteria with high affinity for ammonium will 

rapidly thrive inside the bioreactor, outcompeting other bacteria with a lower affinity for this substrate. 

The selection of bacteria with high ammonium affinity will increase the biotransformation rate of the 

system. Therefore, control of a biofilter partial nitritation reactor can be achieved by changing the HRT 

of the system [1]. 

The SRT also has an influence on bacterial communities in partial nitritation reactors. As a main 

control of NOB in the system, the SRT should be set lower than the duplication time of NOB, thus 

ensuring the washout of these bacteria from the reactor [8]. Nevertheless, a short SRT also leads to a 

loss of AOB biomass. In this way, partial nitritation reactors have been conventionally operated as 

suspended growth processes [30,67,68]. On the other hand, it has been confirmed that attached growth 

partial nitritation processes with attached/granular biomass have advantages over suspended growth 

partial nitritation processes, such as enhanced AOB biofilm formation [69]. Attached growth processes 

for partial nitritation systems have been successfully applied at the pilot-plant scale [1,5]. An efficient, 

stable, 50%–50% ammonium–nitrate ratio in the effluent has been achieved at optimum HRTs of  

7 h [5]. In this sense, it can be said that HRTs lower than 7 h could not achieve the oxidation of half of 

the influent ammonium, with the consequent failure of the operation of the system. An analysis of 

bacterial community dynamics at shorter HRTs has not been attempted to date in biofilter partial 

nitritation reactors. It has been proven that attached growth processes offer up to 100-times higher 

biomass retention and 10-times lower loss of biomass and require a lower HRT than suspended  

growth processes [70]. 
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3.5. Effect of Salinity, Starvation of Biomass and Emerging Contaminants  

Salinity affects the performance of partial nitritation systems. It has been concluded that concentrations 

of 85 mM NaCl increases ammonium conversion by up to 30%. As the NaCl concentration rises, the 

system loses stimulation and tends to similar values of performance as those for the no-salinity scenario. 

Nevertheless, at NaCl concentrations of 256 mM and higher, the system loses the capacity for ammonium 

oxidation. At 342 mM NaCl, ammonium oxidation in the system is 70% less compared with no-salinity 

operation [4]. The sensitivity of AOB has been identified after short-term exposure to salinity, but the 

adaptation of N. europaea strains to high salinity conditions has also been observed [71,72]. 

The bacterial dynamics of AOB and NOB communities inside a partial nitritation bioreactor subjected 

to a long period of starvation were studied [73]. When the feed of a partial nitritation reactor ceases, 

ammonium availability starts to decrease due to AOB activity, until all of the ammonium has been 

oxidized. At this point, due to the lack of substrate, AOB communities exhibit a sharp decrease in relative 

abundance, from 77% to less than 1%. On the other hand, NOB communities gain relative abundance 

due to the availability of nitrite excreted by AOB. This trend stops when all of the nitrite is consumed 

within the system. When the starvation period ceases and the bioreactor is subjected to a regular feed 

again, AOB communities develop rapidly, achieving a steady state similar to that before the starvation 

period after 15 days. 

Emerging contaminants (ECs) have been proposed as particular pollutants that, in fact, have never 

been studied before [74]. They came to the attention of the scientific community recently and are 

different from traditional pollutants. Contaminants of emerging concern today include pharmaceutical 

products, plasticizers, flame retardants, new-generation pesticides, cyanotoxins and more. 

Pharmaceuticals have been reported as some of the most important ECs. They are present in urban 

and industrial wastewater treatment systems all around the world (an example from the analysis of 

pharmaceuticals from three wastewater treatment plants of Catalonia region, Spain, is given in  

Table 3) and have been targeted as contaminants of emerging concern [1]. As an example, different 

antibiotics have been detected at concentrations of up to 450 ng L−1 in urban wastewater treatment 

plants [75]. In this context, it has been reported that the partial nitritation process can be drastically 

inhibited by quinolone antibiotics, such as ciprofloxacin [76]. Quinolone antibiotics have been found 

in influent urban wastewater in concentrations ranging up to 426 ng/L [3]. 

As indicated above, the effect of ciprofloxacin on the performance and the bacterial community 

dynamics of a partial nitritation reactor has been studied [3]. Ciprofloxacin at 100 ng L−1 impacts the 

performance of the system, which loses 40% capacity of ammonium conversion during the first several 

days, but stabilizes within a month, showing a more efficient conversion of ammonium than before the 

antibiotic addition. On the other hand, concentrations up of 350 ng L−1 ciprofloxacin drastically reduce 

ammonium oxidation, by 70%, during the first several days. When the system stabilizes, ammonium 

conversion recovers, but the performance reached is 30% lower compared with that at the beginning of 

the experiment. Biomass in the system decreases when ciprofloxacin is added, by about 40% for  

100 ng L−1 and 60% for 350 ng L−1, but at the end of the experiment, there is a net increase in the 

biomass (5% for the lower concentration and 80% for the higher concentration). In the case of  

100 ng L−1 ciprofloxacin, bacterial community dynamics start with a decrease of the relative 

abundance of AOB and end with a slight net increase in the importance of AOB with respect to the 
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starting structure. On the other hand, ciprofloxacin at concentrations of up to 350 ng L−1 removes the 

AOB domination of the system, in favor of Comamonas strains. With time, AOB tend to grow in 

importance; however, the microbial community structure has still shifted completely, and the recovery 

of the system is impossible (Figure 3). 

Table 3. Examples of pharmaceutical emerging contaminants (ECs) detected in influent 

and effluent wastewater of wastewater treatment plants (adapted from [77]). 

Compound 
Frequency of detection (%) 

Influent wastewater Effluent wastewater 

Carbamazepine 100 100 
Diazepam 54 54 

Trimethoprim 100 96 
Ketoprofen 100 54 
Mevastatin 12 8 

Clarithromycin 73 85 
Salbutamol 69 58 
Furosemide 100 96 

Sulphamethazine 58 65 
Diclofenac 92 100 

Figure 3. Bacterial community structure of a biofilter partial nitritation bioreactor 

operating at stable nitrogen removal values subjected to the addition of ciprofloxacin 

antibiotic to its influent (adapted from [3]). It can be observed that the addition of 350 ng/L 

of ciprofloxacin dramatically changed the microbial community structure in the system. 

Furthermore, partial nitritation bioreactors can withstand ciprofloxacin concentrations of 

up to 100 ng/L with no significant impact on the microbiota. 

 



Water 2014, 6 1917 

 

 

4. Future Trends for the Partial Nitritation Process  

The application of partial nitritation systems to nitrogen removal from wastewater is becoming 

more and more popular around the world. Today, full-scale plants that implement the partial 

nitritation/anammox system for nitrogen elimination from reject wastewater are a reality [3,76]. In 

addition, the oxidation of ammonium to nitrite is a necessary step for anammox bacteria (Table 2) to 

carry out autotrophic denitrification [3]. Therefore, the development of systems that rely on the 

anammox elimination of nitrogen will need to take into account partial nitritation processes. 

A promising technology based on anammox microorganisms is the CANON process. In these 

systems, partial nitritation and anaerobic ammonium oxidation mediated by anammox bacteria take 

place in the same bioreactor. A coupled partial nitritation-anammox reaction is possible due to the 

syntrophic metabolism of AOB and anammox bacteria and its spatial organization in granular biomass 

(Figure 4) [78]. Therefore, the necessity for two different bioreactors for partial nitritation and the 

elimination of nitrogen via the anammox pathway, as in the partial nitritation/anammox process, is 

removed. In spite of their engineering advantages, CANON systems are more complicated in practical 

operation than partial nitritation bioreactors. The competition of NOB with AOB for oxygen and with 

anammox bacteria for nitrite is the major problem for the performance of these systems [79]. The 

growth of NOB inside CANON bioreactors is commonly avoided by limiting the DO concentration in 

the system. The selection of AOB and the inactivation of NOB coupled with the growth of anammox 

bacteria inside the same bioreactor arises as the immediate future application of partial nitritation. 

Figure 4. Fluorescence in situ hybridization (FISH) image of a biomass granule from a 

CANON bioreactor. AOB (green) and anammox bacteria (red) are displaced next to each 

other; the spatial organization of AOB and anammox bacteria inside the granule is 

determined by the syntrophic relationships among the phylotypes. 

 

On the other hand, the development of partial nitritation systems has yet to solve the main problem 

that these processes have: the development of NOB communities inside the bioreactor. Many steps can 

be taken to further avoid the growth of NOB species in partial nitritation reactors. One of these steps is 
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to turn partial nitritation processes into fully anaerobic processes. This can be done by taking into 

account the anaerobic nature of autotrophic ammonium oxidation [9]. 

Strains of N. eutropha were reported to perform anaerobic ammonium oxidation with the mediation 

of nitrogen dioxide as an electron acceptor [80]. Further investigation showed that dinitrogen 

tetraoxide could also be utilized as the final electron acceptor for anaerobic autotrophic ammonium 

oxidation in an N. eutropha species [81]. Later, a new pathway for anaerobic autotrophic ammonium 

oxidation was proposed [81]. Here, dinitrogen tetraoxide oxidizes ammonium to hydroxylamine and 

nitrous oxide with the mediation of the enzyme, AMO. In this way, for the purposes of anaerobic 

ammonium oxidation in N. eutropha, the presence of oxygen just causes nitrous oxide to become 

oxidized to nitrogen dioxide [82]. Furthermore, the study of the nitrogen cycle in oxygen-depleted 

marine areas suggests that anaerobic ammonium oxidation is linked to Mn, Fe and S reduction [83–86]. 

If AOB can perform anaerobic ammonium oxidation, then partial nitritation reactors could avoid the 

growth of NOB communities by setting up anaerobic conditions in the system. Further work on 

technologies relying on this pathway aims to change the future perspectives of autotrophic nitrogen 

removal processes. 
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