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Abstract: The Chao Phraya River in Thailand has been greatly affected by climate change and the 
occurrence of extreme flood events, hindering its economic development. This study assessed the 
hydrological responses of the Chao Phraya River basin under several climate sensitivity and 
greenhouse gas emission scenarios. The Soil and Water Assessment Tool (SWAT) model was 
applied to simulate the streamflow using meteorological and observed data over a nine-year period 
from 2003 to 2011. The SWAT model produced an acceptable performance for calibration and 
validation, yielding Nash-Sutcliffe efficiency (NSE) values greater than 0.5. Precipitation scenarios 
yielded streamflow variations that corresponded to the change of rainfall intensity and amount of 
rainfall, while scenarios with increased air temperatures predicted future water shortages. High 
CO2 concentration scenarios incorporated plant responses that led to a dramatic increase in 
streamflow. The greenhouse gas emission scenarios increased the streamflow variations to 6.8%, 
41.9%, and 38.4% from the reference period (2003–2011). This study also provided a framework 
upon which the peak flow can be managed to control the nonpoint sources during wet season. We 
hope that the future climate scenarios presented in this study could provide predictive information 
for the river basin. 
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1. Introduction 

Current environmental changes due to either natural or anthropogenic influences are creating a 
significant impact on natural resources and the living conditions of humans [1]. In particular, as a 
critical natural resource, water bodies have been subjected to pollution and are reaching scarcity 
levels around the globe [2,3]. Climate change is a key factor that has greatly affected water resources, 
due to its uncertainty and variability [4–6]; the intensities and frequencies of rainfall have been 
fluctuating over the years, thereby changing the spatiotemporal distributions of water resources [7]. 
Furthermore, it is apparent that climate change influences a change in water quality by modifying 
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the surface and groundwater components [8,9]. Floods and droughts brought about by climate 
change may also lead to a change in water quality by increasing the effects of erosion or  
dilution [8,10,11]. 

There are several signs that the varying rainfall intensity has caused a change in climate 
change factors. These change factors include the increasing global surface temperature and 
significant local impacts such as high-magnitude floods, prolonged droughts, flow variability, 
temperature rise, and decreased rainfall [12–14]. As such, there is a need to change the perception of 
climate change and its uncertainty and vulnerability since its weaknesses should be prioritized. 
Though a certain level of uncertainty has always existed in water resource management and 
planning, alternative approaches to manage water resources have been proposed, such as  
creating climate change scenarios with respect to speed and intensity of changes in baseline 
conditions [15,16]. In addition, though it is difficult to mitigate the effect of climate on water 
quantity since policy makers should obtain scientific and predictive information, for effective water 
resources management, the accurate prediction of water quantity and quality is a necessary 
response to the climate change scenario [17–19]. 

The Chao Phraya River, a major river basin in the Mekong subregion and the largest 
watershed in Thailand, serves mostly as a source for irrigation water and a transportation  
route in Central Thailand [20]. Over the years, climate change has greatly affected the river, which 
may subsequently hinder the economic development and the eradication of poverty in  
adjacent countries [21]. The Chao Phraya River basin has experienced extreme floods, which has 
brought about the subsequent contamination water used for human consumption [22], health 
problems [23,24], and economic loss on Thai Rice exports [25]. For example, the flood event that 
occurred in 2011 caused 813 fatalities nationwide and $45.7 billion in economic damages and  
losses [26,27]. This event prompted several researchers to conduct further case studies in different 
fields, including disaster management [28] and medicine [29,30]. 

Water management of irrigation water is very important for the Chao Phraya River basin 
because it is one of the world’s major agricultural producers, having a cultivated area of 
approximately 51% (cropland) [31–33]. However, climate change has also played a significant role 
in the rate of landuse changes in the basin [34]. Farmers respond to weather conditions by changing 
crops seasonally, the timing of planting and harvesting, and other daily activities [35]. In cases such 
as this, there remains a need to understand the characteristics of the basin and its hydrological 
response to climate change. 

To address the issues presented by extreme flood events and climate change, this study 
investigates the impact of climate change scenarios on the basin. The aims of this investigation are 
thus to: (1) calibrate and validate the water quantity in the Chao Phraya River basin using the Soil 
and Water Assessment Tool (SWAT) model; and (2) assess hydrological responses under 
hypothetical climate sensitivity scenarios and greenhouse gas emission scenarios. The results of this 
research will both help improve the foundation of water resource management based on these 
climate change scenarios and also provide an evaluation of highly variable climate changes on  
the basin. 

2. Methodology 

2.1. Site Description 

The Chao Phraya River is an important water resource that supplies water to irrigated, urban, 
and domestic areas of the central part of Thailand [36]. Figure 1 presents the land use classes used 
in the SWAT model. It also includes the weather and outlet stations of the Chao Phraya River basin. 
The basin has 51.66% agriculture area, which depends on the main river and its tributaries to 
cultivate crops, such as rice, sugarcane, and corn. The river has four main tributaries: the Wang, 
Yom, Ping, and Nan Rivers and a significant lateral tributary, the Pasak River. The river drains an 
area of approximately 160,000 km2 (98° E–103° E, 13° N–20° N), covering 30% of the country, and 
receives annual precipitation of about 1,179 mm/year and an average discharge of 196 m3/s at Chai 
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Nat Station [37]. The basin is in a tropical climate, and is influenced by northeast and southwest 
monsoons. The northeast monsoon brings in cool and dry air from November to February, whereas 
the southwest monsoon brings very humid air, thus causing heavy rains from May to October [38]. 

 
Figure 1. Chao Phraya River basin is shown in the map. It includes the locations of the twelve 
weather stations (yellow squares) of the basin as well as the outlet stations (red circles) of the river, 
which also served as monitoring stations. Chai Nat Station has been chosen for the SWAT model 
simulation of the streamflow. 

2.2. SWAT Model 

The Soil and Water Assessment Tool (SWAT) is watershed model that can be applied to simple 
and complex watersheds. It is a continuous-time model that operates on a daily time step and was 
developed for the USDA Agricultural Research Service (ARS) to predict the impact of management 
on water, sediment, and agricultural chemical yields in large complex watersheds [39]. The model is 
physically-based, uses readily available inputs, is computationally efficient, and is able to 
continuously simulate long-term impacts. Major model components include hydrology, weather, 
soil, temperature, plant growth, nutrients, pesticides, and land management. The SWAT model 
divides the watershed into multiple subwatersheds, which are then further subdivided into 
hydrologic response units (HRUs) that consist of homogenous land use, management, and soil 
characteristics. Models calibrated using watershed and water quality data have been used to 
forecast water quantity/quality in response to climate change scenarios; the SWAT model has been 
widely used to predict water quantity and quality in response to various management and climate 
scenarios [40–51]. 

2.3. Model Application 

To construct the Chao Phraya River basin model, a model database was compiled using 
topographical data, consisting of a digital elevation map, landuse, soil and river basin, 
meteorological data (e.g., precipitation, and maximum and minimum temperature), and observed 
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monitoring data (e.g., flow discharge). The topographical data included a digital elevation model 
(DEM) in GeoTiff grid tiles (5° × 5° tiles) created from a water database [52]; the data was derived 
from USGS/NASA Shuttle Radar Topography Mission (SRTM) data with a 90 m resolution. The 
land use data has a spatial resolution of 1 km that included 14 classes of landuse representations 
from the USGS Global Land Cover Characterization (GLCC) database [53]. There were also 14 soil 
types in the soil grid provided by the Food and Agriculture Organization of the United Nations [54]. 
We also obtained nine-year meteorological data (2003–2011) from the Thai Meteorological 
Department, which included daily precipitation and maximum/minimum temperatures from  
12 stations within the Chao Phraya River basin. 

The SWAT model was able to delineate an area of 119,663 km2 of the Chao Phraya River basin. 
Figure 1 illustrates the Chao Phraya River basin built by SWAT. Landuse classes of the basin are 
listed in Table 1, showing that the basin is mainly comprised of agriculture area and broadleaf forest. 
The table also indicates that half of the area used for agriculture was irrigated cropland and pasture 
(CRIR). Streamflow was monitored at the Chai Nat Station located in Chai Nat province. The 
observed flow data of the said station was stable and were acquired from the Royal Irrigation 
Department Computer Center in Sanphaya, Chai Nat. 

Table 1. Area and percentage of land cover in the Chao Phraya River basin. 

Landuse Definition Area (ha) Percentage (%) 
CRIR Irrigated cropland and pasture 6,181,831 51.66 
FODB Deciduous broadleaf forest 1,947,509 16.27 
FOEB Evergreen broadleaf forest 1,503,653 12.57 
SAVA Savanna 1,038,567 8.68 
FOMI Mixed forest 495,301 4.14 

CRWO Cropland/woodland mosaic 294,706 2.46 
SHRB Shrubland 270,081 2.26 
WATB Water bodies 113,731 0.95 
CRDY Dryland cropland and pasture 79,365 0.66 
URMD Urban residential medium density 37,820 0.32 
GRAS Grassland 3060 0.03 
CRGR Cropland/grassland mosaic 381 0 
BSVG Barren or sparsely vegetated 249 0 

Watershed 11,966,254 100 

2.4. Sensitivity Analysis 

The Latin Hypercube—One-factor-At-a-Time (LH-OAT) method is a sensitivity analysis 
technique that combined the robustness of the Latin Hypercube (LH) sampling method and a 
one-factor-at-a-time (OAT) design [55]. It searches for good performance using a limited parameter 
number of important factors for model calibration and model output for a particular basin. LH is a 
stratified sampling method developed by McKay et al. [56] and is based on the Monte Carlo 
simulation; the OAT design was developed by Morris [57] and is used to observe the changes in the 
output by changing a particular input. LH-OAT method firstly divides the range of the parameters 
into segments then takes LH samples from each parameter to create parameter sets. The OAT 
design can then achieve global sensitivity by changing an entire parameter range using the  
LH samples [58]. Table 2 shows the 15 SWAT model parameters that were subjected to  
sensitivity analysis. 
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Table 2. Soil and water assessment tool (SWAT) model parameters used for the sensitivity analysis. 

Name Definition Range Process 

Cn2 
Soil Conversion Service (SCS) runoff curve 

number for moisture condition 2 35–98 Runoff 

Alpha_Bf Baseflow alpha factor (days) 0.00–1.00 Groundwater 
Rchrg_Dp Deep aquifer percolation fraction 0.00–1.00 Groundwater 

Esco Soil evaporation compensation factor  0.00–1.00 Evaporation 

Revapmn Threshold depth of water in the shallow aquifer 
for percolation to the deep aquifer (mmH2O) 

0–500 Groundwater 

Ch_K2 Effective hydraulic conductivity in main 
channel alluvium (mm/h) 

−0.01–150 Channel 

Gwqmn 
Threshold depth of water in the shallow aquifer 

required for return flow to occur (mm) 0–5000 Soil 

Sol_Awc 
Available water capacity of the soil layer 

(mm/mm soil) 0–100 Soil 

Sol_Z Maximum canopy index Soil depth 0–3000 Soil 
Gw_Revap Groundwater “revap” coefficient 0.02–0.2 Groundwater 

Surlag Surface runoff lag coefficient 0.00–10.00 Runoff 
Blai Leaf area index for crop 0.00–1.00 Crop 

Slope Average slope steepness (m/m) 0.0001–0.6 Geomorphology 
Canmx Maximum canopy index 0.00–10.00 Runoff 

Epco 
Threshold depth of water in the shallow aquifer 

to percolation to the deep aquifer (mmH2O) 0.00–1.00 Evaporation 

2.5. Performance Assessment 

We applied a coefficient of determination (R2), Nash-Sutcliffe efficiency (NSE), and root mean 
square error (RMSE) to evaluate the model performance. R2 evaluated how accurate the simulated 
values were compared to the observed values and is defined as the squared value of 
Bravais-Pearson’s coefficient of correlation (r) [59,60]. It depicts the strength between the simulated 
and observed data and the direction of the linear relation. R2 is expressed as the squared ratio 
between the covariance and the multiplied standard deviation of the observation and simulated 
values [61]. NSE measures the goodness of fit and describes the variance between the simulated and 
observed values [62]. NSE values can differ from negative values up to less than one [63]. Generally, 
the calibration and validation values of the SWAT model are considered to be acceptable or 
satisfactory performances when NSE is within the range of 0.5 and 0.65, 0.65–0.75 is considered 
satisfactory, while 0.75–1.00 indicate a very good performance [64–66]. Table 3 presents the 
performance ratings for NSE, as suggested by Moriasi et al. (2007). Lastly, RMSE was used to assess 
the validity of the model in this study. It measures the square root of the distance between the 
observed and predicted values and gives an estimate of the variability of the model compared to the 
observations [49]. The desired value for RMSE is 0, which depicts a perfect simulation, with lower 
values representing better performance [67]. 

Table 3. General performance rating for the recommended statistics for monthly time step [68]. 

Performance Rating NSE
Very good 0.75 < NSE ≤ 1.00 

Good 0.65 < NSE ≤ 0.75 
Satisfactory 0.50 < NSE ≤ 0.65 

Unsatisfactory NSE ≤ 0.50 
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2.6. Climate Change Scenarios 

We applied a Special Report on Emission Scenario (SRES) to assess the hydrological response 
using a future climate change scenario. We applied the Commonwealth Scientific and Industrial 
Research Organisation (CSIRO) Mark 3.5 (Mk3.5) (CSIRO Atmospheric Research, Melbourne, 
Victoria, Australia)from the CSIRO Marine and Atmospheric Research in Australia as the future 
climate change model since it provides daily meteorological data for a long period for each climate 
change scenario. The future climate scenarios from the Intergovernmental Panel on Climate Change 
(IPCC) (A2, A1B, and B1) were chosen as its outputs (greenhouse gas emission scenarios) [69,70]. 
Mk3.5 is based on CSIRO Mark 3.0 (Mk3.0), a prior model version that has a fully coupled 
ocean-atmosphere system [71]. It is a spectral model that was developed to use the horizontal 
spectral resolution T63 [1.875° EW × 1.875° NS] with 18 vertical levels, and to remove the cold bias of 
Mk3.0 due to the rising of global air temperature [72]. 

Four different qualitative storylines were developed by IPCC that represented the  
different demographic, social, economic, technological, and environmental developments of the 
communities [73,74]. SRES scenarios A1B, A2, and B1 were chosen for this study [75,76]. A1B is 
under the A1 storyline and scenario family, which emphasizes globalization. A1B is described as a 
balance across all energy sources that do not rely heavily on a specific source [40]. The A2 scenario 
describes a very heterogeneous world with slower economic growth and technological advancement 
compared to the other storylines. Lastly, the B1 scenario stresses on rapid economic change towards 
service and information, social and environmental sustainability, improved equity, and global 
solutions without additional climate initiatives [77]. 

The potential future climate included a set of gridded map layers for the daily precipitation and 
air temperature for 2051–2059, based on the output from a set of SRES. GCM produced the climate 
data applied in this study; however, the coarse resolution of GCM will reduce the accuracy of the 
results. An interpolation method was implemented to convert the GCMs of the 12 meteorological 
stations to finer regional resolutions. The converted climate data was then downscaled and used as 
weather inputs for the SWAT model. 

The change factor method, a downscaling technique, was used to adjust the observed daily 
temperature and daily precipitation using Equations (1) and (2), respectively. The daily temperature 
at the 2059 horizon was obtained by adding the difference of mean daily temperature in 2059 
horizon predicted by the climate model and mean temperature of the reference period (2003–2011) 
to the observed daily temperature, obtained using Equation (1) [78]. The daily precipitation was 
calculated by multiplying the observed daily precipitation with the ratio of the mean projected daily 
precipitation at the 2059 horizon, and the mean precipitation of the reference period, as described in 
Equation (2) [79]. 

௔ܶௗ௝,ଶ଴ହଽ,ௗ = ௢ܶ௕௦,ௗ + (തܶതത஼ெ,ଶ଴ହଽ,௠ − തܶതത஼ெ,௥௘௙,௠) (1)

௔ܲௗ௝,ଶ଴ହଽ,ௗ = ௢ܲ௕௦,ௗ × (തܲതത஼ெ,ଶ଴ହଽ,௠ ÷ തܲതത஼ெ,௥௘௙,௠) (2)

where Tobs,d and Pobs,d are the observed daily temperature and precipitation, TCM,2059,m and PCM,2059,m are 
the projected daily temperature and precipitation at the 2059 horizon obtained by the climate model, 
TCM,ref,m and PCM,ref,m are the temperature and precipitation during the reference period (2003–2011), 
and Tadj,2059,d and Padj,2059,d are the daily temperature and precipitation at the 2059 horizon. The 
averages of the temperature and precipitation from the 12 meteorological stations were the data 
used for the TCM,ref,m and PCM,ref,m, respectively. The strength of the change factor (CF) method is 
similar to the results of factors derived from GCM or Regional Climate Model (RCM). 

Table 4 shows the conditions of the hypothetical climate sensitivity scenarios. There were zero 
changes in precipitation and temperature at the reference point, with CO2 concentrations at  
330 ppm. Scenarios 1 to 3 have twice the CO2 concentration (660 ppm) and high variation in the 
precipitation and air temperature. Scenarios 4 to 7 show variations in the precipitation, while 
maintaining constant CO2 concentrations and air temperatures. Scenarios 8 to 10 have variations air 
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temperature, while CO2 concentrations and precipitations remain constant. The change factors of the 
SRES scenarios, A1B, A2, and B1, were also included in the table. 

Table 4. Conditions of climate sensitivity scenarios and intergovernmental panel on climate change 
(IPCC) special report on emissions scenarios relative to the baseline. Scenarios 1–3 are referred to as 
the CO2 scenarios, 4–7 as precipitation change scenarios, and 8–10 as temperature increase scenarios. 

Scenario CO2 Concentration (ppm) Precipitation Change (%) Temperature (°C)
Baseline 330 0 0 

1 CO2 × 2 = 660 0 0 
2 CO2 × 2 = 660 +20 0 
3 CO2 × 2 = 660 0 +6 
4 330 +10 0 
5 330 +20 0 
6 330 −10 0 
7 330 −20 0 
8 330 0 +1 
9 330 0 +3 

10 330 0 +6 

A1B 330 +1.0644 
Max +2.0621 
Min +2.4954 

A2 330 +1.0338 Max +1.8729 
Min +2.2905 

B1 330 +1.0054 Max +0.7926 
Min +0.6106 

3. Results and Discussion 

3.1. Model Evaluation 

Thirty-five hydrological model parameters of the SWAT model underwent sensitivity and 
uncertainty analyses (e.g., Parameter solution (Para Sol) and Sequential Uncertainty Fitting (SUFI-2) 
in SWAT-CUP) to determine the optimal model parameters [80]. The top 11 parameters having 
sensitivity indices greater than or equal to 0.05 were then selected, as shown in Table 5 [81]. The 
result of the sensitivity analysis shows that the initial SCS runoff curve number for moisture 
condition II (CN2) and baseflow alpha factor-baseflow recession (Alpha_Bf) were the most sensitive 
parameters. They are followed by the deep aquifer percolation fraction (Rchrg_Dp), soil evaporation 
compensation factor (Esco), threshold depth of water in the shallow aquifer for percolation to the 
deep aquifer (Revapmn), effective hydraulic conductivity in main channel alluvium (Ch_K2), 
available water capacity of the soil layer (Sol_AWC), threshold depth of water in the shallow aquifer 
required for return flow to occur (Gwqmn), depth from soil surface to bottom of layer (Zol_Z), 
groundwater “revap”coefficient (Gw_Revap), and surface runoff lag coefficient (Surlag). Most 
parameters are related to either groundwater or soil process. The sensitive flow discharge 
parameters were then used to calibrate the model. 

One of the limitations of this research was having a large watershed model with only  
12 meteorological stations and one gauge station to calibrate the streamflow. The available data 
allowed nine years for the simulation period of the SWAT model. The comparison of daily observed 
and simulated streamflow during the nine-year (2003–2011) simulation period included a one-year 
spin up time (2003), a five-year (2004–2008) calibration period, and a three-year (2009–2011) 
validation period. Results from the statistical evaluation with the two numeric criteria including 
NSE, R2, and RMSE, are listed in Table 6. Figure 2 shows how well-matched the daily streamflow 
simulations with the observations were. The NSE values of the daily streamflow simulations for the 
calibration and validation were 0.74 and 0.81, respectively. On the other hand, the NSE values of the 



Water 2015, 7, 6892–6909 

6899 

monthly time step were 0.54 and 0.66 for the five-year calibration and three-year validations, 
respectively. The model evaluation statistics for the streamflow prediction show that there was a fair 
agreement between the measured and simulated flows, which were confirmed by the R2 and NSE 
being greater than 0.5 [62]. 

Table 5. Top 11 parameters yielded by the sensitivity analysis. 

Rank Name Definition Sensitivity Process
1 Cn2 SCS runoff curve number for moisture condition 2 1.49 Runoff 
2 Alpha_Bf Baseflow alpha factor (days) 1.42 Groundwater 
3 Rchrg_Dp Deep aquifer percolation fraction 0.66 Groundwater 
4 Esco Soil evaporation compensation factor 0.48 Evaporation 

5 Revapmn 
Threshold depth of water in the shallow aquifer for 

percolation to the deep aquifer (mm H2O) 
0.22 Groundwater 

6 Ch_K2 
Effective hydraulic conductivity in main channel 

alluvium (mm/h) 
0.20 Channel 

7 Gwqmn 
Threshold depth of water in the shallow aquifer 

required for return flow to occur (mm) 
0.18 Soil 

8 Sol_Awc Available water capacity of the soil layer (mm/mm soil) 0.14 Soil 
9 Sol_Z Maximum canopy index Soil depth 0.078 Soil 

10 Gw_Revap Groundwater “revap” coefficient 0.06 Groundwater 
11 Surlag Surface runoff lag coefficient 0.05 Runoff 

Table 6. Prediction accuracy for the monthly streamflow in terms of R2, Nash-Sutcliffe efficiency 
(NSE) and root mean square error (RMSE). 

Statistical Index Calibration Validation
R2 0.81 0.89 

NSE 0.54 0.66 
RMSE (m3/s) 2.5466 × 103 3.0224 × 103 

 
Figure 2. Observed and simulated streamflow and the corresponding daily rainfall during a 
nine-year period (2003–2011). Figure includes a one-year spin-up period (2003), five-year calibration 
period (2004–2008), and three-year validation period (2009–2011). 
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3.2. Climate Sensitivity Scenario 

3.2.1. CO2 Concentration 

Scenarios 1 to 3 have atmospheric CO2 concentrations of 660 ppm and a change in precipitation 
and air temperature (Table 7). These three scenarios were related to the stomatal conductance 
variable, which depends on the atmospheric CO2 concentration [82]. For climate change simulations 
in the SWAT model, the reduction in stomatal conductance and increase in leaf area index were 
attributed to an increase in the CO2 concentration [83]. According to the increasing atmospheric CO2 
concentration, variation in the streamflow was seen to be affected by the change in 
evapotranspiration, whereas the hydrological response depends on crop variables [84]. When the 
stomatal conductance of the vegetation decreases, the evapotranspiration also decreases, thus 
disturbing the water efficiency of the crops [84,85]. Table 7 shows the predicted relative change 
(percentage of baseline) in annual average streamflow with respect to the climate change scenario. In 
the calibration of the Chao Phraya subbasin, the annual average streamflow changed by 16.4% in 
calibration, another changed by 18.4%, with a maximum of 52.3% and a minimum of 1.6% in the 
whole basin. Scenario 2 reflects an increase of almost 48% in the annual average streamflow change 
of the subbasin; another subbasin increased by 52.6%, while the maximum was 128.9% and the 
minimum was 15.1% in the whole basin. Scenario 3, on the other hand, showed an annual average 
streamflow change of −5.3% at Chai Nat Station, whereas another site changed by −6.2%, with a 
maximum of 1.2%, and a minimum of −14.3% in the whole basin. 

Table 7. Predicted relative percentage change of annual average streamflow from the baseline under 
different climate sensitivity scenarios and special report on emission scenario (SRES) (B1, A1B, and 
A2). It also includes the streamflow change at the Chai Nat Station. 

Terms 
Ref Climate Sensitivity Scenario SRES 

Stream-Flow 
CO2 (%) Precipitation (%) Air Temperature (%) GCM (%) 

1 2 3 4 5 6 7 8 9 10 B1 A1B A2 
Chai Nat Station 562.8 16.4 48 −5.3 15.6 30 −15.8 −32.8 −3.1 −9.3 −19.2 24.7 41.9 49.8 
Max % change of 

the basin 
671.8 52.3 128.9 1.2 35.9 70 −7 −14.5 8.2 8.2 −1.3 107.8 136.5 146.4 

Min % change of 
the basin 

1.3 1.6 15.1 −14.3 5.9 11.6 −37.3 −71.4 −8.2 −23.8 −53 −17.5 −1.1 4.1 

Average % change 
of the basin 

68.5 18.4 52.6 −6.2 16.6 32.2 −16.7 −34.5 −3.5 −10.6 −21.4 19.7 37.7 47 

Figure 3a–c show streamflow variations of the basin, mostly ranging from −2% to 20%. The 
spatial variation for CO2 concentration scenario displayed an increasing streamflow change in  
the southern area of Chao Phraya River basin that is within the range of 20% to 42% (Figure 3a). 
Scenario 2 (Figure 3b) showed a total streamflow increase and a more sensitive response in the 
southern area of the basin, while Scenario 3 (Figure 3c) indicated a decrease in streamflow in the 
whole basin area. Higher concentrations of CO2 directly caused the stomata of plants to close, which 
then decreased their rate of transpiration and increased their water use, efficiency leading to a 
reduction in evapotranspiration [86]. The latter increased runoff and led to an increase in the 
streamflow. However, when increased CO2 concentration is paired with an increase in temperature, 
as shown by Scenario 3, the streamflow will decrease—as also stated by the negative change in the 
annual average streamflow of Scenario 3 [87]. 
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Figure 3. Spatial distributions of streamflow ratio under the climate sensitivity scenarios during  
the reference period (2003–2011) and SRES B1, A1B, and A2 (2051–2059). (a–c) CO2 scenarios;  
(d–f) Precipitation scenarios; (g–i) Temperature scenarios; and (j–l) SRES. 

3.2.2. Precipitation 

Scenarios 4 through 7 represent precipitation changes of +10%, +20%, −10%, and −20%, while 
holding the baseline CO2 concentration (330 ppm) and air temperature constant (Table 7). Annual 
average streamflow changes of 15.6%, 30%, −15.8, and −32.8% correspond to the changes implemented 
for the annual precipitation. On the other hand, changes in the annual average streamflow in the 
entire Chao Phraya River basin, 16.6%, 32.2%, −16.7%, and −34.5%, corresponded to the changes at 
Chai Nat Station. Figure 3d–f shows the spatial distributions of streamflow ratio of Scenarios 4 to 6, 
which reflect the results of the average streamflow changes. Figure 3f, which shows Scenario 6, 
represents the spatial distribution of the decrease in precipitation. It can be concluded that Scenario 7 
will have a darker shade, signifying an overall decrease of streamflow ratio in the basin. Based on 
these results, streamflow and precipitation have a positive linear relationship. One of the significant 
factors that affect streamflow is soil water content. Figure 4 shows the plots of soil water content of 
different scenarios. Compared to the others, the precipitation scenarios have notable differences 
from the baseline; as precipitation was increased, the soil water content also steadily increased. 
Increases or decreases in precipitation directly lead to corresponding directional changes in the 
streamflow [88,89]. 
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Figure 4. Water yield, soil water content, and groundwater recharge of Chao Phraya River basin 
under climate sensitivity scenarios. 

In terms of precipitation scenarios, the annual streamflow of Chao Phraya River have 
maximum changes of 35.9%, 70%, −7%, and −14.5%, and minimum changes of 5.9%, 11.6%, −37.3%, 
−71.4%. Figure 3g–i shows the variation of upstream flow, middle streamflow, and down streamflow 
from the Chao Phraya River. It can be seen that an increase in precipitation led to an increase in the 
annual average streamflow in the Chao Phraya Watershed, as indicated by Scenarios 4 and 5. These 
results coincide with other literature that investigated the hydrological impact of climate change and 
hydrological scenarios, which stated that the mean annual river discharge increases due to an 
increase in precipitation [90,91]. The decreased streamflow in Scenarios 6 and 7 also confirmed that 
precipitation plays a major role in streamflow variations. 

During the wet season, a precipitation change was responsible for the streamflow variation [92]. 
In the upstream, the annual average streamflow was 249.2 m3/s in September, while the middle and 
down streams had around 562.8 m3/s and 671.8 m3/s, respectively. Figure 5 compares the seasonal 
variation of the peak streamflow for dry and wet seasons. The apparent increase in the streamflow 
in the increasing trend of the precipitation scenarios could lead to flooding events during the wet 
season. Monsoonal rains occur in the Chao Phraya River every year from May to October, making 
the watershed vulnerable to flood-related disasters during this season [93–95]. In this study, the 
streamflow increased in May and continued to rise until reaching their peak in September. The peak 
streamflow of the baseline and scenarios are highlighted in blue in Figure 5. 
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Figure 5. Seasonal variations of the peak stream flow under different climate scenarios in a year. The 
peak streamflow of each scenario is highlighted in blue to emphasize the difference from the 
baseline. It includes the upstream, middle stream, and downstream regions of the Chao Phraya 
River. 

3.2.3. Air Temperature 

Scenarios 8–10 represent air temperature increases of 1 °C, 3 °C, and 6 °C, respectively, from the 
baseline, while maintaining the CO2 concentration at 330 ppm with no change in precipitation. 
Table 7 shows the variation of streamflow at the Chai Nat Station, which decreased by −3.1%, 
−9.3%, and −19.2% for Scenarios 8, 9, and 10. The table also includes the annual average streamflow 
and maximum and minimum changes in the annual average streamflow of the whole basin for each 
scenario. It was found that as the temperature increases, the average streamflow significantly 
decreases. These results indicate that a rise in temperature due to global warming may lead to a 
serious water shortage [96]. 

These results are similar to the results of spatial variations of previous scenarios, such as 
Scenarios 3, 6, and 7, which either increased the temperature or decreased the precipitation. In 
Scenario 6, Figure 3f shows that the southern area has a more sensitive response due to the 
significant decrease in its streamflow level. The southern part of the Chao Phraya Watershed also 
represents Central Thailand, which is described as a lush, fertile valley. This area is a perfect 
catchment basin of the mountainous Northern Thailand; thus, a drastic decrease in the streamflow 
will be first noticed in this area then followed by the rest of the watershed [97]. Figure 3g–i also 
shows a decrease in streamflow change in the entire river basin. 

3.2.4. Climate Change Effects of SRES 

We applied downscaled GCM outputs to modify the meteorological data in the SWAT model 
to predict the hydrological effect of potential future climate for the mid-21st century. Figure 3j–l 
illustrates baseline conditions of the monthly average precipitation and air temperature for the 
baseline period (2003–2011). Future climate change scenarios under three greenhouse gas emission 
scenarios from 2050–2059 are then projected. 

Figure 3j–l show the variation of locational streamflow under different emission scenarios. The 
predicted streamflow displayed a higher frequency of flood events, which was expected due to a 
shift in the peak flow runoff in early May. Relative to the baseline conditions, the annual average 
percentage changes of the projected climate scenarios in streamflow under B1, A1B, and A2 were 
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12.3%, 45.7%, and 40.8% respectively. The maximum values of annual average percentage changes 
were 95.7%, 138.3%, and 132.2%, whereas the minimum values were −33.3%, 5.3%, −0.7% in the 
basin. The variations in streamflow for the upstream, middle stream, and downstream follow 
similar baseline patterns under the projected climate scenarios. 

The previous spatial streamflow variations of Scenarios 8 to 10 yielded a decrease in 
streamflow at the southern part of the basin, whereas the middle-eastern area had a more 
significant increase in percentage change of the streamflow when the projected climate change 
scenario under SRES was applied. The middle-eastern area represents Northeast Thailand, an arid 
region having a rolling surface and undulating hills that often experiences harsh climatic 
conditions. These results are justified, as Chinvanno [98] previously stated that this part of Thailand 
will experience a significant shift in season with increased rainfall and a longer late season rain 
peak, consequently increasing its water quantity. The streamflow variation of three emission 
scenarios commonly displayed an increase of streamflow in this area of the river basin. 

4. Conclusions 

The SWAT model was used to create a hydrological model of the Chao Phraya Watershed to 
investigate the effect of climate sensitivity and greenhouse gas emission scenarios on its 
streamflow. The model yielded percentage increases of the streamflow that revealed a need to 
create safety measures during flood events: daily average streamflow (72.3%), during the wet 
season in early May (22.7%), and after May (70.1%). This study also achieved its objectives. 

1. The SWAT model showed a satisfactory performance in terms of calibration and validation, 
with R2 and NSE values greater than 0.5. 

2. Precipitation scenarios yielded streamflow variations that corresponded to the change of 
rainfall intensity and amount of rainfall, while scenarios with increased air temperature 
yielded a decrease in water level leading to a water shortage. However, the three greenhouse 
gas emission scenarios from 2051–2059 had streamflow variations that increased from the 
baseline (2003–2011). 

3. Scenarios 1 to 3 were related to an increase in CO2 concentration scenarios, which reduced 
stomatal conductance and increased the leaf area index. The results showed an increase in 
streamflow levels; however, a negative change in streamflow was also observed when the air 
temperature increased. 

4. Variations under three SRES indicate low streamflow values compared to those of the southern 
Chao Phraya Watershed. Hence, flood measures should be performed in the main streamline 
of Chao Phraya River and the southern area of the basin. As such, further water resource 
management will be needed in the northeastern area of the Chao Phraya river basin in the 
future. 

Further increasing the uncertainty of climate change brings a corresponding uncertainty into 
the predictions of severe flood and drought. In addition, change in the landuse of the Chao Phraya 
River subbasins may result in a different distribution, which also depends on the changes of climate 
conditions such as climate sensitivity scenarios and the three emission scenarios. 
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