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Abstract: This study developed a robust parameter set (ROPS) selection framework for a 

rainfall-runoff model that considers multi-events using the Pareto optimum and minimax 

regret approach (MRA). The calibrated parameter sets based on the Nash-Sutcliffe coefficient 

(NSE) for two events were derived using a genetic algorithm. We generated 41 combinations 

for weighting values between two events for the multi-event objective function and derived 

41 Pareto optimum points that were considered as the ROPS candidates. Then, two different 

approaches for parameter selection were proposed to determine the ROPS among the candidates: 

one uses NSE only and the other uses four performance measures (NSE, peak flow error, 

root mean square error and percentage of bias). In the NSE-only method, five events, including 

two events from the calibration set and three events from the evaluation set, were used, and 

the ROPS was selected based on the regrets of both the calibration and the evaluation sets. 

In the multiple (i.e., four) performance measure method, only three events from the evaluation 

set were used and the ROPS was determined based on the regrets of twelve different cases, 

including three events with four measures. As a result, while single- and multi-event 

optimizations produced satisfying results for the calibration events, the optimized parameters 

from the single-event calibration do not perform well for another event, even one with the 

same criteria, such as NSE. The results of this study suggest that the optimized parameter set 

from the well-weighted objective function can successfully simulate not only hydrographs 
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in general but also others, such as peak flow. In addition, the ROPS can be selected by considering 

the multiple performance measures of multiple validation events, as well as the NSE only of 

multiple calibration and validation events. Note that the study provides a framework that could 

be performed reasonably well with a limited number of events. While the computational 

resources might not be a limiting factor these days, it is still valuable to have such a tool for 

several reasons: one could utilize it for an operational decision making support tool, as the 

full searches for an optimal set of parameters might not be performed in the operational 

facility. It could also be used in a situation where one has a limited number of good-quality 

observational data for some reason.  

Keywords: genetic algorithm; hydrologic simulation model; minimax regret approach; 

multi-event objective function; Pareto optimum; robust parameter set selection 

 

1. Introduction 

Watershed models have been widely used by researchers and decision-makers to understand hydrological, 

ecological, and biogeochemical processes and to examine the effects of human activities and climate 

change or variability on water quantity and quality. However, these models require careful calibration 

of a large number of parameters, largely due to measurement limitations and scaling issues [1]. 

Rainfall-runoff models using climate data and land use and topographic information simulate the 

runoff from catchment basins based on a set of model parameters. Although certain model parameters 

can be experimentally determined, others have little or no physical meaning, and their values cannot be 

obtained directly from measurable quantities of catchment characteristics. Therefore, it is often necessary 

to calibrate the model to determine the model parameters. The process is typically performed via either 

manual or automatic procedures. In particular, the need for automatic calibration has been broadly recognized 

and increasingly emphasized for many years, and calibrations with multiple objective functions or criteria 

have been widely adopted [2]. Therefore, in recent years, several automatic routines that use a multi-objective 

formulation of the calibration problem that has been introduced to rainfall-runoff modeling [3–7].  

The performance of the model can be evaluated using different performance measures that can 

quantify the goodness of fit between the simulated and observed data. For hydrological rainfall-runoff 

models, the critical performance measures include the runoff volume, shape of hydrograph, peak, and 

low-flow timing, rate, and volume [8]. To solve multi-objective functions that include multiple performance 

measures, calibration techniques have evolved together with advances in computational power. However, 

as the number of objective functions that are included in the calibration has increased, the number of 

exact or near-Pareto-optimal parameter sets has also increased, and thus, calibration has evolved into a 

decision-making problem for selecting a set of suitable model parameters from a number of Pareto sets [2].  

Furthermore, great uncertainty exists in the determination of each observation site in the multi-site 

objective function [9–11] and the selection of each storm event in the multi-event optimization  

problem [8,12–14]. In both optimizations, there will be the same weighting problems on each site or for 

each event. Li et al. [9] used the same weight to all sites located on upstream or downstream of the river. 

Pierro et al. [13] developed an equal-weight summation approach consisting of formulating the model 
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calibration problem as a multi-objective problem with m × n objective functions, where m and n are the 

number of performance criteria and rainfall events, respectively, that must be optimized simultaneously.  

Nevertheless, as Shinma and Reis [15] have already mentioned, the equal-weighted approach is not 

reasonable in both multi-site and multi-event optimization problems. Therefore, they proposed the 

weighted sum approach, which is not necessarily as suitable for each event as the previous event-calibrated 

parameter values. However, these problems can be solved using a Pareto optimum, but it will still be 

impossible to select a parameter set for an actual rainfall-runoff simulation, because the non-linearity of 

the hydrological models and the objective functions leads to complex optimization problems [16]. Thus, 

Khu and Madsen [2] developed a multi-objective calibration procedure with Pareto preference ordering 

to select a more suitable and robust parameter set. It showed that Pareto-optimal points that are also Pareto 

optimal in different subspace combinations of the objective functions space are preferred. However, it 

requires tremendous calculation time and efforts and cannot be frequently used in the real application.  

Therefore, this study developed an efficient and systematic procedure to select the robust parameter 

set (ROPS) for the hydrologic simulation model combining Pareto optimum, weighted sum approach, 

and minimax regret approach (MRA). MRA was used to derive the ROPS from many available optimized 

parameter sets based on several performance measures for multiple events [17–20]. The high uncertainty 

in ROPS selection is closely related to traditional decision-making problems in the operation research 

field; therefore, the MRA, which is one of the commonly used decision-making techniques under complete 

uncertainty [21], is utilized in this study. This study developed a two-step selection procedure consisting 

of calibration and evaluation. For the calibration, the multi-event objective function with the Nash-Sutcllife 

coefficient (NSE, [22]) was considered and the objective function was optimized with 41 combinations 

of weights between two different events. For the evaluation, the ROPS was selected out of 41 optimized 

parameter sets using two different approaches. One uses NSE only and the other uses four performance 

measures (NSE, peak flow error, root mean square error, and percentage of bias). In the NSE-only method, 

two events from the calibration set and three events from the evaluation set were used together, and the 

ROPS was selected based on the regrets of both the calibration and evaluation sets to the best NSEs. In 

the multiple-performance-measure method (i.e., four), only three events from the evaluation set were 

used, and the ROPS was determined based on the regrets of twelve different cases to the best values  

of four performance measures, including three events with four measures. In this study, the storm water 

management model (SWMM) [23] was applied in a river basin in South Korea, and the genetic algorithm 

(GA, [24,25]) was used to calibrate the parameter sets for the given objective function. 

2. Method 

2.1. Framework 

Several past studies have compared all optimized parameter sets for multiple events using the 

aggregation index or Pareto domination approach. The aggregation approach is a commonly used method 

that utilizes some composite index to describe the relative superiority of solution sets [14,15], and the 

weighted sum method and the distance function are popularly used. The Pareto domination approach 

does not rely on a single comparative value but on whether one solution is dominated by the other [2]. 

The aggregation index needs the objective weights of the individual events, and the Pareto dominance 
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approach is not always applicable in all cases. It is common for the optimized parameters for an event 

to show lower values in other performance measures.  

Therefore, this study introduces MRA to select the ROPS, neglecting the significance of individual 

events and considering various performance measures, as shown in Figure 1. It combines two main 

procedures using the multi-event objective function: (1) deriving the optimized parameter sets for two 

rainfall events of the calibration set with GA as a calibration procedure and (2) determine the ROPS 

among multiple forty one calibrated parameter sets from combinations of weighting values between two 

events. Here, the NSE-only and the four performance measures from additional events of the evaluation 

set are considered for the MRA decision making. The multi-event objective function for the calibration 

is performed based on the NSEs of the hydrologic simulation results. For the evaluation procedure, PFE 

(peak flow error), RMSE (root mean squared error), and PBIAS (percent bias) are used in addition to 

NSE. The two-ROPS selection approach can be used: (1) to apply the NSE-only to five events, including 

two events from the calibration set and three events from the evaluation set and (2) to apply the NSE, 

PFE, RMSE, and PBIAS to three events from the evaluation set.  

 

Figure 1. Parameter selection framework. 

Note that this study does not focus on which selection approaches perform better than the other, rather 

it proposes two possible ROPS selection procedures, focusing on different aspects of the parameter 

selection problems (multiple events or multiple performance measures). The proposed framework can 

be useful because it uses a limited number of model simulations rather than the computationally intensive 

calibration procedures for multi-objective functions, consisting of several performance measures. 

2.2. Multi-Event Objective Function 

The multi-event objective function can be stated as follows: minܨ(θ) = ଵݓ ଵ݂(θ) + ଶݓ ଶ݂(θ) + ⋯+ ௡ݓ ௡݂(θ) (1)

where fn(θ) is the objective function for the nth event to be simultaneously minimized with respect to the 

hydrological simulation model parameter set, θ. By randomly selecting different values for the weights 
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allocated to the n event objectives, as many discrete optimal parameter sets as necessary can be generated 

to obtain an acceptable approximation of the continuous parameter set space. Alternatively, we can 

interactively guide the selection of weights until a satisfactory parameter set is discovered [25].  

2.3. Minimax Regret Approach (MRA) 

According to Loulou and Kanudia [26], the MRA is one of the more creditable criteria for selecting 

decisions under uncertainty, i.e., when the likelihoods of the various possible outcomes are not known 

with sufficient precision to use the classical expected value or expected utility criteria [18–21]. If a certain 

decision problem is couched in terms of a cost to minimize, the regret R(z,s)is defined as the difference 

between the cost incurred with the pair (z,s) and the least cost achievable under outcome perfect information 

on z, i.e.,: ܴ(ݖ, (ݏ = max ,z)ܥ (ݏ − ,ݖ)ܥ ∨,(ݏ ݖ ∈ ܼ, ݏ ∈ ܵ (2)

where C(z,s) means the performance value of outcome z (NSE, PFE, RMSE, and PBIAS), incurred when 

the parameter set s is used.  

A minimax regret strategy is any ݏ∗ that minimizes the worst regret, i.e., ݏ∗ ∈ ,ݖ)minሼmaxܴ݃ݎܣ ሽ (3)(ݏ

and the corresponding minimax regret is equal to MMR = minሼmaxܴ(ݖ, ሽ (4)(ݏ

2.4. Standardization 

Because different units of basic indicators are employed in engineering environments, a trade-off 

analysis requires that the actual values be normalized using the maximum and minimum values [27]. 

Each score (aij) in the matrix is replaced with the value (sij) according to the following formula: ܽ௜௝ = ௦೔ೕି௦೔ష௦೔శି௦೔ష or ܽ௜௝ = ௦೔శି௦೔ೕ௦೔శି௦೔ష (5)

where sij is the impact of a scenario (j) with respect to a criterion (i); is the worst score of the criterion 

(i) with respect to all scenarios, i.e., the worst score in the row (i) of the payoff matrix; and is the “best” 

score of the criterion (i) with respect to all scenarios, i.e., the best score in the row (i) of the payoff matrix. 

This way, all scores in the payoff matrix are scaled between the values of 0.0 and 1.0 [28]. 

2.5. SWMM Modeling 

2.5.1. Study Watershed and Rainfall Events 

The proposed approach was applied to the parameter selection problem of the SWMM using  

five rainfall-runoff events in the Milyang Dam basin of South Korea (Figure 2). The Milyang Dam basin 

includes an area of 95.40 km2. The study area is located in a mountainous region with the elevation 

ranging from 130 to 1180 m. As shown in Figure 2, the Milyang Dam is located in the outlet of the study 

basin with water flowing from the northeast to southwest of the basin. The basin was divided into  
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24 sub-basins, and the river channels were divided into the 26 sub-channels for the SWMM. The rainfall 

data from two telemetry (TM) stations at the Milyang Dam and Seoli were used.  

 

Figure 2. Study area of Milyang Dam basin. 

The five events were divided into two different sets: two events for calibration and three events for 

evaluation only, as shown in Table 1. We have subjectively selected one event per year during the rainy 

season of 2008–2012. In Korea, the most of heavy rainfall events take place during the summer monsoon 

(mostly in June, July and August) and therefore the flood events are observed during those months. While 

the selection process of rainfall events might be arbitrary, we have taken an effort to utilize various types 

of rainfall events in the study. The two events selected for calibration have a similar total precipitation 

but totally different temporal patterns, which resulted in the different peak flows. That is, E1 had a very 

high maximum rainfall intensity while E2 had a relatively uniform rainfall intensity. Additionally, three 

events for the model performance validation were selected that represent the years 2009, 2010, and 2011, 

respectively. E3 and E4 have spatially homogeneous rainfall because the total precipitation of the Milyang 

dam and Seolli stations had similar values, and E3 and E5 had a very uniform rainfall distribution because 

their maximum precipitation rates were under 12 mm/h. 
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Table 1. Description of each event. 

Events 
Period (mm/dd/yyyy 

hh:mm) 

Total 

Precipitation 

(mm) 

Maximum 

Precipitation 

(mm/hr) 

Peak 

Runoff 

(m3/s) 

Peak Time 

(mm/dd/yyyy 

hh:mm) Milyang 

Dam 
Seolli 

Milyang 

Dam 
Seolli 

Pareto 

optimality 

E1  

20080726 

07/26/2008 01:00 ~ 

07/26/2008 23:00 
73 105 24 21 233.3 

07/26/2008 

07:00 

E2  

20120828 

08/28/2012 01:00 ~ 

08/28/2012 23:00 
64 106 6 25 119.1 

08/28/2012 

16:00 

Performance 

evaluation 

E3  

20090707 

07/07/2009 01:00 ~ 

07/08/2009 12:00 
121 130 9 8 223.22 

07/07/2009 

17:00 

E4  

20100810 

08/10/2010 1:00 ~ 

08/12/2010 23:00 
194 194 33 26 406.4 

08/10/2010 

11:00 

E5  

20110625 

06/25/2011 01:00 ~ 

06/27/2011 12:00 
169 249 8 12 422.4 

06/26/2011 

13:00 

2.5.2. Model Configuration 

The SWMM was used here [29], as it is one of the most widely used models for simulating water 

quantity and quality. The SWMM allows the simulation of flows and polluting loads of urban runoff as well 

as their carriage through the combined sewer system. The model can be used not only for a single rainfall 

event but also for multiple events over a long period. 

The SWMM is used to simulate the rainfall-runoff processes in the Milyang Dam basin. A 1:25,000 

digital elevation model (DEM) and land-use map (2000) from the National Geographic Information 

Institute (NGII) of the Korean Ministry of Land, Infrastructure, and Transport (MOLIT) provide watershed 

topography to determine the drainage area delineation and surface slopes used in the SWMM. Storm and 

combined sewer infrastructure data obtained from the MOLIT are used to represent the drainage network 

characteristics and are combined with the watershed topography to delineate sub-watershed boundaries. 

2.5.3. Model Optimization 

The parameter optimization was performed with the GA, which is widely used for parameter 

calibration procedures in rainfall-runoff simulations because it is known as one of the most effective 

techniques [2,30,31]. GA is a heuristic global search algorithm based on the concept of Darwin’s 

evolutionary processes of natural selection and survival of the fittest. The GA is far from a particular model 

structure and requires only an estimate of the objective function for each decision set to proceed. The 

advantages of GAs over conventional parameter optimization techniques are that they are appropriate 

for ill-behaved problems and highly non-linear spaces for global optima and adaptive algorithms [4].  

The NSEs for two events were combined with the weighting factor as follows: max஘ ଵݓ ଵ݂(θ) + ଶݓ ଶ݂(θ) (6)



Water 2015, 7 1253 

 

 

where θ means the parameter set of the hydrologic model, f1 and f2 are the NSEs for the two events, and 

w1 and w2 are the weighted values for the two events for the calibration (w1 + w2 = 1). This study  

used 41 combinations of weights: (1.0 and 0.0, 0.975 and 0.025, 0.950 and 0.050, …, 0.0 and 1.0 for  

w1 and w2. 

Table 2 lists the 17 model parameters subject to model optimization in this study, following the work 

of Kang and Lee [32]. The nine parameters related to the groundwater and channel characteristics are 

uniform over the Milyang Dam basin, and the eight parameters related to the basin characteristics  

(i.e., the percent impervious area, the characteristic width of the overland flow, and the runoff curve 

coefficient) differ for each sub-basin in this study.  

Table 2. Search boundary of parameters for the event simulation model for the study basin. 

Class Parameters Description Unit Lower Bound Upper Bound 

Basin 

Pcnt. Imperv Percent of impervious area % 0.8*Obs. value 1.2*Obs. value 

Width Characteristics width of the overland flow path m 0.8*Obs. value 1.2*Obs. value 

N-Imperv Manning’s n of impervious area - 0.01 0.016 

N-Perv Manning’s n of pervious area - 0.15 0.4 

S-Imperv Depth of depression storage on impervious area mm 1.6 3.8 

S-Perv Depth of depression storage on pervious area mm 3.8 6.4 

Pct Zero 
Percent of the impervious area with no 

depression storage 
% 10 30 

CN NRCS runoff curve coefficient - 0.8*Obs. value 1.2*Obs. value 

Channel Manning N Manning’s roughness coefficient - 0.02 0.05 

Ground-

water 

Porosity Porosity (volume of voids/total soil volume) Fraction 0.453 0.463 

Wilt Point 
Wilting point (soil moisture content at which 

plants cannot survive) 
Fraction 0.085 0.116 

Field Capac 
Field capacity (soil moisture content after all 

free water has drained off) 
Fraction 0.19 0.232 

Hyd Cond Soil’s saturated hydraulic conductivity mm/h 3.3 10.92 

Cond Slop 
Average slope of log (conductivity) versus soil 

moisture deficit curve 
- 1 10 

Tens Slop 
Average slope of soil tension versus soil 

moisture deficit curve 
mm 1,000 5000 

A1 Groundwater flow coefficient - 0.0001 0.1 

B1 Groundwater flow exponent - 1 5 

2.5.4. Performance Measures 

As previously stated, this study used four performance measures: NSE, PFE, RMSE, and PBIAS, 

which are explained as follows: 

The NSE was used for the multi-event objective function and ROPS selection as follows: NSE = 1 − ∑ ൫ݍ௧,௢௕௦ − ∑௧,௦௜௠൯ଶ௧்ୀଵݍ ൫ݍ௧,௢௕௦ − ௢௕௦തതതതത൯ଶ௧்ୀଵݍ  (7)
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where ݍ௧,௢௕௦ and ݍ௧,௦௜௠ are the observed and the simulated discharge, respectively, at time t, and ݍ௢௕௦തതതതത is 

the averaged observed discharge. 

The PFE can be evaluated using the following equation. PFE = ฬ݌௢௕௦ − ௢௕௦݌௦௜௠݌ ฬ (8)

where ݌௢௕௦ and ݌௦௜௠ are the peak flows for the observed and simulated values, respectively.  

The RMSE is a frequently used measure of the difference between values predicted by a model and 

the values actually observed from the environment that is being modelled. The RMSE of 0 corresponds 

to a perfect match between the model simulation and the observations. This varies with the variability 

within the distribution of error magnitudes and with the square root of the number of errors as following: 

RMSE = ඩ෍(ݍ௧,௢௕௦ − ௧,௦௜௠݊ݍ )ଶ௡
௧ୀଵ  (9)

The PBIAS measures the average tendency of the simulated data to be larger or smaller than their 

observed counterparts. The optimal value of the PBIAS is 0, with low-magnitude values indicating accurate 

model simulation. Positive values indicate model underestimation bias, and negative values indicate 

model overestimation bias [25]. The PBIAS is calculated as following: PBIAS = ∑ ௧,௢௕௦ݍ) − ∑௧,௦௜௠)௡௧ୀଵݍ ௡௧ୀଵ(௧,௢௕௦ݍ) × 100(%) (10)

3. Results and Discussions 

3.1. Calibration of ROPS Candidates 

For the calibration, multi-event objective functions with 41 weights, as shown in Equation (6), were 

optimized using the GA, and the calibration results are shown in Figure 3. Figure 4 shows the derived 

NSEs for 41 weights (i.e., 41 different parameter sets). Although one objective function is used, the 

standardization process for the NSEs, as shown in Equation (7), is required because the severely  

different magnitudes of total runoff and peak flow can affect the importance of individual events in the 

calculation process. 

As a result, the standardized NSEs, as shown in Figure 4b, varied dramatically according to the weighting 

values of the two events. The center area showed high values for the two events. Using the distance function 

with equal weight, the parameter sets were ranked as shown in Table 3. The optimized parameter set 

with weighting values (0.5, 0.5) is the best, and the adjacent weights (0.6~0.425, 0.4~0.575) showed the 

dominance. Weighting values (0.8, 0.2) and (0.675, 0.325) are the second and the third, respectively. 

The optimized parameters for just a single event showed very low NSEs when simulated. The NSEs of 

weights (1,0) and (0,1) showed this case. As a result, while single- and multi-event optimization lead to 

satisfactory results for the calibration events, the optimized parameters from the single-event calibration 

do not perform well for other events, even for the same NSE criteria. The results of this study suggest that 

the optimized parameter set from the well-weighted objective function can simulate both hydrographs 

and the others well. 
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(a) 

 
(b) 

Figure 3. Calibrated hydrographs of E1 and E2 with the 41 optimized parameter sets.  

(a) E1; (b) E2. 

(a) (b) 

Figure 4. NSEs for E1 and E2 with 41 parameter sets: (a) scatter plot between two NSEs 

(i.e., Pareto optimal sets) and (b) standardized NSEs along the 41 parameter sets. 
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Table 3. Robust ranking based on Nash-Sutcliffe Coefficients (NSEs) of calibration and evaluation. 

# of 
Alt. 

Weights Calibration Evaluation 
Final 
Rank E1 E2 

Averaged Regret to 
Ideal NSEs 

Rank 
Averaged Regret to 

Ideal NSEs 
Rank 

9 0.8 0.2 0.173 2 0.015 2 1 
11 0.75 0.25 0.334 13 0.090 9 7 
14 0.675 0.325 0.191 3 0.036 5 3 
15 0.65 0.35 0.384 16 0.143 10 9 
19 0.55 0.45 0.327 10 0.015 2 6 
20 0.525 0.475 0.277 6 0.315 23 10 
21 0.5 0.5 0.139 1 0.077 8 2 
22 0.475 0.525 0.230 4 0.060 7 5 
24 0.425 0.575 0.240 5 0.024 4 4 
33 0.2 0.8 0.426 22 0.018 3 8 

In this case, the Pareto-optimal parameter sets of the SWMM can be derived from Figure 4a, which 

represents the optimized NSEs of E1 and E2 for 41 different weights on two events. Although all different 

weighting values on two events were used, all NSEs from calibrated parameter sets cannot be located in 

the Pareto front. That is, some efficient parameter sets dominate the remaining because the NSEs for the 

two events obtained from some sets are much larger than those from the others. The points lying on the 

outskirts can be the optimal Pareto. As shown in Figure 4a, at least eight points lying the farthest from 

the negative ideal point and closest to the positive can be the optimal Pareto. In this study, the negative 

and positive ideal points for E1 and E2 are (0.412, 0.500) and (0.816, 0.854), respectively. However, it 

cannot be confirmed that these are always effective because they have shown the best fitness for the 

selected two events, E1 and E2, although they have a high possibility of fitness to all rainfall events. 

Therefore, all feasible candidates are included for the ROPS even though their NSEs did not lie on the 

outskirts in Figure 4a. 

3.2. Selection of ROPS 

Two different approaches are proposed to select the ROPS in this study. One assesses the NSEs with 

calibration and evaluation sets of events (Section 3.2.1) and the other assesses the multiple performance 

measures, i.e., NSE, PFE, RMSE, and PBIAS with evaluation sets only (Section 3.2.2).  

3.2.1. NSE-Only with Both Calibration and Evaluation Sets 

In this case, the evaluation was performed using five different events, as shown in Table 3. First, the 

SWMM simulations for the 3 events (E3, E4, and E5) were performed with the 41 Pareto optimal parameter 

sets (Figure 5), and the NSEs for E3, E4, and E5 with 41 optimized parameter sets are derived (Figure 6a). 

Overall, the NSEs for E4 and E5 indicated high values for all candidates. Furthermore, the standardized 

NSEs were calculated to consider the relativeness (Figure 6b).  
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(a) 

 
(b) 

 
(c) 

Figure 5. Simulated hydrographs of E3, E4, and E5 with 41 calibrated parameter sets.  

(a) E3 (20090707); (b) E4 (20100810); (c) E5 (20110625). 
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(b) 

Figure 6. NSEs for E3, E4, and E5 with 41 parameter sets: (a) scatter plot between two 

NSEs (red circles for E3 vs. E4 and blue triangles for E3 vs. E5) and (b) standardized NSEs 

along the 41 parameter sets. 

Second, the ROPS was derived using the MRA, based on the calibration and validation results 

(Figure 7). The minimum standardized NSEs, i.e., regrets, among E1 and E2 (calibration set) and 

E3, E4, and E5 (evaluation set) were calculated, respectively. Then, two regrets were aggregated 

into one composite regret by averaging. The NSEs of the hydrographs simulated with the most 

effective ten-parameter sets were calculated as shown Table 3. As a result, the calibrated 

parameters with (0.8, 0.2), which is the second in the application of distance function, were first, 

while those with (0.5, 0.5) were second. Therefore, the final determination can be changed when 

more events are included in the parameter selection problem using MRA. 
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Figure 7. Standardized NSEs from calibration (E1 and E2) and evaluation sets (E3, E4 and E5). 

3.2.2. Multiple Performance Measures with Evaluation Set Only 

This study introduced another method using four different performance measures for the evaluation 

procedure. The ROPS was determined using MRA and three events of the calibration set (E3, E4, and E5). 

First, four performance measures of E3, E4, and E5 were calculated (Figure 8). Then, they were standardized 

using the linear transformation relationship, and each regret to the maximum performance value among 

the three values was calculated by each performance measure. The parameter set having the minimum 

regret was selected. The derived rankings of all performance measures are shown in Figure 8. As shown 

in the rank correlations among the different measures in Table 4, it can be concluded that any particular 

optimized parameter set cannot always satisfy all performance measures and all events well.  

 

Figure 8. Values of four performance measures using minimax regret. 
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Table 4. Correlations among all rankings to four performance measures. 

Performance 
Measures 

NSE PFE RMSE PBIAS 

NSE 1 0.2539 0.7243 0.2719 
PFE -- 1 0.2537 0.2940 

RMSE -- -- 1 0.1522 
PBIAS -- -- -- 1 

To derive the ROPS that can satisfy the required standard, the standardized values for each performance 

criteria and each event are recalculated, respectively, instead of using the weighting values of the 

performance criteria. Then, one or more ROPS for the hydrological simulation model can be proposed 

with relatively high certainty, as shown in Table 5. It is concluded that the optimized parameter set 5 

that showed very high accuracies in NSE, PFE, and RMSE is the most robust ROPS. The next parameter 

sets are in the 35th, 12th, and 16th rows.  

Table 5. Rankings based on four performance measures. 

Number of 

Parameter Set 

Weights Performance Measures Average 

Ranking 

Final 

Ranking E1 E2 NSE PFE RMSE PBIAS 

5 0.900 0.100 4 2 2 12 5 1 

35 0.150 0.875 6 11 4 14 8.75 2 

12 0.725 0.275 1 27 1 8 9.25 3 

16 0.625 0.375 13 1 11 22 11.75 4 

21 0.500 0.500 18 6 15 10 12.25 5 

8 0.825 0.175 10 34 8 1 13.25 6 

13 0.700 0.300 12 5 9 27 13.25 6 

6 0.875 0.125 8 23 7 18 14 8 

4 0.925 0.075 2 13 38 5 14.5 9 

18 0.575 0.425 16 8 12 25 15.25 10 

4. Conclusions 

This study provides a ROPS selection framework for the hydrological simulation model utilizing  

the Pareto optimum for a two-event objective function and the MRA for multiple events. The calibrated 

parameter sets based on the NSEs for two events were derived using the GA. In this procedure, 41 different 

combinations of weighting values for two rainfall events were used for the two-event objective function 

and thus their optimized parameter sets, Pareto optimums, became the ROPS candidates. Then, two different 

parameter evaluation approaches were used: one uses only NSEs for a total of five rainfall events, i.e., 

two events for the calibration set and an additional three events for the evaluation set, and the other uses 

four performance measures (NSE, PFE, RMSE, and PBIAS) for an additional three rainfall events. The 

performance measures of the 41 ROPS candidates were evaluated with the MRA to derive the rankings 

of the candidates and select the most ROPS at the end.  

This study indicated that the optimized parameters from the single event calibration does not perform 

well for another event, even for the same NSE criteria, and this led to the conclusion that the calibrated 

parameters, when considering two events simultaneously, could perform well on both events. In addition, 
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even the optimized parameter sets with multiple events cannot always result in good performance when 

other measures and events are used. That is, more events should be included for calibration, and more 

performance measures should be considered for the evaluation process. Therefore, the ROPS can be 

selected from the multiple performance measures of multiple validation events, as well as NSE-only for 

multiple calibration and validation events. 

Finally, the ROPS framework using the MRA can be a more useful way to determine the best among 

many optimized sets when considering many performance measures and multiple events. Note that this 

study does not focus on which selection approaches perform better than the other, rather it proposes two 

possible ROPS selection procedures, focusing on different aspects of the parameter selection problems 

(multiple events or multiple performance measures). Any approach can be used depending on the available 

data or personal preferences. That is, they can use one (NSE or others) or more for the selection process 

and then proceed to derive ROPS based on the framework proposed in this study.  

Note that study provides a framework that could be performed reasonably well with a limited number 

of events. While the computational resources might not be a limiting factor these days, it is still valuable 

to have such a tool for several reasons: one could utilize it for an operational decision making support 

tool as the full searches for an optimal set of parameters might not be performed in the operational 

facility; and it could also be used in a situation where we have a limited number of good-quality 

observational data for some reasons.  

Furthermore, this procedure could be extended or combined to incorporate multiple site observations 

for robust rainfall-runoff calibrations using multi-attribute decision analysis and multi-objective functions 

with various objective weighting derivation methods.  
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