Supplementary Information

Table S1. Concentration of bacteria per sampling unit (individual funnel, see Section 2.1) drainage, average and Cl₉₅ (cfu mL⁻¹). Event 0 summarizes the background bacteria as collected during the preliminary irrigation event (see Section 2.5) run previously to addition of biosolids. Biosolids were added once, before irrigation Event 1.

Irrigation Event	E. coli	Enterococcus spp.	Salmonella spp.	C. perfringens
		Clay		
0	8.8 (3.2)	0.1 (0.14)	0 (0)	5.9 (11.6)
1	28,589.0 (18816.0)	59.9 (25.6)	3.2 (1.76)	86.7 (19.4)
2	394.0 (129.0)	4.1 (1.7)	0.02 (0.04)	6.1 (1.8)
3	188.0 (77.6)	7.6 (9.6)	1.5 (0.9)	36.0 (30.2)
4	2.9 (1.0)	0 (0)	0.1 (0.2)	7.6 (2.3)
		Clay Loam		
0	36.7 (11.7)	3.0 (2.8)	3.5 (5.0)	2.5 (1.7)
1	176.0 (58.7)	103.0 (52.7)	7.8 (4.6)	75,335.0 (43.1)
2	111.0 (29.8)	1.1 (1.0)	0.8 (1.1)	11.0 (3.4)
3	447.0 (191.0)	2.1 (2.0)	2.7 (1.8)	6.3 (2.2)
4	2.9 (1.3)	0.01 (0.01)	0.01 (0.01)	0.9 (0.3)
		Sandy Loam		
0	5.3 (4.0)	0.3 (0.4)	0.7 (0.4)	6.3 (3.6)
1	2.1 (0.9)	0.3 (0.1)	0.4 (0.3)	13.0 (5.8)
2	2.5 (1.6)	0.002 (0.005)	0.2 (0.1)	8.3 (4.8)
3	0.6 (0.7)	0.002 (0.004)	1.5 (1.0)	7.8 (2.4)
4	8.5 (3.4)	0.03 (0.03)	0.06 (0.03)	11.9 (10.4)

Table S2. Filtration coefficients best fit; Drainage Event 1 (see Figure 1).

Treatment *	E. coli	Enterococcus spp.	Salmonella spp.	C. perfringens	Microspheres	
C DMW	$y = 6.3054 x^{-0.119}$	$y = 7.4358x^{-0.123}$		$y = 5.8745 x^{-0.132}$	$y = 3.6652x^{-0.162}$	
C-DMW	$R^2 = 0.48$	$R^2 = 0.62$	-	$R^2 = 0.41$	$R^2 = 0.67$	
CLMD	$y = 0.0198 x^{-0.539}$	$y = 8.8864x^{-0.1}$	$y = 8.4362x^{-0.099}$	$y = 8.6857 x^{-0.112}$	$y = 2.6833x^{-0.154}$	
C-LMB	$R^2 = 0.01$	$R^2 = 0.44$	$R^2 = 0.72$	$R^2 = 0.69$	$R^2 = 0.13$	
		y = -9482.3x +	0 2455 -0 133	12.054 -0.064	$y = 6.6168x^{-0.107}$	
CL-DMW	$y = 15.13 / x^{-0.044}$	31.038	$y = 9.3455x^{-0.135}$	$y = 13.854x^{-0.004}$		
	$R^2 = 0.14$	$R^2 = 0.38$	$R^2 = 0.75$	$R^2 = 0.28$	$R^2 = 0.82$	
	$y = 3.3475 x^{-0.158}$	$y = 8.362x^{-0.093}$	$y = 8.4521 x^{-0.088}$	$y = 32.32e^{-6677x}$	$y = 0.2716x^{-0.387}$	
CL-LMB	$R^2 = 0.57$	$R^2 = 0.34$	$R^2 = 0.69$	$R^2 = 0.45$	$R^2 = 0.44$	
	$y = 15.345x^{-0.077}$	$y = 15.228 x^{-0.083}$		$y = 15.228 x^{-0.083}$		
SL-DMW	$R^2 = 0.59$	$R^2 = 0.70$	-	$R^2 = 0.40$	-	
	y = -3860.2x +	y = -3968.1x +	$y = -3.451 \ln(x) -$	y = -6305.8x +	y = -3722.9x +	
SL-LMB	15.932	24.152	9.4794	23.312	14.739	
	$R^2 = 0.37$	$R^2 = 0.54$	$R^2 = 0.60$	$R^2 = 0.39$	$R^2 = 0.42$	

Notes: * C-clay soil; CL-clay loam soil; SL-sandy loam soil; DMW-dewatered municipal waste biosolids organic amendment; LMB-liquid municipal waste biosolids organic amendment.

Treatment	E. coli	Enterococcus spp.	Salmonella spp.	C. perfringens	Microspheres
C DMW	$y = 12.562x^{-0.098}$		$y = 10.144x^{-0.125}$	$y = 14.033x^{-0.064}$	
C-DIVI W	$R^2 = 0.47$	—	$R^2 = 0.40$	$R^2 = 0.29$	—
CIMD	$y = 8.788 x^{-0.085}$			$y = 6.6086x^{-0.143}$	y = 37.24e - 117.1x
C-LMD	$R^2 = 0.82$	—	_	$R^2 = 0.53$	$R^2 = 0.52$
	$y = 13.6x^{-0.081}$	$y = 24.393x^{-0.023}$		$y = 14.843x^{-0.063}$	$y = 24.433x^{-0.047}$
CL-DMW	$R^2 = 0.26$	$R^2 = 0.61$	—	$R^2 = 0.39$	$R^2 = 0.36$
CL-LMB		_		$y = 14.085x^{-0.061}$	$y = 20.761 x^{-0.067}$
	—		—	$R^2 = 0.21$	$R^2 = 0.33$
CL DMW	$y = 13.6x^{-0.081}$	$y = 24.393x^{-0.023}$		$y = 14.843x^{-0.063}$	$y = 27.745x^{-0.031}$
SL-DMW	$R^2 = 0.26$	$R^2 = 0.61$	—	$R^2 = 0.38$	$R^2 = 0.22$
SL-LMB	$y = 2.7494x^{-0.193}$		$y = 10.403x^{-0.079}$	$y = -1.323\ln(x) + 11.388$	$y = 27.138x^{-0.027}$
	$R^2 = 0.24$	-	$R^2 = 0.41$	$R^2 = 0.21$	$R^2 = 0.08$

Table S3. Filtration coefficients best fit; drainage Event 4 (double irrigation) (see Figure 1).

Notes: C-clay soil; CL-clay loam soil; SL-sandy loam soil; DMW-dewatered municipal waste biosolids organic amendment; LMB-liquid municipal waste biosolids organic amendment.

Figure S1. Mean cumulative filtration coefficients (λ_f); Mean, standard deviations, and linear fit. The slope of the fit indicates an increase or decrease in average cumulative filtration. For dewatered waste all slopes were negative; for liquid waste slopes were either positive or very close to 0.

Water 2015, 7

	Irrigation & Drainage Event							
Bacterial Tracer	1	2	3	4	1	2	3	4
	Clay S	oil & Dewatere	d Municipal Bi	iosolid	Clay	y Soil & Liquid	Municipal Bios	solid
E. coli	0.39 (0.059) *	0.36 (0.082)	0.39 (0.039)	0.71 (<0.001)	0.46 (0.005)	0.33 (0.307)	0.51 (0.015)	0.35 (0.525)
Enterococcus spp.	0.79 (<0.001)	0.77 (<0.001)	0.75 (<0.001)	0.45 (0.005)	0.88 (<0.001)	0.80 (0.002)	0.47 (0.142)	0.55 (0.191)
C. perfringens	1 (<0.001)	1 (<0.001)	1 (<0.001)	0.99 (<0.001)	1 (<0.001)	1 (<0.001)	0.91 (<0.001)	0.93 (<0.001)
Salmonella sp.	nd	nd	1 (<0.001)	0.36 (0.16)	0.85 (<0.001)	nd	nd	nd
	Clay Loa	m Soil & Dewat	tered Municipa	l Biosolid	Clay Loam Soil & Liquid Municipal Biosolid			
E. coli	0.9 (<0.001)	0.51 (0.125)	0.36 (0.626)	0.88 (<0.001)	0.46 (0.034)	0.76 (<0.001)	0.83 (<0.001)	0.87 (<0.001)
Enterococcus spp.	1 (<0.001)	1 (<0.001)	1 (<0.001)	0.87 (<0.001)	0.48 (0.012)	0.27 (0.511)	0.25 (0.423)	0.73 (0.001)
C. perfringens	1 (<0.001)	1 (<0.001)	1 (<0.001)	1 (<0.001)	0.78 (<0.001)	0.76 (<0.001)	0.78 (<0.001)	0.78 (<0.001)
Salmonella spp.	1 (<0.001)	1 (<0.001)	1 (<0.001)	0.38 (0.078)	0.78 (<0.001)	0.73 (0.002)	0.71 (0.006)	nd
	Sandy Loa	am Soil & Dewa	tered Municipa	al Biosolid	Sandy L	oam Soil & Liq	uid Municipal	Biosolid
E. coli	1 (0.003)	1 (<0.001)	1 (<0.001)	0.55 (0.06)	0.32 (0.159)	0.42 (0.063)	0.43 (0.072)	0.35 (0.1)
Enterococcus spp.	1 (0.011)	1 (0.047)	1 (0.007)	1 (<0.001)	1 (<0.001)	0.99 (<0.001)	1 (<0.001)	0.99 (<0.001)
C. perfringens	1 (0.003)	1 (<0.001)	1 (<0.001)	1 (<0.001)	1 (<0.001)	1 (<0.001)	1 (<0.001)	1 (<0.001)
Salmonella spp.	nd	nd	0.86 (0.001)	0.88 (0.004)	0.72 (<0.001)	0.83 (<0.001)	0.86 (0.001)	0.57 (0.019)

Table S4. Kolmogorov-Smirnov dissimilarity indices between the empirical distributions of microsphere and the respective bacterial distributions.

Notes: * Values represent dissimilarity between the empirical PDF of microspheres and the PDF of each of the four bacterial tracers on a scale of 0 to 1 with 1 being most dissimilar. In parentheses the asymptotic *p*-values. Analysis was carried out via a Kolmogorov-Smirnov test for comparison of two empirical distributions with H0: F1(x) = F2(x); therefore any *p*-value smaller than 0.05 rejects H0 indicating that distributions are dissimilar; Distributions that are statistically likely to be similar (*i.e.*, *p* > 0.05) are highlighted in bold [29]; nd = not determined.

Tuesta	Tueser	Event				
Ireatment	Iracer	1	2	3	4	
		Gamma (2)	Weibull (3);	Beta 4	Gamma (1)	
		$\kappa = 74.4 \pm 0.3;$	$\beta = 3.3 \pm 0.3;$	$\alpha = 1.13 \pm 0.2;$	$\kappa = 8.5 \pm 0.2;$	
	E coli	$\beta = 0.18 \pm 0.08;$	$\gamma = 5.2 \pm 0.1;$	$\beta = 1.14 \pm 0.2;$	<i>N</i> = 83; 82.5%	
	E. COll	<i>N</i> = 31; 99.9%	$\mu = 8.5 \pm 0.2;$	$c = 9.6 \pm 0.3;$		
			<i>N</i> = 63; 99%	$d = 17.7 \pm (< 0.01);$		
				<i>N</i> = 52; 47.7%		
		Log-normal	Log-normal	GEV	Log-normal	
	Futavaaaaus	$\mu = 2.7;$	$\mu = 2.7 \pm 0.6;$	$\kappa = -0.03 \pm 0.14;$	$\mu = 2.6 \pm 0.3;$	
ste	con	$\sigma = 0.1;$	$\sigma = 0.1 \pm 0.3;$	$\beta = 1.4 \pm 0.2;$	$\sigma = 0.13 \pm 0.05;$	
was	spp.	<i>N</i> = 29; 94%	<i>N</i> = 44; 83.7%	$\mu = 14.6 \pm 0.3;$	<i>N</i> = 44; 83.7%	
eq				<i>N</i> = 35; 97.4%		
ater		<i>N</i> < 10	<i>N</i> < 10	Weibull (2)	Log-normal	
ewa	Salmonalla spp			$\beta = 21.9 \pm 5.2;$	$\mu = 2.5 \pm 1.2;$	
p–l	Sumonena spp.			$\gamma = 18.8 \pm 0.3;$	$\sigma = 0.1 \pm 0.5;$	
soi				<i>N</i> = 10; 91.8%	<i>N</i> = 16; 99.9%	
lay		Gamma (2)	Log-normal	GEVl	Weibull (2)	
C	C. perfringens	$\kappa = 125.6 \pm 2.1;$	$\mu = 3.5 \pm 0.5;$	$\kappa = -0.3 \pm 0.1;$	$\beta = 7.5 \pm 0.6;$	
		$\beta = 0.3 \pm 1.3;$	$\sigma = 0.1 \pm 0.5;$	$\beta = 3.5 \pm 0.3;$	$\gamma = 22.9 \pm 0.3;$	
		<i>N</i> = 23; 99.6%	<i>N</i> = 61; 85.5%	$\mu = 31.9 \pm 0.5;$	<i>N</i> = 96; 67.62%	
				<i>N</i> = 73; 85.6%		
		Normal	Gamma (2)	GEV	GEV	
		$\mu = 12.1;$	$\kappa = 58.7 \pm 1.4;$	$\kappa = 0.2 \pm 0.3;$	$\kappa = 0.3 \pm 0.2;$	
	Microspheres	$\sigma = 1.5;$	$\beta = 0.2 \pm 0.6;$	$\beta = 1.4 \pm 0.3;$	$\beta = 1.4 \pm 0.3;$	
		<i>N</i> = 17; 99.5%	<i>N</i> = 14; 99.6%	$\mu = 11.1 \pm 0.4;$	$\mu = 11.2 \pm 0.4;$	
				<i>N</i> = 16; 93.9%	<i>N</i> = 19; 96.5%	
		Weibull (2)	Beta 4	GEV	GEV	
		$\beta = 2.2 \pm 0.3;$	$\alpha = 1.2 \pm 0.3;$	$\kappa = -0.3 \pm 0.1;$	$\kappa = -0.3 \pm 0.2;$	
te	E coli	$\gamma = 5.1 \pm 0.5;$	$\beta = 0.6 \pm 0.1;$	$\beta = 3.5 \pm 0.3;$	$\beta = 2.2 \pm 0.4;$	
vas	L. con	<i>N</i> = 26; 61.7%	$c = 1.4 \pm 1868;$	$\mu = 31.9 \pm 0.5;$	$\mu = 8.3 \pm 0.6;$	
id v			$d = 10.6 \pm (<0.01);$	<i>N</i> = 73; 85.6%	<i>N</i> = 20; 99.8%	
inpi			<i>N</i> = 32; 52.9%		_	
i		Beta 4	Beta 4			
/ SO		$\alpha = 1.1 \pm 0.3;$	$\alpha = 0.7 \pm 0.3;$			
llay	Enterococcus	$\beta = 1.1 \pm 0.3;$	$\beta = 0.6 \pm 0.2;$	N < 10	N < 10	
0	spp.	$c = 9.8 \pm 0.3;$	$c = 13.3 \pm 0.5;$	11 - 10	11 ~ 10	
		$d = 14.0 \pm (<0.01);$	$d = 16.1 \pm (<0.01);$			
		<i>N</i> = 25; 99.6%	<i>N</i> =0.12; 90.3%			

Table S5. Best fit probability density functions (PDF) visualised in Figure 5.

Tracturant	Tracer	Event				
Ireatment	Iracer	1	2	3	4	
	Salmonella spp.	Beta 4 $\alpha = 0.8 \pm 0.3;$ $\beta = 0.7 \pm 0.3;$ $c = 9.6 \pm 0.3;$ $d = 12.2 \pm (<0.01);$ N = 0.13; 99.9%	N < 10	N < 10	<i>N</i> < 10	
	C. perfringens	<i>Logistic</i> $\mu = 18.4 \pm 0.4;$ $s = 1.2 \pm 0.2;$ N = 25:99.8%	Logistic $\mu = 18.4 \pm 0.5;$ $s = 1.5 \pm 0.2;$ N = 29:97.8%	<i>Logistic</i> $\mu = 19.3 \pm 0.5;$ $s = 2.1 \pm 0.3;$ N = 42:96.6%	<i>Logistic</i> $\mu = 19.4 \pm 0.4;$ $s = 1.9 \pm 0.2;$ N = 72:99.1%	
	Microspheres	GEV $\kappa = -0.06 \pm 0.2;$ $\beta = 1.5 \pm 0.2;$ $\mu = 5.9 \pm 0.3;$ N = 26; 99.7%	Gamma (2) $\kappa = 9.0 \pm 0.6;$ $\beta = 0.8 \pm 0.3;$ N = 10; 95.7%	$Beta \ 4$ $\alpha = 0.8 \pm 0.3;$ $\beta = 0.7 \pm 0.3;$ $c = 3.7 \pm 1799;$ $d = 14.8 \pm (<0.01);$ $N = 0.12; \ 37.1\%$	N < 10	
	E. coli	Log-normal $\mu = 2.7 \pm 0.6;$ $\sigma = 0.1 \pm 0.2;$ N = 29; 98.2%	$GEV \\ \kappa = -0.06 \pm 0.1; \\ \beta = 0.8 \pm 0.08; \\ \mu = 13.4 \pm 0.1; \\ N = 55; 89.3 \%$	Weibull (2) $\beta = 10.8 \pm 1.3;$ $\gamma = 13.1 \pm 0.2;$ N = 41; 99.0%	Log-normal $\mu = 2.1 \pm 0.2;$ $\sigma = 0.3 \pm 0.08;$ N = 29; 76.2%	
waste	Enterococcus spp.	N < 10	Logistic $\mu = 18.1 \pm 0.5;$ $s = 1.0 \pm 0.2;$ N = 15; 57.2%	$GEV \\ \kappa = 0.2 \pm 0.3; \\ \beta = 0.7 \pm 0.2; \\ \mu = 18.9 \pm 0.2; \\ N = 14; 99.8\%$	GEV $\kappa = 0.6 \pm (<0.001),$ $\beta = 1.5 \pm 0.2;$ $\mu = 15.5 \pm 0.3;$ $N = 30; 32.4\%$	
loam s- dewatered	Salmonella spp.	Log-normal $\mu = 3.0;$ $\sigma = 0.1;$ N = 10; 98.5%	Logistic $\mu = 19.8 \pm 0.3;$ $s = 0.6 \pm 0.1;$ N = 18; 97.0%	$Beta \ 4$ $\alpha = 1.1 \pm 0.3;$ $\beta = 1.0 \pm 0.3;$ $c = 14.8 \pm 0.4;$ $d = 21.3 \pm (<0.01);$ N = 27; 96.5%	GEV $\kappa = 0.7 \pm 0.2;$ $\beta = 11.9 \pm (<0.001)$ $\mu = 12.6 \pm (<0.001)$ $N = 48; 96.9\%$	
Clay	C. perfringens	Normal $\mu = 35.8;$ $\sigma = 2.3;$ N = 12; 98.4%	$Weibull (3) \beta = 10.0 \pm 1.6; \gamma = 17.2 \pm 0.7; \mu = 20.3 \pm 0.8; N = 24; 74.0%$	Normal $\mu = 35.3;$ $\sigma = 2.0;$ N = 51; 88.4%	Normal $\mu = 23.7;$ $\sigma = 2.2;$ N = 63; 91.9%	
	Microspheres	N < 10	N < 10	N < 10	Log-normal $\mu = 2.5 \pm 0.4;$ $\sigma = 0.1 \pm 0.2;$ N = 13; 93.5%	

Table S5. Cont.

Treatmont	Tracer -	Event				
Ireatment	Tracer	1	2	3	4	
		Fisher-Tippet	Weibull (3)	Gamma (2)	Logistic	
		$\beta = 1.7 \pm 0.3;$	$\beta = 16.9 \pm 2.8;$	$\kappa = 31.1 \pm 0.4;$	$\mu = 9.1 \pm 0.3;$	
	E. coli	$\mu = 9.3 \pm 0.4;$	$\gamma = 24.3 \pm 0.8;$	$\beta = 0.3 \pm 0.2;$	$s = 0.7 \pm 0.1;$	
		<i>N</i> = 23; 66.3%	$\mu = -13 \pm 0.9;$	<i>N</i> = 42; 97.1%	<i>N</i> = 21; 99.5%	
			<i>N</i> = 22; 80.6%			
		Fisher-Tippet	Weibull (3)	Logistic	Beta 4	
		$\beta = 1.9 \pm 0.3;$	$\beta = 354 \pm 64;$	$\mu = 14.5 \pm 0.5;$	$\alpha = 1.1 \pm 0.3;$	
	Enterococcus	$\mu = 10.9 \pm 0.4;$	$\gamma = 628 \pm 5.6;$	$s = 1.5 \pm 0.2;$	$\beta = 1.1 \pm 0.3;$	
	spp.	<i>N</i> = 24; 79.7%	$\mu = -613 \pm 5.6;$	<i>N</i> = 27; 54.05%	$c = 8.3 \pm 0.6;$	
te			<i>N</i> = 18; 99%		$d = 17.4 \pm (< 0.0$	
was					N = 20; 32.6%	
id		Logistic	Weibull (2)			
liqu	G 1 11	$\mu = 11.5 \pm 0.3;$	$\beta = 16.0 \pm 4.1;$		1.10	
Ē	Salmonella spp.	$s = 0.8 \pm 0.2;$	$\gamma = 14.0 \pm 0.3;$	$N \leq 10$	$N \leq 10$	
oan		N = 17; 94.0%	N = 10; 96.1%			
ay l		Log-normal	GEV	GEV	GEV	
J		$\mu = 2.2 \pm 0.2;$	$\kappa = 0.7 \pm 0.2;$	$\kappa = 0.7 \pm 0.1;$	$\kappa = 0.8 \pm (< 0.00)$	
	C. perfringens	$\sigma = 0.7 \pm 1.9;$	$\beta = 8.9 \pm 0.001;$	$\beta = 8.1 \pm 0.9;$	$\beta = 7.7 \pm 0.62$	
		<i>N</i> = 15; 36.8%	$\mu = 19.3 \pm 0.001;$	$\mu = 20.8 \pm 1.1;$	$\mu = 22.1 \pm 0.9$	
		,	N = 49; 35.5%	N = 63; 26.8%	N = 49; 18.9%	
	Microspheres	Logistic	Beta 4	Beta 4		
		$\mu = 6.7 \pm 0.7;$	$\alpha = 1.0 \pm 0.4;$	$\alpha = 0.9 \pm 0.3;$	N < 10	
		$s = 1.6 \pm 0.3;$	$\beta = 0.7 \pm 0.2;$	$\beta = 0.5 \pm 0.2;$		
		<i>N</i> = 18; 99.7%	$c = 3.5 \pm 2088;$	$c = 3.3 \pm 2240;$	N < 10	
			$d = 13.4 \pm (<0.01); N =$	$d = 12.4 \pm (<0.01);$		
			14; 88.9%	<i>N</i> = 16; 91.9%		
		Weibull (2)	Logistic	Logistic	Beta 4	
		$\beta = 25.3 \pm 4.4;$	$\mu = 18.2 \pm 0.2;$	$\mu = 18.1 \pm 0.2$	$\alpha = 1.4 \pm 0.43$	
	$\Gamma \rightarrow 1$	$\gamma = 18.6 \pm 0.32;$	$s = 0.6 \pm 0.1;$	$s = 0.6 \pm 0.1;$	$\beta = 1.1 \pm 0.3$	
	E. Coll	<i>N</i> = 20; 95.8%	<i>N</i> = 26; 99.9%	<i>N</i> = 29; 99.9%	$c = 7.2 \pm 0.5;$	
					$d = 13.8 \pm 0.00$	
e					<i>N</i> = 29; 93.0%	
vast	Enterococcus	N < 10	N < 10	N < 10	N < 10	
v bs	spp.	N > 10	$N \leq 10$	$N \leq 10$	$N \leq 10$	
ter				Logistic	Weibull (3)	
ewa				$\mu = 15.7 \pm 0.4;$	$\beta = 1.6 \pm 0.3;$	
Sandy loam de	Salmonella spp.	N < 10	N < 10	$s = 1.1 \pm 0.2;$	$\gamma = 1.6 \pm 0.2;$	
				<i>N</i> = 19; 96.1%	$\mu = 9.4 \pm 0.2;$	
					<i>N</i> = 11; 88.9%	
		Logistic	GEV	Beta 4	Beta 4	
		$\mu = 35.4 \pm 0.5;$	$\kappa = 0.6 \pm 0.2;$	$\alpha = 1.7 \pm 0.3;$	$\alpha = 1.8 \pm 0.3;$	
	C nonfringan-	$s = 1.1 \pm 0.2;$	$\beta = 2.2 \pm (<0.001);$	$\beta = 1.2 \pm 0.2;$	$\beta = 1.8 \pm 0.3$	
	C. perjringens	<i>N</i> = 17; 99.6%	$\mu = 34.9 \pm (<0.001);$	$c = 28.0 \pm 0.6;$	$c = 16.3 \pm 0.4$	
			<i>N</i> = 36; 98.6%	$d = 39.1 \pm < 0.001;$	$d = 28.5 \pm < 0.00$	
				<i>N</i> = 45; 99.7%	<i>N</i> = 66; 84.9%	
	Microspheres	N < 10	N < 10	N < 10	N < 10	

Table S5. Cont.

T	T	Event				
Ireatment	Iracer	1	2	3	4	
		Logistic	Logistic	Beta 4	Logistic	
		$\mu = 10.8 \pm 0.2;$	$\mu = 11.7 \pm 0.3;$	$\alpha = 0.9 \pm 0.3;$	$\mu = 10.3 \pm 0.3;$	
	E ooli	$s = 0.7 \pm 0.1;$	$s = 0.8 \pm 0.1;$	$\beta = 1.1 \pm 0.3;$	$s = 1.0.\pm 0.1;$	
	E. Coll	<i>N</i> = 24; 99.6%	<i>N</i> = 25; 99.1%	$c = 9.0 \pm 0.3;$	<i>N</i> = 49; 98.1%	
				$d = 14.2 \pm <0.001;$		
				<i>N</i> = 23; 96.5%		
		Logistic	Logistic	Log-normal	Weibull (2)	
e	Enterococcus	$\mu = 14.8 \pm 0.7;$	$\mu = 15.0 \pm 0.3;$	$\mu = 2.6;$	$\beta = 14.9 \pm 2.6;$	
iquid wast	spp.	$s = 0.6 \pm 0.1;$	$s = 0.5 \pm 0.1;$	$\sigma = 0.1;$	$\gamma = 15.7 \pm 0.3;$	
		<i>N</i> = 27; 99.8%	<i>N</i> = 12; 99.8%	<i>N</i> = 12; 99.9%	<i>N</i> = 18; 82.5%	
	Salmonella spp.		Logistic		Gamma (2)	
I-li		N < 10	$\mu = 14.2 \pm 0.7;$	N < 10	$\kappa = 37.8 \pm 0.4;$	
u so		<i>IV</i> < 10	$s = 1.3 \pm 0.4;$	$N \leq 10$	$\beta = 0.3 \pm 0.3;$	
oan			<i>N</i> = 10; 97.5%		<i>N</i> = 11; 83.5%	
dy I		Weibull (2)	Logistic	Weibull (3)	Logistic	
ano		$\beta = 6.0 \pm 0.7;$	$\mu = 20.41 \pm 0.5;$	$\beta = 5.3 \pm 0.4;$	$\mu = 20.5 \pm 0.3;$	
•	C. perfringens	$\gamma = 21.6 \pm 0.5;$	$s = 2.1 \pm 0.2;$	$\gamma = 17.8 \pm 0.4;$	$s = 2.0 \pm 0.2;$	
		<i>N</i> = 49; 99.2%	<i>N</i> = 68; 99.5%	$\mu = 4.2 \pm 0.5;$	<i>N</i> = 109; 95.9%	
				<i>N</i> = 88; 95.4%		
		Logistic	Weibull (3)		GEV	
		$\mu = 10.1 \pm 0.2;$	$\beta = 878 \pm 184;$		$\kappa = 0.7 \pm 0.3;$	
	Microspheres	$s = 0.6 \pm 0.1;$	$\gamma = 804 \pm 5;$	N < 10	$\beta = 1.0 \pm (<0.001);$	
		<i>N</i> = 21; 81.8%	$\mu = -793 \pm 5;$		$\mu = 10.6 \pm (<0.001);$	
			<i>N</i> = 14; 95.8%		<i>N</i> = 15; 69.7%	

 Table S5. Cont.

Legend

Gamma (2) = PDF type; α , β , γ , σ , κ , μ , c, d, s = PDF parameters; N = Number of samples; 99.9% = The risk to reject the hypothesis that the sample follows the best fit PDF type

Distribution Equations (Addinsoft, 2014)					
<i>Normal</i> Distribution $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2}}$	<i>Lognormal</i> Distribution $f(x) = \frac{1}{x\sigma\sqrt{2\pi}}e^{\frac{(\ln(x)-\mu)^2}{2\sigma^2}}$	$f(x) = \frac{e^{-\frac{(x-\mu)}{s}}}{s\left(1+e^{-\frac{(x-\mu)}{s}}\right)}$			
<i>Weibull (</i> β , γ <i>)</i> Distribution	<i>Weibull (</i> β , γ , μ) Distribution	Gamma Distribution			
$f(x) = \frac{\beta}{\gamma} \left(\frac{x}{\gamma}\right)^{\beta-1} e^{-\left(\frac{x}{\gamma}\right)^{\beta}}$	$f(x) = \frac{\beta}{\gamma} \left(\frac{x-\mu}{\gamma}\right)^{\beta-1} e^{-\left(\frac{x-\mu}{\gamma}\right)^{\beta}}$	$f(x) = (x - \mu)^{k-1} \frac{e^{-(x-\mu)/\beta}}{\beta^k \Gamma(k)}$			
<i>GEV</i> (Generalized Extreme Values) Distribution $f(x) = \frac{1}{\beta} \left(1 - k \frac{x-\mu}{\beta}\right)^{\frac{1}{k}-1} exp\left(-\left(1 - k \frac{x-\mu}{\beta}\right)^{\frac{1}{k}}\right)$					
Fisher-Tippet Distribution $f(x) = \frac{1}{\beta} exp\left(-\frac{x-\mu}{\beta} - exp\left(-\frac{x-\mu}{\beta}\right)\right)$					
Beta 4 Distribution $f(x) = \frac{1}{B(\alpha,\beta)} \frac{(x-c)^{\alpha-1}(d-x)}{(d-c)^{\alpha+\beta-1}}$	$\frac{\beta^{-1}}{2}$, with $\alpha, \beta > 0$ and $x \in [c, d]$ a	and $c, d \in R$ and $B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$			

Figure S2. Proportion of inactivated collectors. This is the sum of total inactive collectors that were active at any one or more of the previous irrigation events (*i.e.*, it does not include collectors that were consistently inactive throughout the experiment).

 \bigcirc 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).