
water

Article

Assessment of FAO AquaCrop Model for Simulating
Maize Growth and Productivity under Deficit
Irrigation in a Tropical Environment

Geneille E. Greaves 1 and Yu-Min Wang 2,*
1 Department of Tropical Agriculture and International Cooperation, National Pingtung University of

Science and Technology, 1 Shuefu Rd., Neipu, Pingtung 91201, Taiwan; geneilleg@gmail.com
2 Department of Civil Engineering, National Pingtung University of Science and Technology, 1 Shuefu Rd.,

Neipu, Pingtung 91201, Taiwan
* Correspondence: wangym@mail.npust.edu.tw; Tel.: +886-8-770-3202 (ext. 7181)

Academic Editors: Tim Hess and Jerry Knox
Received: 4 October 2016; Accepted: 22 November 2016; Published: 29 November 2016

Abstract: Crop simulation models have a pivotal role to play in evaluating irrigation management
strategies for improving agricultural water use. The objective of this study was to test and validate
the AquaCrop model for maize under deficit irrigation management. Field observations from three
experiments consisting of four treatments were used to evaluate model performance in simulating
canopy cover (CC), biomass (B), yield (Y), crop evapotranspiration (ETc), and water use efficiency
(WUE). Statistics for root mean square error, model efficiency (E), and index of agreement for B and
CC suggest that the model prediction is good under non-stressed and moderate stress environments.
Prediction of final B and Y under these conditions was acceptable, as indicated by the high coefficient
of determination and deviations <10%. In severely stressed conditions, low E and deviations >11% for
B and 9% for Y indicate a reduction in the model reliability. Simulated ETc and WUE deviation from
observed values were within the range of 9.5% to 22.2% and 6.0% to 32.2%, respectively, suggesting
that AquaCrop prediction of these variables is fair, becoming unsatisfactory as plant water stress
intensifies. AquaCrop can be reliably used for evaluating the effectiveness of proposed irrigation
management strategies for maize; however, the limitations should be kept in mind when interpreting
the results in severely stressed conditions.
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1. Introduction

Population growth, land use change, climate change, and increasing demand in non-agricultural
sectors profoundly affect the availability and quality of water resources for irrigated agriculture.
Amid increasing concerns that water scarcity and food security are among the main problems to
be faced by many societies in the 21st century, a global challenge for the agricultural sector is to
produce more food with less water [1]. Irrigation strategies focusing on increasing agricultural water
productivity, such as deficit irrigation (DI) coupled with crop simulation modeling to investigate
multiple alternatives, have a pivotal role to play in sustainable water development.

Extensive research and publications highlight the contribution DI management strategy makes
in combating water waste in irrigation. By providing less than the exact crop water requirements,
specifically during drought-tolerant growth stages, crop yields can be stabilized and maximum water
use efficiency (WUE) attained [2]. Judicious planning is therefore required as supplying crops with less
than their water requirement can significantly affect crop growth and development, inevitably affecting
yield, especially if water stress occurs during the susceptible growth stage. DI is a flexible management
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strategy and its successful implementation is dependent on a sound irrigation schedule, in terms of
both timing and application amount. Therefore, there exist numerous possibilities when investigating
and imposing a DI management plan. Some of these include growth-stage-specific DI, intermittent DI
(irrigation is applied on specific days), and root zone soil moisture depletion. In each case, different
water amounts can be applied. Owing to their cost and time effectiveness, crop simulation models are
ideally suited for the evaluation of irrigation strategies where there are various alternatives.

The FAO AquaCrop simulation model provides a sound theoretical framework to investigate crop
yield response to environmental stress [3]. This model has successfully simulated crop growth and
yield as influenced by varying soil moisture environments for crops like sunflower [4], bambara
groundnut [5], and winter wheat [6]. Farahani et al. [3] and Geerts et al. [7] suggest that this
model maintains a good balance between robustness and accuracy, and a noteworthy feature of
the model compared to other cereal crop growth models is the simplicity it offers its users; it does
not require advanced skill for its calibration or operation and does not require a large number of
input parameters [8]. The relatively small number of input data describes the soil–crop–atmosphere
environment in which the crop develops, most of which can be derived by simple methods. AquaCrop
simulates crop growth and yield based on the water-driven growth model that relies on the
conservative behavior of biomass per unit transpiration relationship [4,9]. This fundamental principle
contributed to the simplistic structure of the model, having a greater applicability in space and time,
as the model features “conservative input parameters” that transcend geographical location and
cultivar [9,10]. Raes et al. [11] noted that these conservative parameters require no adjustment to the
localized environments, favorable or limiting conditions, as their modulation is triggered by stress
response functions.

AquaCrop yield response model has been applied to a wide range of crops including maize.
Heng et al. [8] and Hsiao et al. [12] reported that AquaCrop simulated maize development, grain yield,
and water variables such as the crop evapotranspiration (ETc) and WUE, to name a few, reasonably
well in cases of non-limiting conditions. Still, some studies report that model performance declines in
estimating some variables in severe water stress environments [1,13]. Although a highlighted feature
of the model is the applicability of conservative parameters used in crop simulations (these parameters
are reported by Heng et al. [8] and Hsiao et al. [12] for maize), several researchers observed that model
parameterization is essentially site-specific and that important calibrated parameters necessary for
accurate simulation must be tested under different climate, soil, cultivars, irrigation methods, and field
management to improve the reliability of the simulated results [3,14,15].

Owing to the diversification of its uses, maize is a cereal crop that significantly contributes
to a country’s self-sufficiency. Taiwan has recorded a considerable decrease in maize production
and now relies heavily on imports from the international market to meet demand [16]; the average
cultivated area of maize in Taiwan is approximately 18,000 ha/year (2005–2009 estimate) from about
90,000 ha/year in 1980–1990 [17]. Amid a water-intensive rice industry (Taiwan’s main crop), the
successful revival and planned expansion of maize production requires sustainable water management
strategies, especially considering that dry spells are a characteristic feature of the main cropping
season. The availability of a model adapted to local conditions should have a strong impact on planned
expansions and would aid in assessing competing management alternatives and possible constraints.
Integrating crop models that simulate the effects of water on crop yield with targeted experimentation
can facilitate the development of irrigation strategies for high yield procurement and improving farm
level water management and WUE.

The objectives of this research were two-fold: (1) To analyze the performance of AquaCrop for
maize under full and deficit irrigation in the tropical environment of Southern Taiwan; and (2) to test
and validate the effectiveness of the calibrated model in simulating biomass yield and grain yield
under contrasting environmental conditions.
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2. Materials and Methods

2.1. Field Experiments

2.1.1. Site Characteristics and Management Practices

Field experiments were conducted at the irrigation experimental site of National Pingtung
University of Science and Technology, Southern Taiwan (22.65◦ N: 34.95◦ E: 71 m above sea level)
for three cropping seasons. The climate of the study area is classified as tropical wet and dry with
extreme spatial and temporal rainfall distribution. Two experiments were conducted during the main
growing period running from November to March for 2014 to 2015 (Experiment 1) and 2015 to 2016
(Experiment 3). Another experiment was conducted during the summer season running from April to
July of 2015 (Experiment 2). Utilizing the model for two distinct cropping seasons allows for better
testing and evaluation of its effectiveness given the extreme spatial and temporal rainfall distribution
of the study location. The late cropping season (November to March), one of the main cropping periods
for maize, coincides with the cooler winter season and is characterized by warm dry spells and lack of
rainfall. The other cropping season (April to July) coincides with the hot and humid summer months
and typhoon season, which is characterized by intense and or long rainfall events that often lead to
extensive damage to crops.

Weather data, including daily values of air temperature, humidity, wind speed (at 2 m height),
solar radiation, and precipitation, were collected from an on-site agro-meteorological station. The two
experiments occurring during the main growing months (November to March) had similar air
temperature environments, with a seasonal mean of approximately 20 ◦C. During these periods,
the mean daily maximum temperature ranged from 11 to 32 ◦C, while the mean daily minimum
temperature ranged from 5 to 22 ◦C. On the other hand, the mean maximum temperature for
Experiment 2 was consistently over 32 ◦C, with a seasonal mean of 28.7 ◦C. There was substantial
difference in rainfall between the seasons. During Experiments 1 and 3 a total rainfall of 40 mm
and 213.5 mm was recorded, respectively. The rainfall during Experiment 3 was atypical to that
observed at the location; total long-term (15 years) rainfall during the cropping period averages
65.4 mm. In contrast, the total rainfall recorded during Experiment 2 was 890.5 mm, most of which was
concentrated in two major events (Figure 1). The uneven distribution of rainfall affected the irrigation
application (subsequently discussed). Cumulative reference evapotranspiration (ETo), calculated via
the FAO Penman–Monteith method as described in Allen et al. [18], was 286.3, 415.9, and 274.4 mm for
Experiments 1, 2, and 3, respectively.
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Figure 1. Daily rainfall at the experimental site over the three cropping seasons: (a) November 2014 to
March 2015; (b) November 2015 to March 2016; (c) April to July 2015. Arrows at the top indicate the
time of irrigation application (from V6 growth stage) for all treatments.
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The soil at the experimental site is classified as loamy, with an average bulk density of 1.4 g·cm−3.
The average volumetric water contents for a 1 m soil profile depth at saturation, field capacity, and
permanent wilting point are 42.9%, 30.5%, and 15%, respectively. Table 1 shows important soil physical
characteristics of the experimental site. During the three experiments, crops were subjected to the
same field management practices. There were a total of 12 plots of 10 m2, manually prepared with
well-leveled basins. To avoid border and interaction effects, levees 0.30 m high and 1 m wide were
created around the perimeter of each plot as buffer. Fertilizer was applied over the entire field when
needed so that plants would not be subjected to nutrient stress. Insects and diseases were rigorously
controlled during the cropping season and plots were hand weeded when necessary so that there was
no competition for light, nutrients, or water.

Table 1. Some soil physical properties of the experimental site and initial soil water content (SWC) for
the three experiments (Exp.) at different soil profile depths.

Soil Depth (m) Field Capacity (m3·m−3) Permanent Wilting Point (m3·m−3)
Initial SWC (% Volume)

Exp. 1 Exp. 2 Exp. 3

0–0.2 0.305 0.150 28.1 21.1 26.1
0.2–0.4 0.299 0.143 31.2 22.3 25.7
0.4–0.6 0.304 0.151 29.6 26.6 27.1
0.6–0.8 0.310 0.159 30.8 25.7 26.7
0.8–1.0 0.312 0.148 31.7 28.0 29.1

2.1.2. Irrigation Treatments

The experiments for all seasons consisted of four irrigation treatments, replicated three times,
arranged in a completely randomized block design. The treatment variation was based only on the
amount of irrigated water applied, irrespective of the corn phenological growth stage. The rationale
for this was to maintain a consistent irrigation schedule based on soil moisture content. It was
hypothesized that this would vary the severity of the water stress levels. The four irrigation levels
included a full irrigation treatment (FIT) and three deficit treatments corresponding to 67%, 50%, and
33% of water applied in the FIT. Irrigation depth was determined based on the concept of maximum
allowable depletion of total available soil water (TAW) in the soil profile [19]. Using Equation (1) [19],
the water applied to the FIT at each irrigation event was 60 mm. Subsequently, irrigation levels assigned
to deficit treatments 67% FIT, 50% FIT, and 33% FIT was 40, 30, and 20 mm of water, respectively.

Vd =
AD (%) (FC − WP) Rz A

100
, (1)

where Vd is the volume of irrigation water (m3), AD is the allowed depletion (40%) [20], FC is the
field capacity (m3·m−3), WP is the permanent wilting point (m3·m−3), Rz is the effective rooting depth
(1 m), and A is the surface area of the plot (m2). During early vegetative growth (VE to end of V5),
all treatments received approximately 60–75 mm of water to establish plants and promote robust
root development. Treatment management of irrigation water application thus began from the V6
growth stage, and it is here that the distinction was made in terms of 67%, 50%, and 33% FIT water
applied. Given the temporal distribution of rainfall, the number of irrigation events in each season
varied (Figure 1). There were a total of eight, four, and five irrigation events in Experiments 1, 2, and 3,
respectively. Total water applied, which is equal to the sum of the initial amounts of water applied
for plant establishment and the amount under the treatment management, to the different treatments
in each season is presented in Table 2. Flood irrigation by the use of carefully constructed water
pipes and water meters was used to administer the required water depth to each treatment. Irrigation
was initiated for all treatments whenever the soil moisture in the FIT was depleted by 40%. That is,
in the deficit-irrigated treatments irrigation occurred on the same day as the fully irrigated plots,
but the duration of irrigation applications were reduced to 67%, 50%, and 33% of the full irrigation.
The 40% depletion criterion used for irrigation scheduling was determined by constantly monitoring
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the soil water status. The percentage depletion of available soil water in the effective root zone was
estimated as follows [21]:

depletion (%) = 100 × 1
n ∑n

1
FCi − θi

FCi − WP
, (2)

where n is the number of sub-divisions of the effective rooting depth used in the soil moisture sampling,
FCi is the soil moisture at field capacity for ith layer, θi is the soil moisture in ith layer, and WP is the soil
moisture at permanent wilting point. θ was monitored daily using soil moisture sensors, EnviroScan
system (Sentek Technologies, Stepney, Australia), connected to an automatic datalogger. Sensors were
installed in between two plants on the same row through Sentek customized polyvinyl chloride (PVC)
access tubes in two replicates per treatment. Daily soil water in the root zone was computed as the
average of all 10-min interval readings for that day for the respective soil profile depths.

Table 2. Timeline of main phenological growth stages in days after planting (DAP) and seasonal water
applied for the different treatments for the three experiments (Exp.).

Agronomic Details
Growing Season

Exp. 1 Exp. 2 Exp. 3

Planting density (plants m−2) 8.3 8.3 8.3
Sowing date 22 November 19 April 21 November

Emergence (DAP) 6 7 7
Anthesis (DAP) 60 54 71
Maturity (DAP) 114 99 120

Total Irrigation Water Applied (mm)

FIT 555 (480, 75) 1 300 (240, 60) 375 (300, 75)
67% FIT 395 (320, 75) 220 (160, 60) 275 (200, 75)
50% FIT 315 (240, 75) 180 (120, 60) 225 (150, 75)
33% FIT 235 (160, 75) 140 (80, 60) 175 (100, 75)

Note: 1 Values in parentheses show the amount under irrigation treatment management and initial water
applied for plant establishment.

2.2. Data Collection and Measurements

The main phenological growth stages in days after planting (DAP) are presented in Table 2.
To assess crop development, leaf area index (LAI) and total aboveground biomass were monitored
throughout the cropping season. During Experiment 1, data was collected at regular three-week
intervals from sowing to harvest, while collection was done approximately every two weeks during
Experiment 3. For Experiment 2, extreme weather conditions resulted in severe damage to some
plants and data collection of seasonal evolution of biomass and LAI had to be abandoned. To evaluate
biomass accumulation, four plants per plot were randomly selected, clipped at the soil surface, then
oven dried at 70 ◦C until constant weight was attained. At harvest, final grain yield and total oven-dry
biomass per treatment were measured. Eight randomly selected plants per plot were tagged to monitor
LAI throughout the growing season. The LAI was calculated as the product of the manually measured
leaf area (maximal length x width) of each leaf, by the shape factor (k = 0.75) for maize, by the plant
density [22]. LAI was converted to green canopy cover (CC) using Equation (3) [8,12]:

CC = 1.005 [1 − exp (−0.6 LAI)]1.2. (3)

The actual crop evapotranspiration (ETc) of each treatment was calculated using the soil water
balance method:

ETc = P + I − D − R ± ∆W, (4)

where P is the rainfall (mm), I is the irrigation (mm), D is the downward drainage out of the root
zone (mm), R is the surface runoff (mm), and ∆W is the change in the soil water content (SWC) (mm).
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R was assumed to be zero because irrigation water application was controlled and the experimental
plots were enclosed by 1 m wide levees around the perimeter with basins meticulously prepared to
be level. In Experiments 1 and 3, the SWC in the root zone was recorded using EnviroScan probes
throughout the season from 0 to 1 m depth with 0.1 m intervals, and 1 to 1.6 m depth at 0.2 m intervals.
The latter was used to observe drainage, as the effective root zone considered was 1 m. However,
during Experiment 2 all SWC was measured on a weekly basis gravimetrically. Here, the SWC was
monitored at 0.10-m intervals to a depth of 1 m and at 0.20 m intervals from 1 to 2 m soil profile depth.
Field initial SWC (Table 1) was measured at sowing gravimetrically to ensure the accuracy of the
sensors and for AquaCrop model input data.

2.3. Description of AquaCrop Simulation Model

2.3.1. Model Background

The AquaCrop model evolved from the Doorenbos and Kassam [23] Ky approach of modeling
yield response to water. As outlined in Steduto et al. [9] and Raes et al. [11], there are two fundamental
principles that separate this water-driven “growth engine” from its predecessor and other cropping
models. First, the model simulates the separation of actual ET into soil evaporation and crop
transpiration, thereby avoiding the confounding effect of the non-productive consumptive use of water.
In addition, another distinguishing attribute of AquaCrop is that it uses green CC to express foliage
development instead of LAI. The CC and ETo are then used with the crop coefficient for transpiration
to calculate transpiration for non-stress conditions, and with the soil evaporation coefficient to calculate
soil evaporation each day [8]. Secondly, the model simulates the separation of yield into biomass and
harvest index (HI). Crop yield is simulated as the product of biomass and HI. In AquaCrop, HI is
identified as a conservative parameter, although the default value can be changed for a specific species
or location. Additionally, HI is continuously adjusted in AquaCrop during yield formation in response
to water and/or temperature stresses. AquaCrop estimates daily biomass production as follows:

Bi = WP∗ ∑
(

Tri
EToi

)
, (5)

where Bi is the daily aboveground biomass, Tri is the daily crop transpiration, EToi is the daily
reference evapotranspiration, and WP* is the water productivity of the crop species normalized for
both evaporative demand and atmospheric CO2. The normalization of WP for climate makes AquaCrop
applicable to diverse locations and seasons, including future climate scenarios [5].

In addition to crop growth, development, and yield production, AquaCrop simulates changes
in the amount of water stored in the root zone by performing a daily water balance that includes
all the incoming and outgoing water fluxes (infiltration, runoff, deep percolation, evaporation, and
transpiration). In the model, there are four water stress response coefficients, which are functions
of the fractional depletion of the total available water in the root zone used to express the effects
of water deficit on the crop. The four coefficients are for leaf growth/canopy expansion, stomatal
conductance, canopy senescence, and pollination failure/HI, each with its own threshold depletion
level and response curves.

2.3.2. Parameters and Input Data

As in other crop models, AquaCrop consists of a soil–crop–atmosphere continuum. The climate
component requires daily weather data on maximum and minimum air temperature, rainfall, ETo,
and CO2 concentration. These data were collected from an agro-meteorological station located at the
experimental site. Daily ETo was calculated using the FAO Penman–Monteith equation.

The soil profile file requires basic soil characteristics such as volumetric water content at saturation,
field capacity, permanent wilting point, and saturated hydraulic conductivity of the different soil
profile depths. These parameters were obtained in accordance with standard international procedures.
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Groundwater effects through capillary action were not simulated as the groundwater table is well
below the effective root zone (typically >7 m). Data required for the initial conditions file in
AquaCrop was measured at the start of each experiment (Table 1). The input data also include
information relating to the irrigation and field management. In general, these input parameters are
location- and management-specific, and the necessary data were entered into the model as practiced in
the field experiments.

The crop input component of AquaCrop contains both user-specific and conservative parameters,
which can be categorized into crop parameters, phenology, development, and water stress groups.
Some of the user-specific parameters include plant density, emergence time, canopy senescence
and maturity time, flowering period and yield formation duration, rooting depth, and reference HI
(may also be conservative). To name a few, some of the conservative crop parameters include soil
water extraction pattern; canopy growth, given as a percentage of canopy cover; WP* for biomass; crop
coefficient for transpiration at full canopy; and water stress response coefficients for canopy expansion,
stomatal closure, and early canopy senescence. Given one of the experimental periods was during
the rainy season when water logging is common, aeration stress was considered in the simulation.
Lack of aeration in the root zone resulting from soil water content being above the anaerobiosis point
is associated with a decrease in crop transpiration [11].

2.4. Model Calibration and Validation

Assessment of the performance and robustness of AquaCrop model under varying water
environments and crop water stress levels was achieved by comparing the simulated canopy
development, biomass accumulation, grain yield, ETc, and WUE of maize against field measurements.
All the simulations were limited to the conditions of no nutrient and salinity stress in AquaCrop (v. 5.0).
As field measurements were taken more intensively during Experiment 3 which was conducted from
November 2015 to March 2016), these data were used for the model calibration.

As a first step, the calibration procedure involved comparing observed and simulated CC under
full irrigation. Then the calibrations were based on comparisons between simulated and observed
biomass and grain yield at harvest. Finally, the process involved the comparison of simulated and
observed values for biomass and grain yield for the deficit irrigated treatments. In general, measured
crop growth variables, observed phenological stages, and conservative parameters for maize [8,12] was
used in this testing phase. The procedure was an iterative process of adjusting sensitive parameters,
mainly non-conservative parameters, in AquaCrop and assessing both the absolute and relative
difference. For each change in input, simulations were run using the calibrated crop file and the
corresponding irrigation file. Geerts et al. [7] and Salemi et al. [24] report on the most sensitive
parameters in AquaCrop obtained through sensitivity analysis testing. As the experimental site was
meticulously prepared to prevent runoff, this field management option was selected in the model.

Considering the calibrated crop parameters, plant density, and other crop growth data observed
in the field, validations were executed. Data from Experiments 1 and 2 were used for validating the
model. Validation of the model in simulating the seasonal evolution of CC and biomass accumulation
was only possible for the November 2014 to March 2015 (Experiment 1) season. For each of the
simulation runs, weather data, soil characteristics, irrigation applications, phenological stages, and
sowing density were entered as observed.

2.5. Model Evaluation

To evaluate the goodness of fit between AquaCrop simulation results and observed CC, biomass,
yield, ETc, and WUE (grain yield per unit total water used), four statistical variables were used: the
coefficient of determination (R2), the Root Mean Squared Error (RMSE, Equation (6)), the model
efficiency (E, Equation (7)) [25], and Willmott’s Index of Agreement (d, Equation (8)) [26].
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RMSE =

√
1
n

n

∑
i=1

(Mi − Si)
2 (6)

E = 1 − ∑n
i=1 (Mi − Si)

2

∑n
i=1
(

Mi − M
)2 (7)

d = 1 − ∑n
i=1 (Mi − Si)

2

∑n
i=1
(∣∣Mi − M

∣∣+ ∣∣Si − M
∣∣)2 (8)

where Mi and Si are the measured and simulated values, respectively, n is the number of observations,
and M is the mean of n measured values.

The RMSE represents a measure of the overall or mean deviation between observed and simulated
values. According to Heng et al. [8], it is a synthetic indicator of the absolute model uncertainty.
RMSE has the same unit as that of the variable being simulated, therefore the closer the value is to zero
the better the model simulation performance.

The E is a measure of the mean square to the observed variance. That is, it expresses how much
the overall deviation between observed and simulated values departs from the overall deviation
between observed values (Mi) and their mean value (M). This parameter captures how well the model
performs over the whole simulation span, unlike the RMSE [8]. In other words, while RMSE does not
distinguish between large deviations occurring in some parts of the season and small deviations in
other parts of the season, E accounts for the different deviations along the entire season and expresses
the efficiency of the model performance. Values of E range between 1 and −∞, with better model
simulation efficiency when values are closer to 1.

The index of agreement, d, is a measure of relative error in model estimates. Zeleke et al. [27]
note that while E is an index of predictive performance, d indicates the degree to which predicted and
measured values show similar deviation from the measured mean. It is a dimensionless quantity and
ranges from 0 to 1, where 0 describes complete disagreement and 1 indicates perfect model agreement.
Additional model performance evaluations were performed as percentage deviations between the
measured and simulated final biomass and grain yield. Model performance was also evaluated by
using R2, which indicates the strength of the relationship between the variables.

3. Results

3.1. Calibration

The main parameters used to calibrate AquaCrop model for simulating maize growth and
productivity for the study location are presented in Table 3 along with the default values contained in
the AquaCrop files. Calibration was completed using the data collected during the 2015/2016 cropping
season (Experiment 3). The HI used in the model (52%) was higher than the proposed 48% [8,12]
because of the high yielding maize variety.

Table 3. AquaCrop default values and calibrated values for main parameters used in maize simulation.

Parameters Default Calibrated

Growth & production - -
Normalized crop water productivity (g·m−2) 33.7 33.7
Reference harvest index (%) 48 52
Phenology - -
Base temperature (◦C) 8 8
Cut-off temperature (◦C) 30 30
Time from sowing to anthesis (GDD) 800 882.2
Time from sowing to maturity (GDD) 1700 1469



Water 2016, 8, 557 9 of 18

Table 3. Cont.

Parameters Default Calibrated

Morphology - -
Initial canopy cover (%) 0.49 0.42
Canopy cover (CC) per seedling (cm2/plant) 6.5 6.0
Maximum canopy cover (%) 96 94
Maximum rooting depth (m) 2.3 1
Canopy growth coefficient (%/day) 16.3 13.6
Canopy decline coefficient (%/day) 11.7 16.2
Crop coefficient for transpiration 1.05 1.02
Decline of crop coefficient (%/day) 0.30 0.30
Effect of CC on reducing evaporation (%) 50 50
Upper threshold for leaf expansion growth 0.14 0.14
Lower threshold for leaf expansion growth 0.72 0.72
Leaf growth stress coefficient curve shape 2.9 2.9
Upper threshold for canopy senescence 0.69 0.69
Senescence stress coefficient curve shape 2.7 2.7
Upper threshold for stomatal closure 0.69 0.69
Stomata stress coefficient curve shape 6 6.0
Aeration stress coefficient (% vol. saturation) 5 5

3.1.1. Canopy Cover

The development in green CC for the entire growing season is presented in Figure 2. In general, the
model predicted the seasonal trend in CC well. However, the model tended to underestimate CC during
early vegetative growth. This prediction of a slower crop establishment was more pronounced in
deficit treatments, and for these treatments the model also underestimated the maximum CC observed
in the field. The accuracy of the calibrated model in simulating CC development was confirmed by
statistical values (Table 4). For the FIT and 67% FIT high E values were obtained, while the moderate
E values of 0.77 and 0.59 for deficit treatment 50% FIT and 33% FIT indicate that the model performance
declined in circumstances of water stress. However, high d and low RMSE for all treatments indicate
that the model is robust in simulating canopy development in different water environments. For the
calibration dataset, a strong 1:1 correlation between simulated and measured values was observed
with an overall R2 = 0.94. Table 4 presents the R2 value obtained from the 1:1 correlation analysis of
simulated CC against measured CC for individual treatments.
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Table 4. Statistical indices of AquaCrop simulated results for the calibration dataset.

Statistic
Treatment

FIT 67% FIT 50% FIT 33% FIT

Variable Canopy Cover

RMSE (%) 6.41 11.35 11.50 14.96
E 0.94 0.80 0.77 0.59
d 0.99 0.96 0.95 0.92

R2 0.98 0.97 0.95 0.92

Variable Biomass

RMSE (t·ha−1) 1.16 1.68 2.30 3.28
E 0.97 0.92 0.77 0.43
d 0.99 0.98 0.96 0.90

R2 0.99 0.97 0.94 0.88

3.1.2. Biomass and Yield

Seasonal evolution of measured and simulated aboveground biomass is depicted in Figure 3.
Generally, there is a good fit of measured and simulated values for the FIT, as indicated by the low
RMSE and high d and E given in Table 4. The model was also able to simulate reasonably well
the biomass production for deficit treatments 67% FIT and 50% FIT, as reflected by the statistical
parameters. In general, however, the model tended to overestimate the biomass accumulated, with the
deviation becoming more distinct in the DI treatments, especially 33% FIT (Figure 3). This treatment
was observed to experience more severe water stress, an onset that began during the vegetative growth
stage. The water stress experienced by the 33% FIT resulted in a model efficiency of 0.43, indicating
that as water stress intensifies model reliability lessens. During the calibration stage, while the seasonal
evolution of CC was generally underestimated the biomass was overestimated.
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irrigation treatments used for AquaCrop calibration.

For Experiment 3, the final biomass observed in the field ranged from 13.8 ± 0.5 to
20.6 ± 0.2 t·ha−1 while simulation values ranged from 15.8 to 21.9 t·ha−1 (Table 5). The more severely
stressed treatment of 50% FIT and 33% FIT had a deviation of 10.5% and 14.6% between simulated and
observed values, respectively, while the FIT and 67% FIT had a deviation less than 10%. An overall
R2 value of 0.98 (using the calibration dataset) was observed for the analysis between final biomass
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observed and simulated, indicating that the model predicted final biomass with a high degree of
accuracy, although there was a tendency to overestimate the accumulated seasonal biomass. Figure 4a
shows the deviation of values from the 1:1 line. The final measured grain yield during this cropping
season ranged between 8.7 ± 1.1 and 12.2 ± 0.8 t·ha−1 among treatments, while simulated values
ranged between 8.0 and 12.4 t·ha−1. Deviations within the range of 2% and 8.8% were observed
between measured and simulated values during this cropping season (Table 5). The accuracy
of the model in predicting final grain yield is depicted in Figure 4b. A strong 1:1 correlation
between simulated and measured values was observed for the calibrated dataset with R2 = 0.94
(Ysimulated = 1.16 × Ymeasured − 2.21).

Table 5. Simulated compared with measured values of aboveground biomass and grain yield at harvest
for the different irrigation treatments for the three cropping seasons.

Treatment
Biomass Yield

Measured
(t·ha−1)

Simulated
(t·ha−1)

Deviation
(%)

Measured
(t·ha−1)

Simulated
(t·ha−1)

Deviation
(%)

Experiment 1

FIT 19.8 ± 1.0 1 21.3 7.7 10.4 ± 0.7 11.0 4.9
67% FIT 16.5 ± 1.7 17.8 8.2 9.0 ± 0.6 8.5 −5.1
50% FIT 14.2 ± 0.6 15.5 9.3 7.3 ± 0.6 7.6 5.1
33% FIT 12.6 ± 0.7 10.7 −15.4 6.3 ± 0.9 5.3 −14.6

Experiment 2

FIT 22.9 ± 1.2 23.9 4.3 12.8 ± 0.7 13.2 3.0
67% FIT 22.0 ± 0.8 21.1 −4.0 11.6 ± 1.3 11.2 −3.4
50% FIT 21.8 ± 1.4 20.4 −6.5 11.2 ± 2.5 10.8 −3.4
33% FIT 18.0 ± 0.7 20.1 11.2 9.4 ± 2.4 10.3 9.6

Experiment 3

FIT 20.6 ± 0.2 21.9 5.6 12.2 ± 0.8 12.4 2.0
67% FIT 17.6 ± 0.6 19.4 9.9 11.5 ± 0.4 10.5 −8.8
50% FIT 15.3 ± 1.6 16.9 10.5 9.4 ± 0.3 8.8 −6.4
33% FIT 13.8 ± 0.5 15.8 14.6 8.7 ± 1.1 8.0 −8.7

Note: 1 Means ± standard deviation.
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3.2. Validation

AquaCrop model was validated using the calibrated crop parameters. Validation simulation of
seasonal development in CC and biomass accumulation was done only for Experiment 1 conducted
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from November 2014 to March 2015. Extreme weather conditions and extensive damage to the crops
during the April to July 2015 (Experiment 2) season prohibited adequate sampling of data, thus only
final biomass and grain yield were used in the validation process.

3.2.1. Canopy Cover

The measured and simulated CC used for validating AquaCrop simulation of maize grown in
different soil moisture environments are presented in Figure 5. It can be observed that AquaCrop was
able to accurately simulate the canopy development and senescence over the season for the FIT and
67% FIT. However, AquaCrop slightly underestimated the canopy development during the first few
weeks, during early vegetative growth, and this mismatch was more obvious in deficit treatments
50% FIT and 33% FIT owing to the water stress incurred. In addition, the maximum CC in the 33% FIT
was underestimated. The goodness of fit between measured and simulated CC is reflected in the
statistical parameters shown on Figure 5. The high values of E and d for the FIT and 67% FIT indicate
the overall good agreement between the simulated and measured CC. The 50% FIT recorded a high d
value of 0.92 but a moderate efficiency value of 0.66. The more severely stressed 33% FIT recorded
a model efficiency value of 0.65, indicating that the model performance is fair in severely stressed
moisture conditions.
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used in model validation.

3.2.2. Biomass and Yield

Seasonal biomass accumulated during Experiment 1 was compared with AquaCrop seasonal
prediction to validate calibrated crop parameters for field grown maize (Figure 6). It can be
observed that with the exception of the 33% FIT there is generally a good fit between the datasets.
The model tended to overpredict final biomass, except for the underprediction in the severely stressed
33% FIT. Table 5 presents values of the simulated final biomass compared to field observations.
The comparison of the final biomass shows that the majority (6 out of 8) has a deviation of less
than 10%. For Experiment 1 the deviation was within range of 7.7% and 15.4%, while the deviation
between observed and simulated biomass during Experiment 2 was lower with a range of 4% to
11.2%. For this latter season, the deviation is perhaps lower because the crop experienced less stress
during this growing period owing to the abundant rainfall (Figure 1). Furthermore, it can be observed
that the difference in accumulated biomass among treatments for this growing period was smaller in
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comparison to other growing periods (Table 5). This can be attributed to the more frequent rain events
creating a better soil moisture environment.Water 2016, 8, 557  13 of 18 

 

 

Figure  6.  Seasonal  progression  of  simulated  and  observed  aboveground  biomass  used  in model 

validation. 

Grain yields measured  from  field Experiments 1 and 3 were within  the  range of 6.3 ± 0.9  to   

10.4  ±  0.7  t∙ha−1  and  9.4  ±  2.4  to  12.8  ±  0.7  t∙ha−1,  respectively  (Table  5).  Similar  to  the  biomass 

measurements, the difference in yield among treatments for Experiment 2 was small in comparison 

to other growing periods. This can be attributed to the heavy rainfall events during the flowering 

and grain filling growth stages, which temporarily relieved soil moisture stress. Maize grain yield 

reduction  mainly  occurs  when  stress  is  experienced  during  the  reproductive  growth  stage. 

Simulated  yields  being within  5%  for most  treatments  (6  out  of  the  8  cases)  is  indicative  of  the 

robustness  and  accuracy  of  AquaCrop  in  predicting  maize  grain  yield  in  varying  water 

environments.  In  both  cropping  seasons,  simulated  yields’  deviation  from  observed  yield  was 

greater than 9% for the 33% FIT, indicating that model accuracy declines in circumstances of severely 

stressed water environments. Similar observations were discussed by Evett and Tolk [28]. The strong 

1:1  correlation observed between  simulated and measured values  (R2 = 0.93; Ysimulated = 1.07 × 

Ymeasured − 0.68) using the validation dataset verifies the high accuracy of the calibrated model in 

predicting  final grain yield  (Figure  4). Figure  4  shows  that  the values of  simulated yield versus 

measured yield were relatively close to the 1:1 line. 

3.2.3. Crop Evapotranspiration and Water Use Efficiency 

The differences in the seasonal ETc between the simulation results and measurements observed 

from the field experiment for the different irrigation treatments are presented in Table 6. AquaCrop 

consistently underestimated  the seasonal ET and  the deviations generally  increased as  soil water 

deficit increased. The deviations ranged from 6.47% to 22.16% for the three experiments. Although 

the linear regression between simulated and observed values for all seasons produced an overall R2 

value of 0.97, the values were relatively dispersed from the 1:1 line (Figure 7), suggesting that model 

prediction of ETc is fair. Owing to some significant mismatch between simulated and observed ETc 

values,  the  deviation  between  actual  and  simulated  WUE  of  grain  yield  was  large  for  most 

treatments (Table 6). Results indicated no general consensus of the deviations in WUE values being a 

function of the level of plant water stress. However, measured WUE was seemingly better in the 67% 

FIT, indicating a potential for water saving given yields for this treatment were comparable to those 

obtained in the FIT (Table 5). A relatively higher grain yield and biomass was obtained from crops 

planted in April (Experiment 2), therefore the yield WUE was higher for this cropping period. 

Figure 6. Seasonal progression of simulated and observed aboveground biomass used in model validation.

Grain yields measured from field Experiments 1 and 3 were within the range of 6.3 ± 0.9 to
10.4 ± 0.7 t·ha−1 and 9.4 ± 2.4 to 12.8 ± 0.7 t·ha−1, respectively (Table 5). Similar to the biomass
measurements, the difference in yield among treatments for Experiment 2 was small in comparison
to other growing periods. This can be attributed to the heavy rainfall events during the flowering
and grain filling growth stages, which temporarily relieved soil moisture stress. Maize grain yield
reduction mainly occurs when stress is experienced during the reproductive growth stage. Simulated
yields being within 5% for most treatments (6 out of the 8 cases) is indicative of the robustness
and accuracy of AquaCrop in predicting maize grain yield in varying water environments. In both
cropping seasons, simulated yields’ deviation from observed yield was greater than 9% for the 33% FIT,
indicating that model accuracy declines in circumstances of severely stressed water environments.
Similar observations were discussed by Evett and Tolk [28]. The strong 1:1 correlation observed
between simulated and measured values (R2 = 0.93; Ysimulated = 1.07 × Ymeasured − 0.68) using
the validation dataset verifies the high accuracy of the calibrated model in predicting final grain yield
(Figure 4). Figure 4 shows that the values of simulated yield versus measured yield were relatively
close to the 1:1 line.

3.2.3. Crop Evapotranspiration and Water Use Efficiency

The differences in the seasonal ETc between the simulation results and measurements observed
from the field experiment for the different irrigation treatments are presented in Table 6. AquaCrop
consistently underestimated the seasonal ET and the deviations generally increased as soil water deficit
increased. The deviations ranged from 6.47% to 22.16% for the three experiments. Although the linear
regression between simulated and observed values for all seasons produced an overall R2 value of
0.97, the values were relatively dispersed from the 1:1 line (Figure 7), suggesting that model prediction
of ETc is fair. Owing to some significant mismatch between simulated and observed ETc values, the
deviation between actual and simulated WUE of grain yield was large for most treatments (Table 6).
Results indicated no general consensus of the deviations in WUE values being a function of the level
of plant water stress. However, measured WUE was seemingly better in the 67% FIT, indicating a
potential for water saving given yields for this treatment were comparable to those obtained in the
FIT (Table 5). A relatively higher grain yield and biomass was obtained from crops planted in April
(Experiment 2), therefore the yield WUE was higher for this cropping period.
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Table 6. Comparison between simulated and estimated crop evapotranspiration (ETc) and water use
efficiency (WUE) over three cropping seasons.

Treatment
Seasonal ETc WUE

Measured
(mm)

Simulated
(mm)

Deviation
(%)

Measured
(mm)

Simulated
(mm)

Deviation
(%)

Experiment 1

FIT 605 545 −9.92 1.75 2.01 15.06
67% FIT 455 412 −9.45 1.95 2.07 6.00
50% FIT 392 354 −9.69 1.85 2.16 16.41
33% FIT 331 270 −18.43 1.87 1.99 6.76

Experiment 2

FIT 482 433 −10.17 2.65 3.04 14.63
67% FIT 453 388 −12.22 2.63 2.90 10.08
50% FIT 423 362 −14.42 2.64 2.98 12.87
33% FIT 404 335 −17.08 2.32 3.07 32.23

Experiment 3

FIT 570 528 −7.37 2.14 2.11 −1.12
67% FIT 464 434 −6.47 2.47 2.14 −13.33
50% FIT 423 376 −11.11 2.21 2.33 5.28
33% FIT 352 274 −22.16 2.48 2.91 17.31
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4. Discussion

One noteworthy feature of the FAO AquaCrop model is the use of proposed “conservative
parameters”. That is, a set of nearly constant parameters that do not change materially with time and
management practices, are presumably applicable to widely different environmental conditions and
climate, and are not specific to a given crop cultivar [11]. In this study, an iterative process was used to
test the conservative parameters proposed by Heng et al. [8] and Hsiao et al. [12] for maize. In general,
these parameters worked well in simulating crop growth, as evidenced by the unchanged values given
in Table 3. However, in the severely stressed treatment (33% FIT) there was some mismatch between
the model prediction and the observed values of daily B and CC, perhaps indicating that a change
of these values, specifically stress threshold values, would improve the model simulation. Since the
aim of the model calibration was to test for values that can work adequately under all conditions, the
proposed values were maintained for use in predicting crop development and productivity as they
worked well in non-stressed and moderately stressed conditions. Statistical indicators of RMSE, E, and
d observed during the calibration process confirm this (Table 4). During the validation exercise it was
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observed that the performance of the AquaCrop depends on the water stress level experienced by the
plants during the crop cycle and the output variable.

During the validation test, the seasonal evolution of CC was underestimated while the biomass
was generally overestimated, except for the severely stressed treatment (33% FIT), where it was
underestimated. Furthermore, the deviation between observed and simulated daily CC and biomass
was more pronounced under water deficit conditions, becoming more intense as stress levels increased.
The larger deviation between observed and simulated CC under water deficit and stress environments
has also been reported for other crops like potatoes [15]. The general tendency of AquaCrop
simulation model to overestimate maize biomass under water deficit conditions has been reported by
Heng et al. [8], who contribute the deviation to vegetative stress and suggest that this can be attributed
to the actual stomatal conductance being less than that simulated. Under the more severely stressed
treatment of 33% FIT (Figure 6), the model underestimated the biomass through the whole season,
which suggests that the model was not able to simulate the temporary relief from soil moisture stress
due to irrigation application, unlike the other deficit treatments. For the other water deficit treatments
of 67% FIT and 50% FIT, there was an initial underestimation of biomass up to about 60 DAP before
overestimation. Observations made regarding a general whole-season underestimation of biomass for
the more severely stressed treatment (33% FIT) was analogous to that reported by Katerji et al. [13] for
maize and by Jin et al. [29] for winter wheat.

Simulated grain yields from Experiment 1 and 2 used in the validation exercise reduced on
average by 19% for 67% FIT, 25% for 50% FIT, and 37% for 33% FIT with respect to the yield simulated
under full irrigation. In comparison, measured yield reduction from the FIT was 11%, 21%, and 33%
for 67% FIT, 50% FIT, and 33% FIT, respectively. The range of yield reduction for both measured
and simulated data is similar to those reported by Katerji et al. [13] and García-Vila and Fereres [30].
These results imply that AquaCrop adequately predicts grain yield under varying environmental
conditions, although the accuracy of the model declines in severely stressed conditions, confirming
conclusions drawn from the two previously mentioned research. Furthermore, Katerji et al. [13]
observed that in cases of severe moisture stress (based on a pre-dawn leaf water potential of −1.2 MPa),
AquaCrop is unable to predict corn grain yield. Higher final biomass and grain yield were observed
for maize sown in April (Experiment 2, Table 2). Two factors can account for this. First, for this season
the soil moisture environment was better, reducing the length of the soil drought cycle on account
of the rainfall. Rainfall would have had a significant impact on the experiment, as seen seeb by the
four irrigation management applications, compared to the other seasons where irrigation application
would have been the driving force behind the soil moisture environment. Secondly, during this
cropping season the higher growing degree days would have promoted canopy growth and biomass
accumulation, specifically during early developmental stages. According to Farahani et al. [3] and
Jin et al. [29], the development of CC affects the rate of transpiration and consequently biomass and
grain accumulation. Further studies manipulating the planting dates during the two distinct cropping
seasons would be valuable.

AquaCrop model was also tested for its ability to simulate seasonal ETc and the WUE under
different irrigation scenarios. Similar to the observations of Katerji et al. [13], AquaCrop systematically
underestimated the seasonal ET and the deviations generally increased as stress levels intensified
(Table 6). The range in reduction of 6.47% to 22.16% between simulated ETc compared to observed
values is higher than that reported by Heng et al. [8] during the validation of AquaCrop for maize, but
less than the range of 5% to 37% for maize grown in varying levels of soil moisture stress observed
by Katerji et al. [13]. In addition, the range calculated is similar for other crops grown in water
deficit conditions like cotton [3] and tomato [31]. Large discrepancies between most values (8 out
of 12 cases >10% deviation) can perhaps be attributed to the excessive drainage simulated by the
model that was not observed in field measurements. Spatial variability of the soil could contribute
to the discrepancy between observed and simulated results. Assumptions of uniform distribution of
water in model simulations will inevitably lead to considerable differences in results of soil moisture
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content. In evaluating AquaCrop’s ability to simulate soil water content for pearl millet under
irrigation and rainfed conditions, Bello and Walker [32] concluded that the model performance is
moderate but needs considerable improvement. Further, simulated ET in AquaCrop is computed from
the combination of soil evaporation and crop transpiration, which provokes some debate about the
reliability. Katerji et al. [13] noted that while the measured ET values mainly reflect transpiration losses,
simulated ET corresponds uniquely to soil evaporation, resulting in AquaCrop typically simulating low
values of daily ET and overestimating the drought effect on this variable. Likewise, Farahani et al. [3]
report that model estimation of soil evaporation is questionable because of the narrow range of
soil evaporation observed across irrigation regimes, with large differences in application amount.
Altering the conservative parameters used to directly simulate soil evaporation and crop transpiration
like water extraction pattern, crop transpiration coefficient, and decline of crop coefficient was observed
to have only a small change (low sensitivity level) on the simulated transpiration values. Thus, in
most cases the defaulted values were maintained (Table 3). A low sensitivity level parameter indicates
that the model response to change in input is generally less than 2% [7,24]. Geerts et al. [7] and
Salemi et al. [24] reported similar observations for some of the abovementioned parameters.

Owing to some significant mismatch between simulated and observed ETc values, the deviation
between actual and simulated WUE of grain yield was large for most treatments (Table 6). However,
the simulated values of WUE were similar to values reported in other studies for maize in varying soil
moisture environments [8]. The large deviation of AquaCrop simulated WUE from field-estimated
values has also been reported in other studies [4]. These authors report a deviation of up to 27% and
44% for sunflower grown under deficit irrigated and rainfed conditions, respectively, and a relatively
low R2 value (0.43) for the regression analysis of simulated WUE versus measured WUE. The large
deviations observed in the study imply that there is considerable room for improvement in the model
estimation of WUE, which relies heavily on predictions of crop ET. Evett and Tolk [28] suggest that
AquaCrop only reliably simulates WUE under well-watered conditions but tended to misestimate WUE
under conditions of water stress. Katerji et al. [13] further emphasize that AquaCrop’s performance in
predicting WUE is especially unsatisfactory in cases of severe moisture stress.

The preceding discussion presented the response and resulting effectiveness of AquaCrop
simulation model to different soil moisture environments. However, comparing the results between
the two distinct cropping seasons used in the validation process (Experiments 1 and 2) presents
another outlook to explore the efficacy of AquaCrop simulation model. Experiment 1 was subject to
lower temperatures and small amounts of rainfall. In stark contrast, Experiment 2 was conducted in
environments of higher temperatures, which are much more conducive for maize production, and
extremely large amounts of rainfall. Evidently (Table 5), this resulted in productivity in terms of
the biomass accumulation and yield procured being higher for Experiment 2. AquaCrop simulated
these agronomic parameters adequately for both seasons, and in fact the relative difference between
simulated and measured values was lower for Experiment 2 (Table 5). This suggests that the model,
once properly calibrated, can be reliably used to make predictions of these variables in environments
subject to extreme weather variability, and the calibrated model works reasonably well between distinct
climate seasons. Furthermore, using the results from this field experiment allows for a more diverse
dataset in the validation process. However, the extreme environments highlighted some limitations
of the model, particularly its inability to predict ETc and consequently crop WUE. For Experiment 2,
the relative error (%) between the simulated and measured values for both ETc and WUE was generally
higher than in Experiment 1 (Table 6). This implies that the model reliability for these water variables
decreases when challenged by extreme weather variations such as intense rainfall events and therefore
reveals room for improving the model.

5. Conclusions

The AquaCrop model was tested and validated for its ability to simulate four crop parameters
(green canopy cover (CC), biomass accumulation, and final biomass and grain yield at harvest) and
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two water variables (crop evapotranspiration (ETc) and water use efficiency (WUE)) for full and
deficit-irrigated maize in a tropical environment. Statistical indices of root mean square error, model
efficiency, and index of agreement indicate that AquaCrop was able to simulate seasonal evolution
of CC and biomass with a high degree of accuracy; however, model performance lessens as plant
water stress intensifies. The high correlation of determination (R2) obtained in a 1:1 analysis indicates
that the AquaCrop model adequately predicts final biomass and grain yield under different irrigation
management strategies. An overall R2 value of 0.85 and 0.92 was obtained for biomass and yield,
respectively, using both calibration and validation datasets. The model was also able to simulate the
seasonal ETc and WUE to an appreciable degree, but model performance becomes unsatisfactory in
severely stressed environments. Reduced model performance of ETc and WUE, indicated by high
deviation (%) estimates, can perhaps be attributed to the use of a single set of soil characteristics in
the model calibration that does not reflect the spatial variability of the soil in the field. The results of
this study suggest that the AquaCrop model could be used to predict biomass and yield with a high
degree of reliability under various planting dates and irrigation management strategies. Thus, the
model is a valuable tool to aid in decision-making for effective irrigation management strategies, but
its predictive performance reduces in severely stressed soil moisture environments.
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