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Abstract: This paper reviews aspects of the performance of large (>40 ha) constructed treatment
wetlands intended for phosphorus control. Thirty-seven such wetlands have been built and have
good data records, with a median size of 754 ha. All are successfully removing phosphorus
from a variety of waters. Period of record median concentration reductions were 71%, load
reductions 0.77 gP¨m´2¨year´1, and rate coefficients 12.5 m¨ year´1. Large wetlands have a narrower
performance spectrum than the larger group of all sizes. Some systems display startup trends,
ranging to several years, likely resulting from antecedent soil and vegetation conditions. There are
internal longitudinal gradients in concentration, which vary with lateral position and flow conditions.
Accretion in inlet zones may require attention. Concentrations are reduced to plateau values, in the
range of about 10–50 mgP¨m´3. Vegetation type has an effect upon performance measures, and its
presence facilitates performance. Trends in the performance measures over the history of individual
systems display only small changes, with both increases and decreases occurring. Such trends remove
little of the variance in behavior. Seasonality is typically weak for steady flow systems, and most
variability appears to be stochastic. Stormwater systems display differences between wet and dry
season behavior, which appear to be flow-driven. Several models of system performance have been
developed, both steady and dynamic.

Keywords: treatment wetlands; free water surface wetlands; phosphorus; performance;
variability; models

1. Introduction

In past decades, wastewater treatment plants sometimes discharged to existing marshes.
Phosphorus removal was not historically part of pretreatment, and hence considerable P loadings
reached those marshes. In other situations, agricultural drainage made its way into neighboring
wetlands. For instance, Brillion Marsh in Wisconsin received wastewaters from the town of the same
name. A 156 ha natural wetland received incoming wastewater, beginning in 1923. No long-term
studies were done, but an intensive study was conducted over the two-year period 1974–1975 [1,2].
The marsh was a uniform stand of Typha latifolia and Typha angustifolia, which received a channel input
of treated wastewater. Outflow was also via a channel, and additionally there were small tributary
streams to the marsh conveying agricultural runoff. During the two-year study, 16,300 m3¨day´1 of
influent carried 3.3 ˘ 2.2 gP¨m´3 of phosphorus into the marsh. The hydraulic loading rate of one
centimeter per day carried a load of 12.6 gP¨m´2¨ year´1. The outgoing phosphorus was 2.6 gP¨m´3,
a concentration reduction of 22%, and 2.8 gP¨m´2¨year´1 was removed by the marsh. This marsh
continued to remove phosphorus after fifty years of operation. Similar results were obtained at the
170-ha Cootes Paradise (Glyceria grandis) Marsh near Dundas Ontario, which was found to be removing
phosphorus after 60 years of wastewater discharge [3].
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Observations at natural wetlands, such as Brillion and Dundas, led to engineered attempts to use
natural wetlands for phosphorus reduction. Projects sited in natural wetlands in Michigan and Florida,
in the late 1970s, further explored the concept [4,5]. The construction of large wetlands for the purpose
of phosphorus control commenced in 1976, with Boney Marsh in Florida [6,7]. Following in 1980 were
the Delta Marsh cells in Manitoba [8].

More large constructed P-control wetlands were added in the 1980s, with the development of the
Orlando Easterly Wetland (OEW) [9] and Orange County Eastern Service Area Wetland (OCESA) [10],
both in 1987. The Balaton system in Hungary began in 1985 [11]. Numerous other small wetlands were
constructed during the same time period, many with the expectation of a phosphorus removal benefit.
Many other constructed P-control wetlands were added in the 1990s and later.

From these early studies, it was found that constructed treatment wetlands have a demonstrated
ability to remove total phosphorus (TP) from various waters, but at relatively low areal efficiencies [12].
Concentration and flow measurements for surface waters entering and leaving the wetland provide
the majority of data. A number of mechanisms contribute to the observed P reductions. Particulate
forms may settle and become trapped in the litter and floc layers. Dissolved forms may be convected to
those bottom regions. P partitions to the soil and sediment surfaces to form storage exchangeable with
porewater phosphorus. Biological processes at several scales utilize and convert phosphorus, ranging
from microorganisms and algae to macrophytes. New sediments and soils are formed as residuals
from the biogeochemical pathways, a process termed bio-accretion. Such new solid accretions are
a long-term sink for phosphorus in the wetland. This combination of these physical, chemical and
biological mechanisms promotes P removal to new sediments, but generally requires continuously
wet conditions for stability.

It is the purpose of this paper to examine and summarize the performance of large constructed
free water surface wetlands for phosphorus removal. Herein, “large” is defined as more than 40 ha. The
term “constructed” is more ambiguous, but is taken to mean that there are some number of structures
and levees that define the wetland. Information from small and natural wetlands is incorporated
to some small extent, when useful. The emphasis is on total phosphorus, and upon performance
measures, rather than on mechanisms or processes.

2. Performance Measures

There are several different metrics that may be used to evaluate performance. The main goal of
the systems under consideration here is the reduction of TP concentrations. Simple measures include:

‚ Concentration reduction percentage. For large constructed P-control wetlands, it is always the
case that, on average, lesser TP concentrations depart from the wetland than enter it. An increase
in percent TP concentration reduction would be viewed as an improvement, while a decrease
would be interpreted as degradation of performance. This measure does not reflect the flow rate
the wetland receives, or the magnitude of the TP concentrations.

‚ Areal P load reduction. Depending upon many factors, differing P load removals may be achieved.
Whatever the level that prevails, long-term trends in the mass of P removed per hectare of
treatment wetland are a sign of improvement or degradation as the case may be. This measure
reflects the inlet TP concentration and the inlet flow that the wetland receives, but does not
distinguish between them.

‚ Steady-state removal rate coefficients. Simple first-order TP-removal models utilize annual
average removal rate coefficients. These vary from system to system, and from year to year. These
(partially) compensate for the inlet TP concentrations and hydraulic loadings.

2.1. Wetland Definition

Wetlands have been constructed with a number of cells, arranged in series and parallel.
Performance measures may be applied to individual cells, or to combinations of cells, provided
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that appropriate data are collected. In this overview, an individual wetland is considered to comprise
all cells in series in an independent flow path. Parallel flow paths that are structurally independent are
considered to be separate wetlands, even though they may be adjacent to one another, and receive the
same input water.

2.2. Defining Equations

The design of a wetland system may be for either concentration reduction or for mass removal, but
these goals conflict. Interestingly, this distinction has not been well elucidated for P-removal wetlands,
but has been described repeatedly for N-removal wetlands [12–14]. All large P-removal wetlands have
been designed for concentration reduction. Wetland P-removal performance has been documented to
follow a first-order rule, according to which P removal is greater at higher P concentrations. This model
(Equation (1)) assumes a near-direct proportionality: doubling the concentration above background
doubles the removal rate. For a wetland without significant water gains or losses, a simple extension is
the PkC* model [15]. Large constructed P-control wetlands typically fit this description to a reasonable
approximation [15].

Co ´C˚
Ci ´C˚

“ p1`
k

Nq
q

´N
(1)

where Ci: inlet TP concentration, gP¨m´3; Co: outlet TP concentration, gP¨m´3; C*: background
concentration, gP¨m´3; h: water depth, m; k: apparent rate coefficient, m¨year´1; q: inlet hydraulic
loading, m¨year´1 (=cm¨day´1¨ 3.65); and N: number of tanks in series (TIS). It is important to note
that the first-order model is imperfect, and rate coefficients may display a dependence on hydraulic
loading [16].

TP concentrations decrease as water passes through the treatment wetland, and removal rates
also decrease. However, the actual mass of phosphorus that is removed increases with increasing
hydraulic loading. Thus, increasing hydraulic loads results in more tons removed, but at the expense
of a lesser concentration reduction. This trade-off between concentration reduction efficiency and load
reduction may be quantified for the situation of no significant water gains or losses:

CR “
Ci ´Co

Ci
(2)

PLR “ qiCi ´ qoCo (3)

where CR: fractional P concentration reduction; PLR: P load reduction, gP¨m´2¨year´1; qi: inlet
hydraulic loading, m¨year´1; and qo: outlet hydraulic loading, m¨year´1.

The concentration reductions increase with decreasing hydraulic loading (increasing detention
time), but not quite in an exponential manner, due to the PkC* model. The maximum load of
phosphorus that can be removed results from a hydraulic load so high that little or no concentration
reduction is achieved. It is, thus, apparent that there is no such thing as a “typical” or “average” load
reduction, because the effects of hydraulic loading and inlet TP concentration create a full spectrum of
potential load reductions.

3. Constructed P-Control Wetlands Inventory

The size spectrum of constructed wetlands may be separated into three major groups: mesocosms,
small, and large systems. Size matters, because of issues of scale-up. Microcosms and mesocosms are
useful for investigating component processes, and, in general, are easily replicated to bolster statistical
confidence. But, mesocosms have edge effects, may not have representative vegetation densities, and
are not exposed to a realistic set of meteorological conditions. They may contain only a few of the
components of a large system, such as soil without plants, litter, or animals. The plants, algae, and
microbes in a mesocosm ecosystem are exposed to a time-changing water chemistry, which is different
from the spatially distributed patterns of these along the flow direction [17]. Thus, there is a possibility
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that mesocosm studies produce replicated, well-controlled results of artifacts, rather than processes
that actually occur in the field [18–20]. Therefore, the database summarized here excludes studies of
systems smaller than pilot-scale, generally defined as systems of several tens of square meters extent,
located in the out-of-doors.

3.1. Large Systems

There are 94 treatment wetlands of 40 ha or more that were found in the published literature or
on the Internet, with a median size of 167 ha. Of these 94 wetlands, 66 are constructed wetlands, with
a median size of 210 ha. The remaining 28 are natural wetlands that have been or are being used for
water quality improvement, and 20 of these natural systems are forested.

Most of the large constructed wetlands target the reduction of phosphorus (P), and these number
43 of the 66 (Table 1). Some are in a startup condition, and some have only limited amounts of operating
data. There are 37 wetlands with extensive phosphorus data, including two that were not specifically
intended to remove phosphorus (Columbia and Lakeland). These 37 wetlands total 27,937 ha, with a
median size of 754 ha.

Table 1. Large constructed wetlands treating phosphorus. Columbia and Lakeland do not specifically
target phosphorus.

Site State/Country System
Area Cells Start Operating Data

Ref.
ha Year Years Years

Columbia MO Columbia 53 23 1994 23 14 [21]
Lakeland FL Lakeland 354 7 1987 30 12 [22]
Balaton Hungary Feneki Pond 1600 2 1992 25 [11]
Venice Italy Fusina 100 6 2011 6 [23]

Portage la Prairie Manitoba Delta 50 10 1980 37 10 [8]
Putrajaya Malaysia Putrajaya 197 23 1998 19 1 [24]
Seagoville TX East Fork 745 24 2009 8 1 [25]
Melbourne FL Viera 81 5 2002 15 [26]

Okeechobee Co. FL Nubbin Slough 313 2 2013 4 1 [27]
Martin Co. FL Lakeside Ranch 691 8 2013 4 [27]

Okeechobee Co. FL Taylor Creek 48 2 2010 7 3 [27]
Tarrant TX Shannon 171 4 2002 15 6 [28]
Balaton Hungary Hidvegi Pond 1800 2 1985 32 5 [11]

Orange Co. FL OCESA 56 4 1987 30 5 [10]
Orlando FL OEW 481 17 1987 30 13 [29]

Boney Marsh FL West 49 1 1976 41 11 [7]
Apopka FL B1 73.1 1 1990 27 10 [30]
Apopka FL B2 49.2 1 1990 27 10 [30]
Apopka FL C1 77.9 1 1990 27 10 [30]
Apopka FL C2 76.2 1 1990 27 10 [30]

Titusville FL Blue Heron 101 6 1997 20 7 [31]
Palm Beach Co. FL ENRP 1508 5 1994 5 5 [32]
Palm Beach Co. FL STA1E East 436 2 2005 12 2 [33]
Palm Beach Co. FL STA1E Central 782 3 2005 12 10 [33]
Palm Beach Co. FL STA1E West 796 3 2005 12 10 [33]
Palm Beach Co. FL STA1W East 875 3 2000 17 14 [33]
Palm Beach Co. FL STA1W West 552 3 2000 17 12 [33]
Palm Beach Co. FL STA1W North 1211 2 2000 17 16 [33]
Palm Beach Co. FL STA2 FW1 742 1 2000 17 14 [33]
Palm Beach Co. FL STA2 FW2 957 1 2000 17 15 [33]
Palm Beach Co. FL STA2 FW3 926 1 2000 17 15 [33]
Palm Beach Co. FL STA2 FW4 2415 3 2009 8 7 [33]
Palm Beach Co. FL STA2 FW5 1208 2 2013 4 3 [33]
Palm Beach Co. FL STA3/4 East 2611 2 2004 13 11 [33]
Palm Beach Co. FL STA3/4 Central 2157 2 2004 13 11 [33]
Palm Beach Co. FL STA3/4 West 1815 2 2004 13 11 [33]
Palm Beach Co. FL STA3/4 PSTA 40 1 2008 9 8 [33]

Hendry Co. FL STA5/6 FWY 1 975 2 1999 18 16 [33]
Hendry Co. FL STA5/6 FWY 2 834 2 1999 18 16 [33]
Hendry Co. FL STA5/6 FWY 3 775 2 2008 9 6 [33]
Hendry Co. FL STA5/6 FWY 4 754 2 2012 5 3 [33]
Hendry Co. FL STA5/6 FWY 5 1065 2 2012 5 3 [33]
Hendry Co. FL STA5/6 FWY 6 766 2 2013 4 6 [33]
Hendry Co. FL STA5/6 FWY 7 250 1 1997 20 13 [33]
Hendry Co. FL STA5/6 FWY 8 98 1 1997 20 14 [33]

Median 2.0 15 10

Most P-removal wetlands are intended to reduce low P concentrations to even lower levels. The
median inlet total phosphorus (TP) for the 37 P-target systems is 114 mgP¨m´3; the median outlet TP
is 38 mgP¨m´3 (Table 2). This 71% concentration reduction (CR) is achieved at a low median hydraulic
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loading of 2.55 cm¨day´1. The amount of phosphorus stored (phosphorus load removed, PLR) in
these systems is low, with a median of 0.77 gP¨m´2¨year´1.

Table 2. Performance of large constructed wetlands treating phosphorus.

System HLR TP In TP Out CR PLR k

cm¨day´1 gP¨m´3 gP¨m´3 % gP¨m´2¨year´1 m¨year´1

Columbia 13.30 2.550 2.410 0.05 6.67 2.76
Lakeland 1.02 5.080 3.030 0.40 7.63 1.99

Taylor Creek 9.00 0.321 0.241 25% 10.10 9.80
Shannon 5.45 0.888 0.539 39% 6.94 10.3

Hidvegi Pond 2.76 0.544 0.232 0.57 3.14 9.2
OCESA 0.97 0.210 0.040 0.81 0.40 6.9

OEW 5.61 0.280 0.106 0.62 3.56 21.7
Boney West 2.16 0.051 0.019 0.63 0.25 9.7
Apopka B1 9.88 0.110 0.076 0.31 1.40 15.6
Apopka B2 11.76 0.095 0.071 0.26 1.40 14.5
Apopka C1 10.20 0.109 0.088 0.19 1.16 8.8
Apopka C2 9.34 0.102 0.095 0.07 0.77 2.5
Blue Heron 0.79 0.288 0.049 0.83 0.69 6.0

ENRP 3.11 0.108 0.022 0.80 0.97 23.6
STA1E East 2.52 0.091 0.013 0.86 0.63 27.50

STA1E Central 2.55 0.114 0.030 0.81 0.81 21.03
STA1E West 1.90 0.173 0.086 0.64 0.58 7.92
STA1W East 2.65 0.164 0.041 0.81 1.07 16.01
STA1W West 3.61 0.156 0.037 0.77 1.08 23.73

STA1W North 3.16 0.186 0.060 0.84 1.48 23.66
STA2 FW1 3.15 0.093 0.012 0.89 0.94 61.90
STA2 FW2 4.32 0.107 0.027 0.76 1.12 36.66
STA2 FW3 4.06 0.095 0.018 0.82 1.13 33.31
STA2 FW4 1.47 0.093 0.022 0.71 0.43 14.71
STA2 FW5 0.51 0.045 0.020 0.53 0.05 2.98

STA3/4 East 2.42 0.085 0.016 0.81 0.51 20.87
STA3/4 Central 2.22 0.069 0.019 0.71 0.33 14.84

STA3/4 West 3.07 0.066 0.016 0.77 0.50 29.62
STA3/4 PSTA 4.63 0.019 0.011 0.40 0.12 16.05

STA5/6 FWY 1 2.55 0.153 0.070 0.53 0.55 8.22
STA5/6 FWY 2 2.25 0.196 0.079 0.66 0.73 12.15
STA5/6 FWY 3 0.57 0.278 0.038 0.85 0.48 6.30
STA5/6 FWY 4 0.60 0.257 0.033 0.87 0.49 6.30
STA5/6 FWY 5 0.36 0.190 0.032 0.83 0.23 3.09
STA5/6 FWY 6 2.20 0.177 0.052 0.70 0.78 12.46
STA5/6 FWY 7 1.94 0.107 0.033 0.72 0.36 14.98
STA5/6 FWY 8 2.26 0.082 0.035 0.55 0.30 8.45

Median 2.55 0.114 0.038 0.71 0.77 12.5

First-order rate coefficients (k) have a median of 12.5 m¨year´1. This is somewhat higher than
reported medians of 11.0 m¨year´1 ([34], N = 20), and 10.0 m¨year´1 ([15], N = 282).

The 37-wetland P-removal dataset under consideration contains information totaling
357 wetland-years, out of a total of 586 wetland-years of operation. The average operating age is
15 years. The median number of cells in a wetland is 2.0. All but three of the 37 are in the state of
Florida, although 26 of the 66 total large constructed wetlands are outside Florida. Reasons for this
Floridian concentration have been discussed elsewhere (e.g., [35,36]).

Many of the Florida systems are designated as stormwater treatment areas (STAs). Twenty-eight
constructed large stormwater wetlands were identified, and 26 of these are in Florida. The remaining 38
constructed large systems receive a relatively steady flow, usually via pumping. Stormwater systems
receive water on an episodic basis, as determined by rainfall events. Rainfall runoff is pumped or
flows by gravity into these wetlands. As a consequence, flows occur mostly in the wet season, and to a
much lesser extent in the dry season. Seventy percent of Florida’s rain occurs June–October.

Some systems receive highly treated municipal wastewater (e.g., OEW, OCESA), and others treat
river water that has a high content of such treated effluent (e.g., Shannon, Blue Heron). Only Columbia
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and Lakeland receive high phosphorus municipal effluent, and their design goals do not include
P removal.

3.2. Small Systems

A total of 87 small constructed marsh systems were identified as having reasonable data quality
and quantity. This means that subsurface flow systems and natural wetland systems have been
excluded. The 87 have a median size of 0.25 ha, but range up to 33 ha. Because most of these are pilot
systems they have relatively short operating lives and short periods of data record.

4. Period of Record Results

The performance of large P removal wetlands may be compared to a broader population of small
wetlands. Phosphorus removal data for large (>40 ha) wetlands is restricted to a smaller number, 37 of
the total of 45 listed in Table 1. However, those 37 have an average period of record (POR) of about
fourteen years, and data record periods with an average of ten years. The median size of the 37 large
data wetlands is 754 ha. In the analyses that follow in this section, annual averages for the entire data
record period are averaged, and performance measures computed (Table 2).

4.1. Concentration Reduction

Of the 282 total wetlands reported by Kadlec and Wallace (2009) [15], 274 (97%) lower the
phosphorus concentration. The median reduction is 41%. Of the 37 large wetlands, all lower the P
concentration, with a median of 71%. The distribution of concentration reductions is rather narrow for
large wetlands, spanning 26%–85% for the 10th–90th percentiles (Figure 1). The better performance
of large wetlands is at least partly due to their lower hydraulic loading rates, 2.6 cm¨day´1 for large
versus 3.4 cm¨day´1 for the set of small wetlands.Water 2016, 8, 243 7 of 35 
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Figure 1. Distributions of P concentration reductions for large (N = 43) and small (N = 87)
constructed wetlands.

4.2. Load Reduction

There is a large difference between the P load reductions achieved by large wetlands and that of
small wetlands: median 0.75 gP¨m´2¨year´1 for the former, and 2.96 gP¨m´2¨year´1 for the latter
(Figure 2). This may be partially due to the young age of small systems, during which soils have
not been P-saturated and vegetation is still establishing. The distribution of load reductions is rather
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narrow for large wetlands, spanning 0.24–1.32 gP¨m´2¨ year´1 for the 10th–80th percentiles (Figure 2).
The small dataset has a median incoming P loading of 10.4 gP¨m´2¨ year´1, whereas the large systems
have a median incoming P loading of 1.22 gP¨m´2¨year´1. In turn, this is partly due to the global
median inlet concentration of 0.870 gP¨m´3, versus 0.114 gP¨m´3 for the large systems.

Water 2016, 8, 243 7 of 35 

 

 
Figure 1. Distributions of P concentration reductions for large (N = 43) and small (N = 87) constructed 
wetlands. 

4.2. Load Reduction 

There is a large difference between the P load reductions achieved by large wetlands and that of 
small wetlands: median 0.75 gP·m−2·year−1 for the former, and 2.96 gP·m−2·year−1 for the latter (Figure 2). 
This may be partially due to the young age of small systems, during which soils have not been P-
saturated and vegetation is still establishing. The distribution of load reductions is rather narrow for 
large wetlands, spanning 0.24–1.32 gP·m−2·year−1 for the 10th–80th percentiles (Figure 2). The small 
dataset has a median incoming P loading of 10.4 gP·m−2·year−1, whereas the large systems have a 
median incoming P loading of 1.22 gP·m−2·year−1. In turn, this is partly due to the global median inlet 
concentration of 0.870 gP·m−3, versus 0.114 gP·m−3 for the large systems. 

 
Figure 2. Distributions of P load reductions for large (N = 43) and small (N = 87) constructed wetlands. 

4.3. Rate Coefficients 

There is not much difference between the P median removal rate coefficients for large wetlands 
(14.6 m·year−1) and small (12.3 m·year−1) (Figure 3). The distribution of rate coefficients is somewhat 
narrower for large wetlands, spanning 6.1–28.8 m·year−1 for the 10th–90th percentiles (Figure 3). The 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Concentration Reduction Fraction

Small
Large

Concentration Reduction Fraction

Pe
rc
en

til
e

Pe
rc

en
til

e

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 1 10 100

Load Reduction, gP m-2 yr-

Small
Large

Load Reduction, gP·m−2·year−1

Figure 2. Distributions of P load reductions for large (N = 43) and small (N = 87) constructed wetlands.

4.3. Rate Coefficients

There is not much difference between the P median removal rate coefficients for large wetlands
(14.6 m¨ year´1) and small (12.3 m¨ year´1) (Figure 3). The distribution of rate coefficients is somewhat
narrower for large wetlands, spanning 6.1–28.8 m¨ year´1 for the 10th–90th percentiles (Figure 3). The
narrow distribution may be in part due to the narrower range of inlet concentrations and hydraulic
loadings that characterize large wetlands.

Water 2016, 8, 243 8 of 35 

 

narrow distribution may be in part due to the narrower range of inlet concentrations and hydraulic 
loadings that characterize large wetlands. 

 
Figure 3. Distributions of P removal rate coefficients for large (N = 43) and small (N = 87) constructed 
wetlands. A plateau concentration of 6 mgP·m−3 has been used. Large wetlands are assumed to have 
a distribution of detention times represented by eight tanks in series, and for the small dataset three 
tanks in series.  

5. Water Movement 

5.1. Flows 

5.1.1. Timing 

There is a notable distinction between steady flow and event-flow (stormwater) wetlands. In the 
latter case, large flows occur for only short periods of time. A two-year example of event-driven 
inflows for STA1W shows that about two-thirds of the time there was no flow into the system (Figure 
4). Therefore, the P contents of the incoming and outgoing water were measured using flow-
proportional samplers, which provide a flow-weighted mean concentration. 

In contrast, the steady flow systems can be grab sampled for P content. For instance, the Apopka 
Wetland was sampled weekly [37]. Comparable procedures were followed at other systems. 

 
Figure 4. Weekly average flow entering STA1West over a two year POR (period of record) (2011–
2013). The mean daily flow was 0.42 ha3·day−1. Flow occurred on 30% of the days, at a mean rate of 1.38 
ha3·day−1. 

Pe
rc

en
til

e

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 1 10 100

k Value m yr-1

Small
Large

k Value, m·year−1

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80 90 100 110

Weeks

Fl
ow

, h
a3 ·d

-1

Figure 3. Distributions of P removal rate coefficients for large (N = 43) and small (N = 87) constructed
wetlands. A plateau concentration of 6 mgP¨ m´3 has been used. Large wetlands are assumed to have
a distribution of detention times represented by eight tanks in series, and for the small dataset three
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5. Water Movement

5.1. Flows

5.1.1. Timing

There is a notable distinction between steady flow and event-flow (stormwater) wetlands. In
the latter case, large flows occur for only short periods of time. A two-year example of event-driven
inflows for STA1W shows that about two-thirds of the time there was no flow into the system (Figure 4).
Therefore, the P contents of the incoming and outgoing water were measured using flow-proportional
samplers, which provide a flow-weighted mean concentration.
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Figure 4. Weekly average flow entering STA1West over a two year POR (period of record) (2011–2013).
The mean daily flow was 0.42 ha3¨ day´1. Flow occurred on 30% of the days, at a mean rate of
1.38 ha3¨ day´1.

In contrast, the steady flow systems can be grab sampled for P content. For instance, the Apopka
Wetland was sampled weekly [37]. Comparable procedures were followed at other systems.

5.1.2. Distribution

In general, water is brought into the STAs via gated structures and spreader canals. This
arrangement is believed to help avoid short circuits at the system inlet. Collection is also into a
canal at the downstream end of the flow path, and thence to a control structure or pump. Most of the
other P-control wetlands also attempt to provide uniform distribution across the flow direction at the
inlet, such as Apopka, OCESA and Shannon (Table 1). However, some large P-control systems, such as
OEW, utilize point distribution of water.

5.2. Depths

Constructed wetland water depths and flow rates are controlled by either or both the outlet
structure and resistance to flow within the wetland. In small wetlands, depth control is generally via the
settings of the outflow structure. In contrast, the depths in large wetlands are determined by vegetation
density, topography, and flow rate, not by an outflow structure setting [15,38]. However, at low flow,
or no flow, an outlet structure can control the depth of the residual water in a stormwater wetland.

Examples of depth profiles through the course of the year are shown in Figure 5. A steady flow
system, the Everglades Nutrient Removal Project (ENRP), also operated at relatively steady depths.
In contrast, STA56 flow way 7 received no water in the dry season, resulting in complete dry-out to
negative depths (below ground). Such complete dry-out has performance implications, because stored
organic sediments can oxidize under dry conditions, releasing stored phosphorus [39]. Emergent
wetland plants can, in general, withstand dry conditions, but submerged aquatic vegetation (SAV)
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cannot. Therefore, SAV wetlands, like STA2 C3, are kept hydrated to preserve the desired vegetative
cover (Figure 5). Supplemental water is required for this purpose.
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Figure 5. Average monthly water depths for three large P-control wetlands. ENRP C1 (N = 5 years)
contained emergent vegetation and was operated at nearly constant flow and depth. STA2 C1
(N = 8 years) fosters submerged aquatic vegetation and, therefore, was kept hydrated in the dry
season. STA56 FW7 (N = 8 years) contains emergent vegetation, but was not kept hydrated in the
dry season.

5.3. Internal Patterns

The patterns of water movement through the wetland have a significant influence on the efficiency
and extent of phosphorus movement. Many of the important biogeochemical reactions rely on contact
time between water being treated and biological components and their associated substrate. Any
short-circuiting or dead zones will, therefore, impact treatment efficiency. Non-ideal flow patterns in
wetland treatment systems have received considerable attention in the literature [15].

Three types of hydraulic inefficiencies may occur in treatment wetlands: one caused by
topographical features, a second due to preferential flow channels caused by vegetative non-uniformity,
and a third caused by mixing effects, in both the vertical and transverse directions. Large wetlands
are particularly susceptible to these effects. Large size makes land leveling prohibitively expensive,
and existing topography may be quite non-uniform. Antecedent land uses may mean that remnant
roads and ditches may be included within the footprint of a large system. Vegetation establishment in
large systems is most often by natural colonization and growth, because of the expense of planting a
large area. Such natural regrowth is not uniform, and reflects factors such as water depth, which in
turn depends upon topography. Wind fetches in large systems can be quite large. If there exists open
water or SAV, then surface water is driven in the wind direction, with opposing return flows created at
other depths.

As a consequence, tracer testing has been utilized to assess non-ideal flow effects in large
wetlands [40–43]. Results are extremely variable, with the tanks-in-series (TIS) characterization
ranging from 1 to 9. Poor internal hydraulics corresponded to preferential flow routes, while better
performance was found for multiple cells in the flow path. The large wetland TIS determinations
bracket the central tendency for smaller wetlands, reported as TIS = 3–4 [15].

5.4. Seepage

It is often not technically feasible to provide impervious liners for large wetlands, although lining
was done at the Columbia MO Wetland to protect regional potable water supply. Depending upon the
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transmissivity of the substrates, vertical flows may occur, either as leakage from or into the wetland. If
outward leakage constitutes a potential threat to adjacent properties, then the wetland may be rimmed
with a seepage collection canal, which collects seepage and redirects it into the wetland. Seepage
collection has been done at several STAs.

6. Phosphorus Speciation

The regulatory measure for treatment wetlands is almost invariably total phosphorus. Total
phosphorus in water entering a treatment wetland is comprised of several groups of constituents. The
analytical categories of particulate (PP), and dissolved organic (DOP) and soluble reactive (SRP) forms
comprise TP. These constituents are also mixtures. Particulate P exists in a spectrum of particle sizes
and types. Dissolved organic P is comprised of a suite of organic molecules of varying types and sizes.
SRP contains mono- and di-basic phosphates, polyphosphates, and other compounds.

The performances of P-removal constructed wetlands can be quite different, depending upon
which forms of phosphorus are sent into them. Further, there are interconversions that occur among
the various P species. For instance, SRP may be consumed and converted to PP by algae, and PP may
decompose, releasing SRP and DOP.

Wetlands receiving flows dominated by PP have been found to remove P by settling and filtration,
which occur at rates that are considerably higher than those for total phosphorus ([30,44,45]). For
example, the median annual TP removal rate coefficient for the Apopka, FL systems was 15 m¨ year´1,
while the apparent rate coefficient for PP was 32 m¨year´1.

The removed PP is not necessarily inactive, but may release some of the particulate phosphorus,
which may appear as soluble phosphorus. If the wetland has a low hydraulic loading, then released
soluble P can be taken up by wetland processes. However, if the system receives a high hydraulic
loading, then the mechanisms that utilize soluble P may not be able to utilize all of the released P. An
example of a low-loaded system is the ENRP, which demonstrated reductions of all forms of P without
any large seasonal variation (Figure 6). The Apopka project was loaded at a much higher rate, but at
similar concentration levels, and behaved much differently (Figure 7). PP decreased in all months,
but Dissolved phosphorus (DP) increased markedly in all months. As a result, TP was reduced in all
months, but at much higher percentages in the first six months of the year.Water 2016, 8, 243 11 of 35 
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Figure 6. Monthly performance of the ENRP over a four-year POR. The average hydraulic loading was
2.4 cm/day. PP (particulate) and Dissolved phosphorus (DP) are reduced in all months. Overall TP
reduction is slightly less in the first six months of the year (73%) and slightly greater in the second six
months (82%).
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Figure 7. Monthly performance of the Apopka Wetlands over a ten-year POR. The average hydraulic
loading was 10.3 cm/day. PP is reduced in all months, but dissolved P is increased. Overall TP reduction
is greater in the first six months of the year (34%, and much less in the second six months (2%).

Soluble reactive phosphorus pulses are rapidly consumed in wetlands [46,47]. Juston and DeBusk
(2011) [48] measured P species on multiple-point transects over multiple years in STA2 Cell 3. The
internal P speciation profile showed that SRP was reduced to the analytical detection limit more
quickly than DOP or PP, and that SRP was reduced to lower levels. As a result, SRP exiting the STAs is
frequently at the minimum detection level (Table 3).

Table 3. Phosphorus speciation in water entering and leaving the stormwater treatment areas (STAs)
during a POR ending in 2007 (gP¨ m´3).

System Location TP SRP DOP PP DP

STA1E In 0.143 0.059 0.013 0.070 0.073
STA1W In 0.158 0.085 0.009 0.064 0.094

STA2 In 0.097 0.068 0.006 0.022 0.075
STA34 In 0.088 0.043 0.008 0.036 0.052
STA56 In 0.059 0.011 0.007 0.041 0.019

Median 0.097 0.059 0.008 0.041 0.073
STA1E Out 0.023 0.005 0.010 0.007 0.015
STA1W Out 0.074 0.043 0.008 0.023 0.051

STA2 Out 0.021 0.011 0.004 0.006 0.015
STA34 Out 0.019 0.004 0.005 0.010 0.009
STA56 Out 0.017 0.006 0.004 0.006 0.011

Median 0.021 0.006 0.005 0.007 0.015

7. Vegetation

Surprisingly, it is not yet clear whether vegetation type is an important determinant of the
performance of large P treatment wetlands. This is in large part because of the difficulty of maintaining
any particular species, or any particular vegetative community type, on a large scale. There are no
system-wide macrophyte monocultures present in any of the large P treatment wetlands. Intersystem
comparisons based on vegetation are compromised by differences in driving variables of flow amounts
and timing, inlet concentrations, and climatic variations.

The broad categories of vegetation include emergent aquatic vegetation (EAV), submerged aquatic
vegetation (SAV) and algal mats (periphyton). However, floating aquatic vegetation (FAV) has been
found to volunteer in patches in some systems, including Eichhornia, Pistia, and Ludwidgia. EAV,
typically, is dominated by Typha. SAV is often comprised of Chara, Ceratopyllum, Najas, and Hydrilla.



Water 2016, 8, 243 12 of 36

The vegetation patterns in these large systems are typically quite complex and change with time
during operational history. Some changes are spontaneous; others are engendered by management
activities. The reader interested in the evolutionary details of species present, and their spatial
distribution and abundance should consult the parent literature on the individual systems.

In no case has vegetation been harvested in the large systems, except as it occurs as a management
strategy, such the intentional replacement of EAV with SAV.

7.1. Florida Stormwater Systems

Early analyses of the Florida STA projects, including size scales ranging from mesocosms to large
field-scale systems, indicated that SAV could provide treatment advantages [49]. Accordingly, the flow
paths of the STAs were built or retrofitted to contain significant areal percentages of SAV. Performance
data now exist for these constructed wetlands, as well as surveys of vegetation percentages for PORs of
several years [50]. A bivariate analysis of that data is shown in Figure 8, which indicates no correlation
between the rate coefficient and the fraction of EAV (R2 = 0.0005, N = 125 wetland-years).
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Figure 8. The dependence of the rate coefficient on the fraction EAV in SAV–EAV (submerged aquatic
vegetation–emergent aquatic vegetation) stormwater wetlands.

7.2. Periphyton Systems

There are two strategies that have been explored to facilitate the growth of periphyton in wetlands
that contain only very sparse macrophytes (Periphyton STA = PSTA). One technique is to add a layer of
calcareous substrate on top of antecedent peat soils; the second is to remove organic soils down to below
layers of calcareous bedrock. There is at present one large treatment wetland (STA34 PSTA), which has
been in operation for eight years, implemented via method two (scrapedown). The hypothesis has long
been advanced that such systems should be capable of achieving very low outflow P concentrations.
Low P has been demonstrated at the mesocosm level [51] and at field scale for very low incoming
P concentrations [52]. However, other mesocosm, pilot, and field-scale work was not particularly
successful [53].

The 40 ha STA34 PSTA project was established by scraping a thin layer of organic soil from the
underlying bedrock. It has achieved an eight-year average outlet P concentration reduction from
19 to 11 mgP¨m´3, at a hydraulic loading rate of 4.6 cm¨day´1 (Table 2). This corresponds to a
low P load reduction, and to rate coefficient (16 m¨year´1), about equal to the average for other
large-scale wetlands.

7.3. Vegetative Transitions

Constructed wetlands usually begin existence with an antecedent cover crop that is not compatible
with the hydrologic regime imposed by the treatment function. Over time, a mix of vegetation will
develop, primarily determined by hydropattern and water quality conditions.



Water 2016, 8, 243 13 of 36

Most large P treatment wetlands are not monotypic communities, but rather contain a patchwork
of open water, SAV, EAV, and FAV. This may in part be due to the system topography, or to intentionally
utilizing successive cells with different bathymetries. Vegetation contributes to treatment, and so
the amount contributes to treatment efficacy. Phosphorus removal has been strongly linked to the
fractional coverage of different community types ([15,54]). Deeper systems, without macrophytes,
display lower removal rate coefficients, in the range of 3–9 m¨year´1 [55].

Vegetative transitions can be slow to occur, either due to processes of growth or to species
competition. The dynamics of transitions have been documented in several of the South Florida
Environmental Reports [50]. The example in Figure 9 shows that several years may be needed to
achieve vegetative grow-in. In the South Florida STAs, vegetation management is an ongoing process,
designed to maintain community health and coverage and to avoid species replacements regarded as
undesirable. In other systems species management has typically not been practiced.
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Figure 9. The development of cattail cover in STA1E Cell 5 (231 ha). Flow-through began in October
2005. The site was a citrus grove prior to wetland construction.

7.4. Management Issues

There are conditions in which vegetation is perceived to require management. For large wetlands,
vegetation management can be costly and can interfere with the water quality goals of the system.
Some of the problems that have occurred include the following:

‚ Floating cattail islands. It is not uncommon that Typha forms floating mats [15]. In fact, a
contiguous mat with 100% cover is conducive to reasonable P removal [56]. The difficulty arises if
the mat is not complete, but consists of “tussocks”, with sizes of a few meters to several hectares.
These floating islands can move with the wind and can wreak havoc with bottom sediments and
water control structures. Removal was undertaken in STA1W Cell 2.

‚ Dense surface covers of rooted or floating plants. Some macrophytes have growth habits that
can include the formation of thick foliage at the water surface, and to a small extent, above
water. Hydrilla verticillata and Panicum repens (torpedo grass) are examples that have influenced
operations in large-scale P-removal wetlands. Dense growths smother below-water activity.
Several STA cells have experienced this phenomenon and have been treated with herbicides as
a cure.

‚ Deep water damage. A number of wetland plants are susceptible to damage by episodic deep
water and/or high water velocities. Brief periods of high inundation can be tolerated, as can
periods of dryout of varying intensities. However, prolonged deep water can lead to plant
uprooting or fatal oxygen deprivation. An extreme example was the loss of vegetation in STA1E
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Cell 6, in which vegetation export clogged the outflow and stopped operation [57]. Large
stormwater wetlands are particularly susceptible to deep water in their inlet zones, because
the hydraulic gradients in large systems are controlled by the vegetation density and not by
structure settings. The pulse flows that reach a stormwater wetland can and do occur at rates that
are many times the annual average flow and are limited only by the capacity of the inlet pumps
(if any) and by flow management strategies.

‚ Wind damage. The fetches of large wetlands can reach many kilometers, creating conditions
for large waves and wind-driven water pileup. In the southeastern USA, primarily in Florida,
hurricanes and tropical storms often bring very high winds. Some vegetative communities
can withstand these events, including firmly-rooted, sturdy emergents. However, softer less
well-rooted plants, including SAV of various kinds, cannot. Instances of severe SAV wind damage
have occurred, such as in STA2 Cell 3 due to the 2005 hurricane Wilma [57].

8. Soils

8.1. Floc

Investigators have often observed a flocculent detrital layer, or “floc”, overlaying the soil surface
in both natural and constructed wetlands, either unimpacted or impacted by excess phosphorus [58,59].
The bulk density of floc is low, ca. 0.05 g/cm3, and, hence, the thicknesses of the floc layers ranges
between a few centimeters up to more than 20 cm.

Large amounts of floc have developed in the STAs. For example, the mean floc depth in 13 STA
cells in 2003 was 10.9 ˘ 5.5 cm, weighing 8.1 ˘ 5.5 kgDW¨m´2. The P content was 6.4 ˘ 3.8 gP¨m´2.
These accumulations are very much larger than the sum of all TSS inputs, which were approximately
0.1 kgDW¨m´2¨year´1. This leads to the conclusion that the STAs, and other P-treatment wetlands,
manufacture particulate matter and floc.

Floc materials can quickly respond to nutrient enrichment [60], and thus have the most immediate
effect on phosphorus in the water column. Floc is suspendable, via shear forces or bioturbation [61].
However, suspended solids concentrations in the flowing water in the STAs is typically very low,
ca. 3 mg/L. Therefore, some researchers have hypothesized that particulate P, in the form of floc, is
transported downstream via a spiraling mechanism [60].

8.2. Accretion

The long-term storage of phosphorus is dominated by the formation and accretion of the new soils
via the processes of sedimentation and bio-accretion. Wetlands with large incoming sediment loads
can contribute to solids buildup in the inlet region via the process of sedimentation. Bio-accretion,
created by internal generation processes, is likely to produce one or two centimeters per year of new
solids [15] and over a period of many years this may influence the wetland hydraulics. This range of
rates will not, in general, threaten vegetation, because root and rhizome development can keep pace
on the timescale of years.

Early research on impacted natural wetlands in Florida utilized deposited radioisotope tracers to
establish accretion rates [62,63]. A newer technique utilizes change points in soil chemistry along a
vertical gradient downward from the soil surface [64]. Applied to the Florida stormwater treatment
wetlands, both the vertical soil accretion and the P accretion were determined for the cells in eight of
the STA wetlands (Table 4). The P accumulated should correspond to the P removed from the water.
The soils data show accumulations about double the removed P, but the variability in both measures is
quite high.

Accretion may require maintenance activity after a decade or two of operation. The accretions are
likely to be spatially non-uniform, with gradient effects in the flow direction, and patchy development.
Sedimentation typically creates a delta effect, and bio-accretion is greater in regions of greater water
nutrient content. In turn, this can cause preferential flow path development, due to local channelization
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of new soils, particularly in the inlet zone. These hydraulic changes may occur without compromising
the freeboard of the containment levees. Nevertheless, it is possible that sediment removal will be
necessary to restore optimal hydraulics. The only report to date of this maintenance activity is from
the Orlando Easterly Wetland, where about 20 cm of sediment was removed from a 59 ha inlet zone of
the 481 ha system [29]. In that case, the accumulation was due entirely to bio-accretion, because the
incoming water contained no suspended sediment.

Table 4. Phosphorus accumulation in soils and removed from water in STAs. Accretion and P
accumulation were measured at a small number of locations in each wetland for soil cores taken
in 2009 [64]. The P removed is calculated from annual performance data for the water entering and
leaving the wetlands, which typically spanned the majority of the operating history.

System Wetland
Accretion P Accumulation P Removed

cm¨year´1 gP¨m´2¨year´1 gP¨m´2¨year´1

mean stdev mean stdev mean stdev

STA1W East 0.97 0.31 1.20 0.61 1.21 0.65
STA1W West 0.90 0.22 1.47 0.36 1.64 1.01
STA1W North 1.10 0.54 2.05 1.24 1.15 0.97

STA2 FW1 1.00 0.26 1.00 0.13 0.99 0.36
STA2 FW2 1.00 0.26 1.60 0.41 1.34 0.52
STA2 FW3 1.20 0.40 2.50 1.00 1.14 0.49

STA3/4 East 1.70 0.66 2.55 0.94 0.90 0.44
STA3/4 Central 1.75 0.78 4.65 2.85 0.69 0.58
mean 1.20 2.13 1.13
stdev 0.34 1.17 0.29

9. Variability

9.1. Temporal Variability

9.1.1. System Startup

The basins for a constructed treatment wetlands can start from differing initial conditions soil
type, and vegetation type and density. When these new wetlands are exposed to a long hydroperiod,
it is obvious that some period of adaptation will ensue, during which soils and vegetation undergo
changes. It is expected that the terrestrial basins constructed to contain treatment wetlands do not have
the full suite of ecosystem processes that are capable of P removal. Sustainable P removal requires and
utilizes the full biogeochemical cycle, with all of the size scales, ranging from macrophytes downward
through the microflora and microfauna.

Water quality regulatory requirements do not always allow for startup periods. As an example, a
large (41 ha) natural wetland near Orlando released phosphorus for several initial months in 1988–1989,
engendering enforcement actions and system termination [34]. Current Floridian stormwater wetland
operating permits recognize the possibility that constructed wetlands require a period of development.
Two initial periods are considered: (1) attainment of concentration reduction, termed net benefit; and
(2) attainment of a relatively stable operating mode, termed stabilization.

Most large-scale P treatment wetlands have not had long startup transients, in part due
to the strategy of holding the wetland in a no-flow condition until sorption and grow-in
processes have stabilized. The STAs were required to achieve concentration reduction before
commencing flow-through.

Antecedent Phosphorus

Wetland P-removal performance may be initially influenced by transition from the past history
of the soils and vegetation on the site. The large P-control wetlands are often built on agricultural
soils, and may have large antecedent stores of soil P. In turn, that may temporarily result in high
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concentrations in floodwaters. As an illustration, the adaptation period for the northern flow path of
STA1W in Florida lasted about one and a half years. During that time, by regulation, it was held in a
no-discharge mode to accommodate the transition (Figure 10) [15]. This wetland clearly contained
mobile legacy phosphorus, because it was built on a former agricultural field.
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Figure 10. Startup of STA1W Cell 5, beginning18 March 1999.

In contrast, prior land uses may have involved low levels of phosphorus. When P-rich floodwater
is added, inorganic forms of phosphorus partition to soils and sediments. The process is well
understood [65]. This initial sorptive capacity for phosphorus will persist only until the new P-loading
establishes a new sorbed P equilibrium [56]. As a case in counterpoint, the Shannon Wetland in
Texas [28] displayed no startup pattern, neither an enhancement nor decrement (Figure 11). This 98 ha
wetland showed no time trend in rate coefficients over the first five years. Vegetation alterations took
place during this period, including sparse plantings.Water 2016, 8, 243 17 of 35 
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Figure 11. Startup rate coefficients for the Shannon Wetland. Operations began in June 2003.

Thus, the initial period of performance may show P release, or lesser or greater P removal than in
the long-term. Some systems have started close to that long-term performance. Antecedent soils and
their P loading is an important factor in the initial startup performance of the soils. Short-term uptake
or release should be anticipated in the operational strategy, and discounted in forecasts of long-term
P removal.
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Vegetation Grow-In and Rearrangement

Large wetlands are more expensive to plant with candidate vegetation than smaller systems.
The large quantities of propagules needed are not necessarily available. Nonetheless, a few large P
wetlands have been at least partially planted, e.g., Orlando Easterly and Shannon.

The growth of the full complement of wetland vegetation requires a supply of nutrients that
ultimately resides in the stable, fully developed system biomass, both living and dead. Although
this new storage of phosphorus can vary depending on vegetation type and density, it is not trivial
compared to typical P loadings to treatment wetlands. As a hypothetical conceptual reference, suppose
the marsh develops 1000 gDW¨m´2 of above- and belowground biomass, with a P content of 0.2%.
The grow-in will then require 2.0 gP¨m´2. Supposing that the wetland receives 2.0 gP¨m´2¨year´1

(e.g., 20 m¨ year´1 of water at 0.1 gP¨m´3), and removes half, it would require two full year’s addition
of water to supply this growth requirement.

The establishment of the wetland standing crop of phosphorus is not to be counted as a sustainable
P-removal function. Nonetheless, it will be reflected in the input/output mass balance for the wetland
during its startup period, if any. This uptake will produce an over-estimate of wetland capacity during
startup, and should be discounted in forecasts of long-term P removal.

9.1.2. Seasonal Variation

Three factors are likely candidates for modifying phosphorus uptake over the course of a year:
(1) water temperature; (2) vegetation growth patterns; and (3) patterns of water addition. Water
temperature may modify microbial processes, which are involved in rapid P uptake and in P release
during the decomposition of detritus. Substantial amounts of phosphorus are withdrawn from
porewaters and surface waters to support plant and algal growth. Temperate wetlands have a period
of plant dormancy occasioned by winter conditions, which differs markedly from warm climate
wetlands. Most of the large P-control wetlands are ion-warm climates. These systems may also have
periods of relative low vegetative activity, but they do not experience the complete growth stoppage
seen in temperate systems. Plankton and periphyton, which depend on light and hence on season,
are a variable part of the overall biology, and microbial processes are also known to be important.
Stormwater wetlands, such as the South Florida STAs, experience incoming flows and concentrations
driven by seasonal patterns of precipitation. Accordingly, it is reasonable to expect temperature
or seasonal effects in steady flow systems, but those could be masked by seasonal flow effects in
stormwater systems.

Large P wetland performance data were analyzed for potential seasonal effects. Several years’
monthly concentration reduction data were folded into monthly means, and examined for patterns
during the course of the year. Three types of behavior were identified.

Steady flow systems showed essentially no seasonal variability in concentration reduction
(Figure 12). Temperature effects on rate coefficients (k) are often presumed to follow a modified
Arrhenius equation:

kT “ k20 θ
pT´20q (4)

where kT: rate coefficient at temperature (T) = T ˝C, m¨ year´1; k20: rate coefficient at 20 ˝C, m¨ year´1;
and q: temperature coefficient. Water temperature in the five Floridian systems typically varies only
about 10˝C during the course of the year [32], but the Shannon Wetland experiences a 20˝C annual
variation [28]. Only minimal temperature trends have been found for P removal for emergent marshes
in general [15]. For six steady flow large P systems, the median q = 1.012, which implies a 13% increase
in k for a 10 ˝C temperature increase. However, Equation (4) removes only 3% of the variability
in k values.
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Figure 12. Relative concentration reductions (CR) over the course of the year for six steady flow large
P wetlands (OEW, Boney, Titusville, ENRP, Lakeland, Shannon). Data have been normalized by the
long-term mean CR for each wetland. Error bars are the average standard deviation for all months.

A second seasonal pattern was displayed in the performance of the four Apopka wetlands
(Figure 13) [30]. Concentration reductions during the first half of the calendar year were 34% ˘ 8%;
and during the second half of the year were 2%˘ 9%. A distinguishing characteristic of these wetlands
was that most P removal was particulate P. Dunne et al. (2015) [30] speculate that during the second-half
periods, dissolved P was released to the water column, possible from decaying algal and plant biomass.
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Figure 13. Concentration reductions (CR) over the course of the year for the four Apopka steady flow
large P wetlands. Error bars are the average standard deviation for all months.

The STAs display a third type of seasonal variation (Figure 14). STAs show decreased rate
coefficients during the winter–spring months, which is also the dry season. Relative rate coefficients
during the seven dry months were 39% ˘ 16% of average and during the remaining five wet months
were 185% ˘ 47% of average. Three operational features characterize the dry season months: lower
incoming flows, slightly lower incoming concentrations, and slightly shallower depths in the wetlands.
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Figure 14. Relative k-values over the course of the year for five STA large P wetlands (STA2C1, STA2C2,
STA2C3, STA34 East, STA34 West). Data have been normalized by the long-term mean K-value for
each wetland. Error bars are the average standard deviation for all months.

9.1.3. Stochastic Behavior

A sizeable fraction of the variability in outlet concentrations cannot be ascribed to the major
driving forces of flow per unit area and inlet concentration. Among other potential causes are actions
of animals and wind, and the status of the vegetative and soil components of the ecosystem. This
unascribable variability is deemed to be stochastic.

Steady Flow Systems

The framework for interpreting treatment wetland performance, in general, is comprised of
a deterministic component, characterized by appropriate equations, together with a stochastic
component, characterized by one or more probability distributions [66]. Performance is typically
seasonal, as shown in Figure 15.
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Figure 15. Variability of outlet TP concentrations at Boney Marsh. The mean TP values are means
for the designated month. (Source: unpublished data from South Florida Water Management
District (SFWMD)).

Therefore, quantification of stochastic variability requires that the performance be
seasonally detrended:

C “ Ctrend ` E (5)
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where C: outlet concentration, gP¨m´3; Ctrend: trend component of outlet concentration, gP¨m´3; and
E: stochastic component of outlet concentration, gP¨m´3. The random variation is captured via a
multiplier on the trend value, given by (Y):

Ψ “
Ctrend ` E

Ctrend
(6)

The data from Boney Marsh in Florida provides an illustration of the variability to be expected for
mean long-term performance for P removal in large wetlands. This wetland received an average inlet
concentration of 0.051 gP¨m´3 for 1979–1987, at an average hydraulic loading rate of 2.16 cm¨day´1,
and produced a mean outlet concentration of 0.019 gP¨m´3. Figure 14 shows a considerable scatter
band around the mean cyclic trend performance for the monthly means of weekly TP measurements.

The upper percentile points of that distribution are of interest for large steady flow P-control
wetlands because of regulatory requirements. For instance, the 90th percentile represents the fractional
addition to the monthly trend that may be expected to occur one time out of ten during the period
of record. Steady flow systems are often subject to “not to exceed” requirements for monthly
effluent values.

Table 5 lists percentiles of the monthly Ψ-distributions for phosphorus for representative large
P-removal wetlands. These data indicate that the median of the 95th percentile is an additional 79%
above the trend, and that the median of the 90th percentile is an additional 59%. For the larger
population of P-removal wetlands of all sizes, these medians are higher [15].

Table 5. Multipliers for monthly trends in total phosphorus exiting large steady flow wetlands.

Wetlands Years
Percentile

50% 80% 90% 95%

ENRP 4 1.00 1.24 1.35 1.44
Lakeland 7 1.00 1.23 1.46 1.51

Boney 8 0.92 1.15 1.55 1.73
Titusville 7 0.89 1.39 1.77 2.00

OEW 10 0.72 1.39 2.07 2.50
Apopka 9 0.82 1.26 1.64 1.86
Median 0.91 1.25 1.59 1.79

Stormwater Systems

The regulatory criteria for the large STA systems are based upon annual performance, and upon
multi-year averages as well. Such criteria are founded on the statistical analysis of the variability of
annual average TP in the wetland outlet. The 90th percentile of the distributions of annual outlet
concentrations for the STAs is 1.67 times the mean over the POR (N = 236 flow path years).

9.2. Spatial Variability

It is very difficult to view a very large wetland as behaving as a “black box.” The size of large
P wetlands invites examination of the internal profiles of P concentrations. Two distinctly different
procedures have been followed. If the wetland is compartmentalized, with structures conveying flow
from one cell to the next, then those intercell flows can be sampled for TP. If flow rates are also measured,
then the TP in the intercell flow can be flow-weighted. If the wetland is not compartmentalized, then a
grid of interior points may be sampled for TP and other parameters. Often, a spatially uniform grid is
sampled, with cross-flow points representing a specific distance from the inlet. In general, it is not
possible to measure the flow rate that may be representative of a given sample point. Flow weighting
is not possible.
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9.2.1. Compartmentalization

Both the P-load reduction and the rate coefficient depend upon the hydraulic loading, which is the
water flow per unit of wetland area. A common, but not universal, feature of large P-removal wetlands
is compartmentalization, meaning they contain a number of (relatively) independent sequential cells.
In the absence of such compartmentalization, inlet regions are, nonetheless, likely to perform differently
from outlet regions. Concentrations, and often flow rates, are measured at the inter-cell connection
points. As a consequence of the sequential removal of P through such systems, the inlet cells bear
most of the P burden. The inlet cells see the highest P concentrations, and are the recipient of solids
deposits originating with the incoming water. Downstream cells see less phosphorus, and accrete
solids generated by internal wetland cycling.

The number of cells in the large P-constructed dataset range from one to two dozen, but the
median is two (Table 1). When performance is analyzed for cells in series, a decreasing trend is
observed from cell to cell along the flow path (e.g., Shannon [28]; Lakeland [34]; ENRP [67]). Cell-wise
performance information for the STAs was reported through 2012, at which time intermediate cell data
acquisition was terminated [68].

9.2.2. Internal Measurements

If the wetland is evaluated in its entirety, internal trends may be subsume, and whole system
trends may not be observed. Time-changing zones can be entirely within the wetland as a whole.
In general terms, the zone nearest the inlet may undergo alteration in plant speciation, while zones
further downstream may retain their species and performance, and at long distances a background
ecosystem will prevail [69].

A case in point is the natural Houghton Lake treatment wetland. Although not compartmentalized,
it was analyzed at different size scales. The overall wetland comprises 700 ha, and input–output data
were collected at that scale. In the initial few years of the project, which has spanned 39 years to
date, attention was focused upon an inlet area of some 20 ha [70,71]. The P removal in this small area
declined with time over the initial five years. At the opposite extreme, the “performance” of the entire
700 ha wetland did not change over a 30-year history; that is, there was no change in the effluent P
concentration [56]. In recognition of this disparity, monitoring of a 100-ha inlet region commenced in
year four of operation. This intermediate-sized zone displayed time trends of decreasing k-values over
a period of about five years, but there was no k-value time trend over the ensuing 25 years [56].

9.2.3. Internal Behavior of the STAs

Periodically, many of the STAs have been sampled internally for water quality, on grids that extend
both parallel to flow and cross flow ([48,72–74]). This information is vitally useful in understanding
STA performance.

Transect information can be used to determine rate coefficients. These are snap-shots of
performance, linked to the instantaneous flows and concentration at the time of the transect. Therefore,
transect rate coefficients must be concatenated over the annual flow distribution to be compared
to annual rate coefficients, which are determined from flow-weighted averages of inlet and outlet
information. However, transect coefficients allow insights into the P-uptake patterns, as these are
related to the instantaneous flow rates.

Areal rate coefficients allow forecasts of the longitudinal variation in P concentrations, as these
relate to the hydraulic loading up to that distance (Equation (1)). As one moves downstream from the
inlet, the upstream hydraulic loading becomes lower, until at the outlet it becomes the loading for
the entire wetland. The kC* model fits transect data quite well; for instance, for twenty transects in
STA2C3, the average fit was R2 = 0.89˘ 0.09. These instantaneous transect rate coefficients are strongly
dependent on flow rate. When the transect data are flow-weighted, the concentration reductions show
the expected pattern of decreases with increasing hydraulic loading rate (Equation (1)) (Figure 16).
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Furthermore, the monthly rate coefficients, determined from input/output data, cluster at the low end
of the loading spectrum, and are consistent with the flow-weighted transect information. The mean
transect rate coefficient for the five-year period was 44 m¨year´1, while for the same five years, the
mean annual system rate coefficient was 38 m¨year´1.
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Figure 16. Transect data and the kC* model for 28 grid transects for STA2C3 taken over five years.
The data were flow-weighted. The hydraulic loading rates decrease as the location moves along the
transect from inflow to outflow. Shown for comparison are the annual input/output flow-weighted
concentration reductions for the five-year period. The model parameters are: K = 44.4 m/year, and
C* = 6 µg/L, as co-determined by nonlinear regression. R2 = 0.977.

The instantaneous transect coefficients change with flow, as do the monthly system I/O
coefficients. When flows are high, the coefficients are also high (Figure 17). The instantaneous
P-uptake coefficients are very nearly proportional to flow. This behavior is distinctly different from
that presumed up till now in STA calculations, which has been a rate coefficient invariant with flow.Water 2016, 8, 243 23 of 35 
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for five STA wetlands. Also shown are four flow groups of transect rate coefficients for STA2C3.
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There is also spatial variability between parallel transects across the flow direction. As an example,
TP was measured on transects on 20 occasions over a span of four years, along five parallel paths in
STA2 [74]. The average coefficient of variation perpendicular to flow was 25%. The spatial average
concentration, across the width of a wetland, is typically lower than the flow-weighted concentration at
that same distance. This is due to the fact that slower speed zones occupy the majority of the wetland
width, and so spatial sampling emphasizes slow speeds, with better treatment [75]. The difference
between inlet and outlet flow-weighted concentrations and the internal spatial averages for STA2 Cell
3 were about 10 µgP/L near the inlet, and about 4 µgP/L near the outlet.

10. Sustainability and Time Trends

A recurring theme in older wetland literature is that when a wetland receives new inputs of
phosphorus it will only remove some portion of the incoming load until the system becomes “saturated”
with phosphorus. For instance, Richardson (1985) [70] stated: “Wetlands tested as wastewater filtration
systems became phosphorus-saturated in a few years, with the export of excessive quantities of
phosphate.” Such early misconceptions ignored the soil building that occurs in treatment wetlands,
and were subsequently supplanted by acknowledgement of the sustainable P removal to newly created
soils [65]. Based on studies of the storage of P in marshes removing phosphorus in Florida marshes,
Craft and Richardson (1993) [63] later recognized that “The efficiency of any wetland to store P on a
long-term basis is thus determined by the peat or soil accretion rate . . . ”

Although most wetland science literature now correctly identifies accretion as a principal
long-term storage for phosphorus (e.g., [62,63]), there still persists literature that does not directly
address the soil-building mechanism as a primary route of phosphorus immobilization. For instance,
USEPA (1999) [76] states: “New constructed and natural wetlands are capable of adsorbing phosphorus
(P) loadings until the capacity of the soils and new plant growth are saturated.” Mitsch and Gosselink
(2000) [77] identify only chemical precipitation, adsorption, and plant uptake as removal mechanisms.
Crites et al (2006) [78] state: “Adsorption and precipitation reactions are the major pathways
for phosphorus removal . . . ” Interestingly, USEPA (2000) [79] correctly identifies the sustainable
mechanism as “accretion and burial.” However, identification of accretion removal does not address
the question of whether there may be continuing deterioration of the P-removal mechanisms.

At this point in the history of treatment wetland technology, there now exist some monitoring
histories of modestly long duration. Those that pertain to large constructed P-control wetlands are
of interest here. Time trends allow confirmation of the long-term sustainability of P removal in
these marshes.

10.1. Trends for Steady Flow Wetlands

Time trends for steady flow systems are shown in the top part of Table 6. An example is the
Orlando Easterly Wetland (Figure 18). This wetland went into operation in 1988, and underwent a
period of vegetative grow-in until 1990, and of reducing inlet TP for another two years. Here, the
marsh portion (318 ha) is considered. For the ensuing twelve years, phosphorus loads to the system
were fairly stable, with modest interannual variability, until excavation management was undertaken
in 2002. That twelve-year POR is considered here. Only slight trends were present in performance, as
quantified by linear regression (Table 6). Additionally, these trends account for only a small amount of
the variability in the three measures: R2 = 0.032, 0.050, and 0.061 for concentration reduction, P load
reduction, and rate coefficient, respectively. Excavation was done because this steady flow system had
monthly performance criterion, and monthly excursions were becoming more pronounced (Figure 18).

Data was analyzed for nine large P steady flow treatment wetlands, plus two large natural
wetlands. Linear regression was used to establish the time-trend slope of the three performance
measures, expressed as percent change per year (Table 6). Median rates of change were 0.2, 2.7, and
2.8% year´1, for CR, k, and PLR, respectively. These median rates of change are all slightly positive.
However, the linear trends account for only a very small fraction of the annual variability, with median
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R2 values of 0.087, 0.014, and 0.0.050 for CR, PLR, and k values, respectively. In other words, the
interannual data scatters, and displays almost no trends.Water 2016, 8, 243 25 of 35 

 

 
Figure 18. Time progression of inlet and outlet TP concentrations for the OEW system. 

10.2. Trends for Stormwater Wetlands 

The south Florida stormwater treatment areas form a well-studied subset (N = 19) of large 
wetlands designed to remove phosphorus. The systems receive pulses of flow on an intermittent 
basis. Linear regression was also used to establish the time-trend slope of the three performance 
measures for the stormwater wetlands (Table 6). Median rates of change were 1.0, −0.2, and −7.6% 
year−1, for CR, k, and PLR, respectively. The median rate of change for PLR is negative, which may 
reflect lower incoming P loads and/or persistent startup conditions. Nonetheless, the linear trends 
account for only a small fraction of the annual variability, with median R2 values of 0.093, 0.074, and 
0.113 for CR, k, and PLR values, respectively. In other words, the interannual data scatters, and 
displays almost no trends for CR and k. 

11. Ancillary Benefits 

The primary objective of the large P-control wetlands is water quality improvement. Secondary 
benefits that can accrue in treatment wetlands include (1) vegetative biodiversity; (2) protection and 
production of fauna; and (3) aesthetic, recreational, commercial, and educational human uses [15]. 
The first of these is not typical of the large P wetlands, because of perceptions of the desirability, or 
undesirability, of certain vegetation species for water quality treatment. However, the other two 
ancillary benefits, animal habitat and recreation, are very important in many of the large P wetlands. 
The large size of these systems makes them especially important as wildlife habitats, because species 
richness goes up with size [80]. In turn, wildlife attracts fishermen, bird watchers, and hunters. 

11.1. Wildlife Use 

Large treatment wetlands are popular with fish, birds, and reptiles. Many thousands of 
waterfowl frequent the Florida STAs and other P-treatment wetlands, although many are American 
coots (Fulica americana). These make the systems a stopover on winter migration, but also forage year-
round on wetland vegetation. Wading birds are also very prevalent, including uncommon species, 
such as roseate spoonbills (Platalea ajaja), white pelicans (Pelecanus erythrorhynchos), wood storks 
(Mycteria americana), and flamingoes (Phoenicopterus ruber). Herons and egrets abound. 

Fish occur in large wetlands as well. The southerly location of many of the systems creates 
conditions conducive to the non-native tilapia (Oreochromis aureus). In general, fishing is not allowed 
in the Florida STAs. 

Alligators (Alligator mississippiensis) have been observed at quite high densities in wetland 
treatment systems with open water areas and high fish populations. Both the Florida and Texas large 
P wetlands are home to alligators. 

0.01

0.1

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Years of Operatio

Inlet OutletTo
ta

l P
ho

sp
ho

ru
s,

 g
P·

m
−3

Figure 18. Time progression of inlet and outlet TP concentrations for the OEW system.

Table 6. Time trends in annual concentration reduction (CR), rate coefficients (k), and P load removed
(PLR) for large P wetlands. Two natural wetlands are included because of their long history. Slopes are
in percent per year.

Site System Years CR k PLR

Trend Slope R2 Slope R2 Slope R2

Boney West 11 1.8 0.114 2.4 0.094 3.9 0.193
OEW Stratum 4 12 ´1.0 0.032 4.7 0.061 3.1 0.050

Titusville 7 0.4 0.003 4.5 0.014 ´12.0 0.167
Lakeland Cells 1–4 12 ´1.1 0.019 2.7 0.041 ´4.4 0.130
Shannon 6 0.2 0.190 7.5 0.347 8.1 0.670

Bayou Marcus Natural 14 ´3.0 0.289 0.1 0.000 12.9 0.697
Houghton Lake Natural 26 ´0.7 0.334 ´0.2 0.004 ´0.2 0.002

Apopka B1 9 8.6 0.563 4.0 0.115 2.8 0.036
Apopka B2 9 2.6 0.026 ´0.7 0.001 ´0.7 0.000
Apopka C1 9 4.1 0.001 ´2.6 0.003 ´2.9 0.003
Apopka C2 7 ´16.4 0.087 4.4 0.003 9.0 0.013

Median Steady 9 0.2 0.087 2.7 0.014 2.8 0.050
STA1E Central 10 ´2.7 0.102 ´7.3 0.076 ´11.4 0.217

West 10 4.1 0.014 4.5 0.021 ´17.1 0.162
STA1W East 14 2.9 0.333 ´2.4 0.041 ´4.0 0.143

West 12 1.5 0.317 0.8 0.012 0.3 0.000
North 16 5.2 0.500 6.1 0.323 2.3 0.039

STA2 FW1 12 0.5 0.072 4.8 0.095 0.7 0.004
FW2 13 0.3 0.019 1.2 0.030 ´0.3 0.001
FW3 13 1.3 0.185 ´0.7 0.010 0.5 0.003
FW4 7 2.2 0.034 ´0.2 0.000 ´13.4 0.200

STA34 East 11 ´0.6 0.093 ´3.4 0.074 ´15.4 0.497
Central 11 ´1.3 0.092 ´9.1 0.198 ´23.4 0.391

West 11 0.0 0.000 5.6 0.254 0.0 0.000
PSTA 8 ´7.5 0.507 ´2.4 0.021 ´1.4 0.007

STA56 FW1 16 8.7 0.534 1.9 0.014 ´7.6 0.113
FW2 16 5.0 0.166 ´0.1 0.000 ´12.4 0.247
FW3 6 0.2 0.005 10.7 0.142 0.1 0.000
FW6 6 5.7 0.549 ´14.3 0.274 ´16.9 0.772
FW7 13 ´1.0 0.066 ´11.8 0.528 ´8.7 0.081
FW8 14 1.0 0.010 ´19.8 0.312 ´9.4 0.134

Median Storm 12 1.0 0.093 ´0.2 0.074 ´7.6 0.113
Global Median 11 0.5 0.0925 0.5 0.041 ´1.1 0.097
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10.2. Trends for Stormwater Wetlands

The south Florida stormwater treatment areas form a well-studied subset (N = 19) of large
wetlands designed to remove phosphorus. The systems receive pulses of flow on an intermittent basis.
Linear regression was also used to establish the time-trend slope of the three performance measures
for the stormwater wetlands (Table 6). Median rates of change were 1.0, ´0.2, and ´7.6% year´1, for
CR, k, and PLR, respectively. The median rate of change for PLR is negative, which may reflect lower
incoming P loads and/or persistent startup conditions. Nonetheless, the linear trends account for only
a small fraction of the annual variability, with median R2 values of 0.093, 0.074, and 0.113 for CR, k,
and PLR values, respectively. In other words, the interannual data scatters, and displays almost no
trends for CR and k.

11. Ancillary Benefits

The primary objective of the large P-control wetlands is water quality improvement. Secondary
benefits that can accrue in treatment wetlands include (1) vegetative biodiversity; (2) protection and
production of fauna; and (3) aesthetic, recreational, commercial, and educational human uses [15].
The first of these is not typical of the large P wetlands, because of perceptions of the desirability,
or undesirability, of certain vegetation species for water quality treatment. However, the other two
ancillary benefits, animal habitat and recreation, are very important in many of the large P wetlands.
The large size of these systems makes them especially important as wildlife habitats, because species
richness goes up with size [80]. In turn, wildlife attracts fishermen, bird watchers, and hunters.

11.1. Wildlife Use

Large treatment wetlands are popular with fish, birds, and reptiles. Many thousands of
waterfowl frequent the Florida STAs and other P-treatment wetlands, although many are American
coots (Fulica americana). These make the systems a stopover on winter migration, but also forage
year-round on wetland vegetation. Wading birds are also very prevalent, including uncommon species,
such as roseate spoonbills (Platalea ajaja), white pelicans (Pelecanus erythrorhynchos), wood storks
(Mycteria americana), and flamingoes (Phoenicopterus ruber). Herons and egrets abound.

Fish occur in large wetlands as well. The southerly location of many of the systems creates
conditions conducive to the non-native tilapia (Oreochromis aureus). In general, fishing is not allowed
in the Florida STAs.

Alligators (Alligator mississippiensis) have been observed at quite high densities in wetland
treatment systems with open water areas and high fish populations. Both the Florida and Texas
large P wetlands are home to alligators.

11.2. Wildlife Damage

Nutria (Myocastor coypus) are an invasive species from South America, but they now range
across southern and northwestern USA. Nutria feed on a broad range of plants in treatment wetlands,
including cattails, grasses, water hyacinth, and duckweed. Nutria cut vegetation to build feeding
platforms and nest mounds. They are prolific and achieve damaging population densities unless
they are controlled by trapping or shooting Nutria have occurred in problematic numbers in many
treatment wetlands, including the East Fork Wetland in Texas. From January through December 2010,
almost 13,000 nutria were eliminated from the East Fork Wetland. Another exotic, invasive species,
feral hogs (Sus scrofa), also caused limited impacts to the wetland vegetation and levees [25].

American coots (Fulica americana) have caused severe damage to the SAV in Florida STAs, They
eat the SAV, causing destruction of the vegetative component of the system.

Black-necked stilts (Himantopus mexicanus), burrowing owls (Athene cunicularia), and snail
kites (Rostrhamus sociabilis) have all caused interruptions of the operations of Floridian treatment
wetlands [33].
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11.3. Human Use

The diversity and abundance of birds in and around wetlands attracts bird watchers, who observe
that species lists are longer and counts higher when they include large P-treatment wetlands in their
counting areas. All the Florida STAs have public access. For instance, STA34 has two public access
points, featuring information kiosks, paved parking, concrete sidewalks, and restrooms for hikers,
bicyclers, and bird-watchers. A public dual-lane boat ramp is open seven days a week and offers access
to 27 miles of perimeter canals. The STA-3/4 East entrance provides parking and toilet facilities, along
with informational signage and access to levee trails. The Audubon Society offers escorted driving
trips in the STAs on weekends.

The other large P wetlands, such as the OEW and Shannon Wetlands, also have much public
use. Thousands of birds visit the Shannon Wetlands, including several types of egrets, great blue
herons, wood storks, white ibises, and American white pelicans. In winter, bird numbers soar, because
thousands of migratory birds descend on the area. Gators, deer, and feral hogs also frequent the
Shannon Wetlands.

A number of wetland bird species are game species and are hunted. Treatment wetlands frequently
provide good waterfowl habitat. In a few cases, these treatment wetlands have been used for duck
hunting as a recognized secondary benefit. The stormwater treatment constructed wetlands in Florida
are open to duck hunting, and are deemed the best hunting spots in the entire state. Alligator densities
in the Florida stormwater treatment constructed wetlands have reached proportions sufficient to allow
hunting. On designated weekends in specific areas of the STA, waterfowl and alligator hunts are
managed by the Florida Fish and Wildlife Conservation Commission.

12. Models

Almost all models of large wetlands, with one exception, address total phosphorus, a lumped
measure. As a result, they do not deal with solids movement, related to particulate phosphorus.
Soluble reactive phosphorus is known to behave differently from dissolved organic P and from
particulate P. Models do not do a good job of describing the very low P concentrations that occur in
some wetlands. Yet, a very large effort has been expended on modeling of large P wetlands, which is
briefly summarized here.

12.1. Steady State Models

Early models of P removal in marshes were predicated on steady state, or long-term average
conditions. This was a necessity created by the nature of the available databases. Historically, hydraulic
conditions were presumed to be either a single well-mixed unit (lakes), or plug flow (rivers, wetlands).
Removal was presumed to be a first-order process, with rates varying in proportion to the water
concentration ([34,81–83]). The calibration parameter is the removal rate coefficient, k. Hydraulic
models can account for flow patterns intermediate to plug flow or perfect mixing, through the use of
the tanks in series (TIS) model. Several large-scale wetlands have been tracer tested, and produced a
central tendency of about N = 4–6 for cells or flow paths of a large wetland (see, for instance, [40–42]).

12.1.1. Speciation

Total phosphorus (TP) is, in fact, a mixture comprised of particulate (PP), and dissolved organic
(DOP) and soluble reactive (SRP) forms. Each fraction of the lumped TP possesses its own net removal
rate coefficient. As the mixture passes through the wetland, its composition changes due to weathering.

As shown in Kadlec (2003) [84], and in Kadlec and Wallace (2009) [15], it is possible to account
for speciation in modeling without resorting to multi-species models. In the wetland environment,
hydraulics and weathering interact to produce the overall observed reduction in a lumped category of
pollutants. Weathering behavior in wetland situations may also be represented by a TIS model, where
the hydraulic parameter (N) is relaxed to become a fitting parameter (see Equation (1)).
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Applications of this model for large constructed P wetlands may be found in, for instance,
Kadlec et al. (2011) [28] and Juston et al. (2013) [74], and it is used in this work.

12.1.2. Including Solid Compartments

The lower bound in Equation (1), labeled C*, is the result of internal recycle processes in the
wetland, with small contributions from atmospheric deposition. Model fitting research has typically
determined C* levels in the range 10–20 mgP¨m´3 [48]. The contribution from atmospheric deposition
is estimated at about 2–4 mgP¨m´3, based on rainfall TP and dry deposition measurements. The
contribution of SAV in STA2C3 has been calibrated at about one-third of the total C* [74]. The
submerged aquatic vegetation phosphorus model (SAVPM) is a steady state model patterned after
the PkC* model, but additionally containing interacting compartments for biomass, recently accreted
sediments, and underlying soils [74]. The model was calibrated and exercised for STA2C3, an
SAV wetland.

12.2. Dynamic Models

When the wetland is presented with time-varying flows, there can be large effects of the time
sequence of those flows. Proper accounting then requires that system dynamics be considered in
modeling. This greatly increases the complexity of calculations. It also brings into consideration
the various timescales of wetland processes, including the response times of the water sheet and
floc (rapid) and those of the sediments, soils, and biota (slow). The stormwater treatment wetlands
manifest the collective effects of these dynamic processes.

As a consequence, spatial and temporal models have been explored for describing P processing in
the South Florida STAs [85,86]. These involve two or more compartments and account for spatial effects;
they are briefly described here. In general, these models of large wetlands get the hydrology correct,
including water depths and stages, without excessive parameterization. They also are all moderately
successful in describing the high end of the concentration range, i.e., from a few hundred mgP¨m´3

down to 20–25 mgP¨m´3, on the timescale of a year. However, none are particularly successful at
describing wetland performance at the monthly or faster timescale, or in the low concentration range,
i.e., less than about 20 mgP¨m´3.

12.2.1. Wetland Water Quality Model (WWQM)

This model was developed to describe phosphorus removal in the STAs [87–89]. The WWQM is a
dynamic model that uses two spatial dimensions. Hydrodynamics are calculated first, followed by
chemical interactions between water and four stationary compartments: periphyton, macrophytes,
aerobic sediments, and anaerobic sediments. Chemical species include calcium, iron, carbon, nitrogen,
and sulfur. As a consequence, the code solves over 100 equations requiring over 200 coefficients.
The attendant computational times were found to be quite large. To date, this model has not been
successfully implemented. It was originally calibrated to data from cell 4 of the ENRP. This model is
not in general use, and has been supplanted by the LOEM-CW model described below.

12.2.2. Exploratory Dynamic Modeling

Researchers working on various aspects of the STAs developed dynamic models of less complexity
as an adjunct to investigating specific ecosystem types. One such was the Process Model for SAV
(PMSAV). This model was developed to describe the P-removal processes in wetlands dominated by
submerged aquatic vegetation [90,91]. It allows P removal from water by two routes: a biologically
mediated pathway and a sedimentation pathway. It also splits storage into a biomass compartment,
representing the SAV, and an active sediment compartment. It also utilizes a combination of Monod and
first-order processes to interconnect the water column and the biomass components. There are seven
adjustable parameters. It can be run easily on a desktop computer, and there are minimal calibration
issues. This model was used to conduct screening level computations for the SAV alternative for P
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removal from Everglades Agricultural Area (EAA) runoff. It has been calibrated to phosphorus and
biological data from wetlands at several scales, up to 200 ha, in South Florida. This model is not in
general use.

A second study-specific model was the PSTA Forecast Model. This model was developed to
describe the P-removal processes in wetlands dominated by periphyton [92]. It utilizes a combination
of Monod and first-order processes to interconnect the water column and the biomass components. It
can be run easily on a desktop computer, and there are minimal calibration issues. This model was
used to conduct screening level computations for the PSTA alternative for P removal from EAA runoff.
The model considers hydrologic factors (rain, evaporation), but not hydrodynamic factors. It is not a
spatial model, and utilizes a single well-mixed unit. Accordingly, hydraulic efficiencies were very low,
and the resulting wetland areas needed for acceptable treatment were very large. At the present time,
this model is not in general use.

A third dynamic forecast model was used to explore design and operational strategies for the
whole set of STAs, the Everglades Phosphorus and Hydrology (EPH) model. This model spatially
discretized an STA into plug-flow cells in series, selected by the user to reflect landscape and water
quality regions. It was simplified by consideration of only a few transfers, and by the selection of
a monthly time step. Phosphorus removal was calculated using a first-order areal uptake equation,
and return i taken to be zero order, and operative only during dry periods [93]. EPH was used to
theoretically investigate the results of different operational and design strategies for the STAs. This
model is no longer in general use.

12.2.3. The Dynamic Model for Stormwater Treatment Areas (DMSTA)

The STA treatment wetlands operate in a dynamic mode. The principal parts of DMSTA include
hydraulics, water TP, and stored P. Storage in solid compartments occurs during periods of high
phosphorus availability, and release back to the water occurs in periods of P famine. Permanent
removal is to residual sediments containing unavailable P. DMSTA [55,94] is an unsteady state model
that removes phosphorus to permanent burial in proportion to the amount of labile P in storage. There
is a generic labile pool of phosphorus, in addition to the permanently buried P. That labile pool is
presumed to be drawn down by a return flux, or bleed-back. Temporal variations in the water budget
(flows, rainfall, evapotranspiration, seepage, storage) are also simulated. DMSTA allows for spatial
variability via cells in series or parallel, and accommodates PTIS for each wetland cell.

DMSTA does not attempt to describe the startup of a wetland. For wetlands built on agricultural
soils, there is generally a period of startup, during which internal and outlet P concentrations exceed
input values. The length of this period is dependent on the size of the antecedent P load contained in
the soils. During startup, the wetland undergoes the initial stages of development, such as increases in
biomass and the extent of areal coverage. However, the occurrence of a switch to a condition of net P
removal does not necessarily signal the end of the ecosystem transition, which may continue over an
extended period of stabilization. Data show that startup and stabilization may take two or more years
for a newly converted wetland [50]. DMSTA avoids startup by seeking a stationary state solution for
repetitive time series.

Numerous calibration datasets have been used, collected from operating wetlands over the years
prior to 2005, and at a wide range of size scales [55]). These include individual cells of the STAs, shown
in Tables 1 and 2. This model has seen extensive use in connection with the STAs.

12.2.4. Transport and Reaction Simulation Engine (TARSE)

This model solves the advection–dispersion equation on an unstructured triangular mesh
and incorporates a wide range of user-selectable mechanisms for phosphorus uptake and release
parameters [95]. In general, the phosphorus model contains transfers between stores; examples of
stores that can be included are soil, water column (solutes), pore water, macrophytes, suspended
solids (plankton), and biofilms. Examples of transfers are growth, senescence, settling, and diffusion,
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described with first-order, second-order, and Monod types of transformations. Local water depths
and velocities are determined from an existing two-dimensional, overland-flow hydrologic model, the
South Florida Water Management District Regional Simulation Model.

There are nine state variables, including particulate and soluble P in groundwater, porewater,
and surface water, together with plants and microbiota [95]. There about 17 transfers of P among
compartments, each requiring a rate model and at least one adjustable parameter. Calibration is
therefore difficult, and subject to the estimating ability of the user.

The model was applied to one cell 4 of the ENRP [96]. Inflow total phosphorus concentrations
and flow rates for the period between 1995 and 2000 were used to simulate cell 4 phosphorus removal.
The long-term mean TP at the outlet, 22 mgP¨m´3, was matched well, but the root mean square error
between model and data over six years was 11 mgP¨m´3 for outlet TP. Flows to this cell were relatively
steady during this period, and thus the pulse response of the model was not severely stressed. This
model has not been used in design, or in the evaluation.

12.2.5. Lake Okeechobee Environment Model for Constructed Wetlands (LOEM-CW)

This dynamic model attempts to describe movement of water, nutrients, and solids in three
dimensions [97,98]. The data demands are very high: for example, hourly wind, solar radiation, air
temperature, relative humidity, evapotranspiration, and cloud coverage as the external forcings. There
is extreme complexity in both the water quality section (130 model parameters) and in the sediment
section 27 state variables [99]. As a result, the model requires large amounts of computer execution
time. LOEM-CW has been applied to the western flow path of STA34. The root mean square error
between model and data over six years was 19 mgP¨m´3 for outlet TP, which had an observed mean
of 23 mgP¨m´3 [98].

13. Economics

The large P-control wetlands are costly to build and operate, because of their size. However, they
are not usually planted, nor is a liner typically used, and those two costs comprise about 40% of the
total capital cost for smaller surface flow [15]. The large wetlands are not located in areas of excessive
land values. As for any treatment works, there is an economy of scale that lowers the per hectare
cost [15]. Delivery of water to a large wetland may require very large pumps, which may partially
offset an economy of scale.

The median capital cost for 16 large P-control wetlands was $69,000 per hectare, of 53–6742 ha,
median 630 ha. In contrast, the median cost for 39 small constructed wetlands, of 1–40 ha, median
6.3 ha, was $132,000 per hectare. These 2016 capital costs do not, in general, include the cost of
land acquisition.

The median operation and maintenance (O&M) cost for nine large systems, median 2,210 ha, was
$770 per hectare per year. The median operation and maintenance cost for 17 small systems, median
6.0 ha, was $3,620 per hectare per year. These 2016 O&M costs do not, in general, include the cost of
water quality monitoring.

14. Closure

Most of the large P-control constructed wetlands are in the USA, with the earliest finished in
1976. These marshes total about 28,000 ha, and cost about $2 billion to construct. On an areal basis,
these large systems comprise 99% of all constructed P-control wetlands. The large systems also have
long data records, in contrast to many smaller wetlands that have only a few years’ data. Due to
practicality, the large system data does not include replicated, side-by-side studies. However, the
economic importance of scientific understanding has resulted in large investments in monitoring and
research studies, and much of the knowledge of phosphorus processing in marshes has been gained
from the large systems.
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This review shows that large constructed wetlands all remove phosphorus. They do so more
efficiently than the population of smaller counterparts, as measured by concentration reduction
(median 71%) or removal rate coefficients (median 12.5 m¨year´1) for the entire period of record.
However, large systems display lesser P load reductions (median 0.77 gP¨m´2¨ year´1) than the larger
general population of wetlands, in part because the large systems typically operate at lower incoming
P loads (median 1.22 gP¨m´2¨year´1). In common with smaller systems, P concentrations are not
reduced to zero, but to a plateau, typically less than 20 mgP¨m´3, but more than the rainfall P limit of
2–4 mgP¨m´3. Inlet cells or zones receive the brunt of the P-removal effects, and consequently may
require maintenance more than downstream portions, notably to remove solids buildups.

Neither large nor small constructed wetlands have a complete array of removal mechanisms from
the moment of flooding. Legacy phosphorus in the soils may be released before benefits are exhibited.
Startup transitions occur, with duration depending upon the antecedent condition of the landscape in
which the constructed wetland is placed.

Intra-annual behavior displays seasonal rather than temperature-driven behavior. Temperature
trends remove almost none of the variability in wetland outflow concentrations. Stormwater wetland
performance varies strongly with the flow patterns that accompany the wet and dry seasons. There
remains a good proportion of variability in outflow concentrations, which appears to be stochastic,
with the 90th percentile of outlet concentrations at 67% higher than the mean.

The type of vegetative community affects the performance measures. Additionally, differences in
the lowest achievable outlet concentration may well depend upon vegetation, or upon the soil type
that helps determine the plant communities. The existence of vegetation is important, both as a factor
in biogeochemical cycling and as an influence on other portions of the suite of removal processes.

The hydraulics of the large systems differs importantly from those of the smaller counterparts,
in that water levels are not controllable with outlet structure settings. Vegetation resistance controls
depths and levels at medium and high flows. Water flow, and to a lesser extent water depth, have
important effects on the removal rate coefficient (Figure 16). Reasons for this dependence have not
been determined, nor has the dependence been considered in modeling.

Phosphorus speciation is an issue, because of the differences in removal rates of SRP, DOP, and PP.
It is probable that the PP is generated within the wetland, especially in downstream sections. PP, and
the related floc, are mobile and can move with water or by spiraling. Yet, no studies of PP movement
have been undertaken.

Internal measurements along the flow path have yielded insights not provided by inlet-outlet
measurements. Figure 15 shows that I/O data cluster, and scatter, in a small group at the end of
transect data. In turn, examination of this cluster alone caused a conclusion that “bivariate analysis . . .
showed a lack of relationship in predicting outflow TP concentrations using inflow HLR . . . ” [100]. In
contrast, transect data extend the range of Hydraulic Loading Rates (HLRs) under consideration, and
show a very strong relation, corresponding to the PkC* model used herein (R2 = 0.977).

It has sometimes been asserted that the phosphorus treatment function of a wetland wears
out [70,101]. The track records of the various constructed large P systems does not substantiate
those early evaluations. Changes do occur over the operating histories of most systems, but there
is no commonality for the direction of such trends. Further, the rates of change are limited to
small percentages of the various performance measures, and the global medians for concentration
reductions and removal rate coefficients are positive, meaning the wetlands improve slightly over
time. Furthermore, the amount of variability contained in the trends is typically very low, less than
10% of the total variability for both steady flow and stormwater systems. These observations must be
tempered by the data periods involved, which are about a dozen years.

If the wetland is adequately maintained, by taking the steps necessary to accommodate
bio-accretion, then there is no apparent limit to wetland lifetime for phosphorus removal. This
is borne out in the performance of natural wetlands that have been receiving nutrient-laden discharges
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for long periods of time, as well as by the performance of constructed wetlands that have been
constructed and operated for up to three decades.

The socio-economic aspects of wetland construction are greatly magnified at large-scale. Large
system establishment usually means land is taken out of agriculture, which in turn affects farmers,
growers, and ranchers, and ultimately has an effect on food and water supply. On the other hand,
environmental interests like the restoration of more natural landscapes, albeit not as pristine as many
would desire. Wildlife values are greatly enhanced by these large wetlands, resulting in ancillary
benefits of human use for birding and hunting. As a consequence, associated political conflicts
reverberate at the state and national level.

A number of mathematical models have been advanced that have been calibrated to data from
large P-treatment wetlands. A necessary requirement is the inclusion of some form of P return from
soils, sediments, and vegetation. The simplest models, such as the PkC* model used herein, add
a fitting parameter for the low plateau in achievable P concentrations. More complicated models
attempt to calculate P return from solid compartments, but there is generally no available data on the
P content of those solid compartments with which to calibrate that part of a model. Most fit short-term
datasets well at moderate concentrations, but no model has demonstrated ability to forecast accurately
at concentrations below about 20 mgP¨m´3. It may be that stochastic behavior dominates in this low
P region.

Models with a small number of adjustable parameters have seen the most usage, but because of
their high degree of aggregation of processes and compartments these have questionable attributes
and accuracy. More complexity does not mean a better model, however [86]. It has been suggested
that needed improvements include floc description, vegetation cycling description, and integration of
data acquisition with modeling efforts [85].

Transferability is an issue, because model parameters have been found to strongly depend upon
several system features. Vegetation type is important, but not the sole determinant of model parameters.
Soil types, and their antecedent condition, are also important, as is the form of phosphorus entering
the wetland. Thus, intersystem variability has been found to be large, even for attempted replicate
systems in a small geographical region, which makes design model forecasting uncertain.
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