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Abstract: A stepwise-cluster inference (SI) model was established through introducing stepwise-cluster
analysis (SCA) into the phenanthrene immobilization process at the aqueous/modified palygorskite
interface. SCA has the advantages of tackling the nonlinear relationships among environmental factors
and the phenanthrene sorption amount in the immobilization process. The essence of SCA is to form a
tree-based classification on a series of cutting or mergence procedures under given statistical criteria.
The results indicated that SI could help develop a statistical relationship between environmental
variables and the phenanthrene sorption amount, where discrete and nonlinear complexities exist.
During the experiment, data were randomly sampled 10 times for model calibration and verification.
The R2 (close to one) and root mean squared error (RMSE) (close to zero) values guaranteed the
prediction accuracy of the model. Compared to other statistical methods, the calculation of R2 and
RMSEs showed that SI was more straightforward for describing the nonlinear relationships and
precisely fitting and predicting the immobilization of phenanthrene. Through the calculation of the
input effects on the output in the SI model, the influence of environmental factors on phenanthrene
immobilization were ranged in descending order as: initial phenanthrene concentration, ionic
strength, pH, added humic acid dose, and temperature. It is revealed that SCA can be used to
map the nonlinear and discrete relationships and elucidate the transport patterns of phenanthrene at
the aqueous/modified palygorskite interface.
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1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are a group of nonpolar hydrophobic contaminants
with two or more fused benzene rings from natural as well as anthropogenic sources. PAHs can
transport and be accumulated in groundwater and surface water for a long period of time, and are
difficult to biodegrade. Immobilization of PAHs to solid sorbents places an important effect on its fate,
transport, and bioavailability in natural aquatic environments [1]. Clay minerals, such as palygorskite,
have received substantial interest as a potential alternative to conventional sorbents such as activated
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carbon. Due to the intrinsic negative charges of palygorskite, it has been widely utilized as a sorbent
for heavy metals [2]. However, being intrinsically hydrophilic, palygorskite shows low immobilization
for hydrophobic organic contaminants. One effective way for the modification of palygorskite is
organomodification, that is, to replace the natural inorganic exchangeable cations with large organic
cations of surfactant molecules. Previous studies regarding the immobilization of organic pollutants
by organopalygorskite have concentrated on polar organic compounds such as 2,4-D herbicide [3],
atrazine pesticide [4], and phenolic compounds [5]. However, the removal of nonpolar compounds
from the aqueous phase by organopalygorskite is not well documented.

It has been reported that increasing the surfactant chain length and the number of alkyl chains per
surfactant molecule can increase the immobilization of organic contaminants by organoclays [6].
Containing two hydrophilic heads and two long hydrophobic tails in one surfactant molecule,
cationic gemini surfactants have received emerging interest recently. Compared to their single-chain
counterparts, gemini surfactants have increasing hydrophobicity and can endow solids with increasing
organic matter. The sorbed surfactants can act as an effective partitioning media for nonpolar or weakly
polar organic pollutants [7]. In our previous studies, the enhanced solubilization capabilities of cationic
gemini surfactants towards PAHs has been proved [8]. The enhanced retention for phenanthrene
by soils with the addition of gemini surfactants has been well established [9]. However, there is
limited data on modifying palygorskite with gemini surfactants for the removal of PAHs from the
aqueous phase. Enriched knowledge regarding the solution chemistry effects on PAH immobilization
to modified palygorskite still needs to be clarified. Moreover, it is of great importance to elucidate the
environmental factors controlling the sorption process, including the PAH concentration, pH, ionic
strength, and temperature, etc.

Mathematical modeling is one of the essential approaches for tackling the complicated
relationships among environmental factors and the sorption amount in the immobilization process.
Among them, factorial design are extensively used to obtain information regarding whether or not
several initial conditions had an impact on specific immobilization characteristics [10]. However,
factorial analysis is not straightforward when evaluating the relation between multiple factors and
the sorption amount. In addition, many model parameters need calibration and verification in order
to achieve a satisfactory fit [11]. More recently, a few studies have been conducted through the
development of statistical tools, such as the fuzzy factorial method [1], fuzzy logic modeling [12],
support vector regression [13], multiple linear regression and tree regression analysis [14], and artificial
neural networks [15]. However, many variables in the immobilization system can be either continuous
or discrete, and relations among them are inherently nonlinear, which leads to difficulties in performing
these methods.

Stepwise-cluster analysis (SCA) is a type of non-parameter regression technology. The essence of
SCA is to form a classification tree in the sense of probability, based on a series of cutting or mergence
procedures under given statistical criteria. A cluster could be cut into two sub-clusters, while two
could be merged into a new cluster during the iterative training process. Step by step, a tree can be
established when no clusters can be further cut or merged. SCA can not only deal with nonlinear
relationships among continuous and/or discrete variables, but also clearly show the significance
levels of different branches. There are a few applications of SCA for the prediction of air quality in
the atmospheric environment [16], groundwater remediation [17], hydrological processes [18–21],
streamflow prediction [22,23], composting [11,24], and climate change [25,26]. However, it was not
reported that SCA can help reveal the complicated relationships between environmental factors and
process characteristics in the PAH immobilization process. Moreover, the potential utilization of SCA
for tackling discrete and nonlinear complexities in the immobilization system is desired.

Therefore, this study aims to develop a stepwise-cluster inference (SI) model through introducing
SCA into the PAH immobilization process to tackle the nonlinear relationships among environmental
parameters and the PAH sorption amount. In detail: (1) establishing a stepwise-cluster inference
model for predicting variations of PAH immobilization at the aqueous/modified palygorskite
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interface; (2) verifying the proposed modeling system based on the data obtained from the PAH
immobilization process; and (3) evaluating the effects of multiple factors on the distribution of PAHs
in the water/modified palygorskite system.

2. Materials and Methods

2.1. Materials

Phenanthrene was selected as the representative PAH, and was purchased from Sigma-Aldrich
Canada Co. (Oakville, ON, Canada), with a purity greater than 98%. Cationic gemini surfactant
(N1-dodecyl-N1, N1, N2, N2-tetramethyl-N2-octylethane-1,2-diaminium bromide, 12-2-12) was
obtained from Chengdu Organic Chemicals Co., Ltd. (Chengdu, China), with a purity of 98%.
The water solubility of phenanthrene is 1.06 mg/L at 298 K and the octanol-water coefficient (log Kow)
is 4.57. The stock solution of phenanthrene was made by diluting the desired amount of pure
phenanthrene into High Performance Liquid Chromatography (HPLC)-grade methanol solution, and
was stored in a dark place at 277 K in an amber borosilicate bottle to minimize photodegradation and
volatilization. Palygorskite was obtained from Huaiyuan Mining Co. Ltd. (Xuyi, China). The gemini
surfactant modified palygorskite was prepared according to the method reported in our previous
studies [27].

2.2. Sorption Studies

The batch sorption experiments were conducted in 20 mL glass vials. 0.1 g of clay sample was
first added into the glass vial; after that, the appropriate amount of deionized water was added
into the vial. The background solution contained 0.01 M NaCl as an electrolyte and the pH was 7.
Then a pre-calculated volume of phenanthrene stock solution was added to each vial, and the initial
concentration of phenanthrene was pre-determined for each sample. The vials were sealed with
Teflon-lined screw caps and were vortexed for 20 s, and then were placed in a reciprocal shaker at
200 rpm for 24 h to reach the sorption equilibrium. Preliminary experiments showed that 24 h were
sufficient for the sorption process to reach equilibrium and the experimental loss of phenanthrene
was negligible [28–30]. Before testing, the samples were placed for 10 min to separate the soil from
the solution. An appropriate aliquot of supernatant was then carefully withdrawn with a volumetric
pipette to further determine the residual amount of phenanthrene. Meanwhile, controlled experiments
without phenanthrene were conducted and the supernatant of the controlled samples was analyzed as
the background concentration for PHE. The quality assurance/quality control test was conducted and
the phenanthrene recovery rate was between 96% and 103%.

To investigate the influence of temperature on the immobilization of phenanthrene, the sorption
behaviors of phenanthrene were carried out at 283, 293, and 303 K. The solutions contained 0.01 M
NaCl and pH was kept at 7, and then the solutions were placed in a reciprocal shaker at 200 rpm for
24 h. To study the effect of pH on the immobilization of phenanthrene, the immobilization behaviors
of phenanthrene were investigated at pH 3, 7, and 11. The pH value was adjusted with standard HCl
or NaOH solution, and the ion concentration in the system was kept constant at 0.01 M. The initial
concentrations of phenanthrene ranged from 0.3 to 1 mg/L. The temperature was kept constant at
293 K. Batch experiments were performed in the manner as mentioned for the immobilization studies.
The effect of humic acid (HA) on the immobilization behaviors of phenanthrene was examined in a
modified palygorskite/water system. The experiments were conducted in the presence of HA ranging
from 0 to 80 mg organic carbon/L (OC/L). An appropriate volume of phenanthrene stock solution
was added and the initial concentrations for phenanthrene varied from 0.3 to 1 mg/L. Temperature
was kept constant at 293 K. Batch experiments were performed following the sorption test procedures.
To investigate the influence of ionic strength, immobilization tests were conducted. NaCl was added
at different concentrations (0.01, 0.1 and 1 M). The initial concentrations of phenanthrene were from
0.3 to 1 mg/L and the pH value was 7. The vials were placed on a reciprocal shaker at 293 K and
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200 rpm for 24 h to reach the sorption equilibrium. After preliminary experiments, a 35 full factorial
design approach was adopted to represent various factorial effects on phenanthrene immobilization,
including the initial phenanthrene concentration, added HA dose, ionic strength, temperature, and
pH. Three levels of each parameter obtained from the preliminary experiments were indicated in
Table 1. A total of 35 × 2 = 486 experiments with all possible combinations of variables were conducted
in duplicate.

Table 1. The 35 experimental design of phenanthrene immobilization at the aqueous/modified
palygorskite interface.

Symbol Factor
Level

Low (–1) Medium (0) High (+1)

X1
Initial phenanthrene
concentration, mg/L 0.4 0.8 1.0

X2 Added HA dose, mg/L 2 4 42
X3 Ionic strength, M 0.05 0.10 0.55
X4 Temperature, K 283 293 303
X5 pH 3.95 7.90 10.95

2.3. Analytical Methods

Phenanthrene was analyzed using HPLC. The HPLC instrument, an Agilent 1260 Infinity LC
System (USA), was equipped with a vacuum degasser, binary pump, autosampler, thermostated
column compartment (set to 303 K), diode array detector (DAD), and ZORBAX Eclipse PAH column
(3.5 µm particle size, 4.6 mm × 150 mm ID). A mobile phase consisting of acetonitrile/water
(75/25, v/v) was used at a flow rate of 1.0 mL/min. Phenanthrene was monitored with DAD at
250 nm. The amounts of the phenanthrene/surfactants sorbed to the soil were the difference between
the initial amount added and the amount remaining in the solution. The pH measurements were
conducted through a SevenEasy S20K pH meter (Mettler-Toledo, Columbus, OH, USA). All tests were
conducted in duplicate and the typical error in the measurement was less than ±10%.

2.4. Data Collection and Analysis

The candidate inputs (environmental parameters) were state variables, which had potential effects
on phenanthrene immobilization; the inputs included the initial phenanthrene concentration (X1),
added HA dose (X2), ionic strength (X3), temperature (X4), and pH (X5). The phenanthrene sorption
amount (Y) were the outputs (dependent variables). A total of 486 samples were obtained. The data
were divided into training and test sets. The training set was used for shaping the SCA trees and the
test set for verifying the developed model. The model calibration and verification were conducted
10 times though SCA methods to assure the stability of the model. In each experimental run, 162 and
81 samples were randomly selected as the training and the test set, respectively. The correlation
coefficient (R) and the root mean squared error (RMSE) were employed to evaluate the performance of
the SCA model. The RMSE is represented as:

RMSE =

√√√√√ n
∑

j=1
(vj − yj)

2

n − 1
(1)

where n is the number of samples in the training or test set, and vj and yj are the predicted and observed
values for the phenanthrene immobilization amount in the jth sample.
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2.5. Stepwise-Cluster Analysis

The classical methods are mainly classification methods associated with a few complexities.
For example, the variable observations collected for classical methods may be uncertain due to
causes such as instrumental or operational errors. The multiple variables selected to characterize
the sorption process may be dependent on each other. A common condition for most statistical
classification methods is that the variable samples should come from a normally distributed population.
In addition, many classical methods rely on subjective judgements to support the screening of
variables, selection of classification thresholds, and setting of sample sizes or numbers prior to
classification practices. These issues are challenging the effectiveness of existing classification methods,
the reliability of classification results, and the reasonability of impact studies or the other related
research. Recently, nonparametric statistical methods have received much attention because of their
superior capability in capturing nonlinear and discrete relationships between state and response
variables [17]. Stepwise-cluster analysis (SCA) is an emerging non-parameter regression technique.
It consists of a series of cutting or merging operations according to given statistical criteria and finally
generates a cluster tree in the sense of probability. SCA is capable of reflecting differences both between
and within clusters, therefore improving the prediction accuracy [24].

The whole or part of the training set can be treated as one cluster (α), including nα samples, m
independent variables (X), and one dependent variable (Y), indicated as follows:

α = [X1, X2, X3, . . . , Xm, Y] =


x11 x12 x13 · · · x1m y1

x21 x22 x23 · · · x2m y2

x31 x32 x33 · · · x3m y3
...

...
...

. . .
...

xnα1 xnα2 xnα3 · · · xnαm ynα

 (2)

Here please refer to the flowing SCA chart with detailed descriptions in our previous study [11].
Let cluster α be cut into two sub-clusters β and γ (with nβ and nγ samples, respectively). According to
Wilks’ likelihood-ratio criterion, the cutting point is optimal only if Wilks’ Λ value is a minimum [31].
According to Wilk’s likelihood-ratio criterion, the smaller the Λ value, the bigger the difference between
the sample means of β and γ. Since the Λ is directly related to the F statistic, the sample means of the
two sub-clusters can be compared for significant differences through an F test. Therefore, the criteria of
cutting (or merging or not merging) clusters is based on the F tests. All sub-clusters produced from the
original dataset will enter a set of iterative cutting (or merging) runs until all hypotheses of further cut
(or mergence) are rejected or the minimum number of samples (Nmin) within every cluster is reached.
After all calculations and tests are completed, an SCA tree can be built which indicates that the training
is done. When a new sample (x1, x2, ..., xm, y1; y1 is unknown) enters the tree at a cutting point, the
sample will finally drop into a tip cluster which cannot be either cut or merged further according to
the routes decided by new independent variables (x1, x2, ..., xm). The predicted value of y1 will be the
mean of the dependent variables of the training samples in the tip cluster. Therefore, the SCA tree can
predict new dependent variables when new samples enter the tree from top to bottom.

3. Results and Discussion

3.1. Sorption Studies

The performance of gemini surfactant modified palygorskite for the removal of phenanthrene
under the impacts of different state variables was investigated. From Figure 1a–d, it can be seen
that the phenanthrene immobilization was affected by the initial concentration, with a significant
sorption increase as the initial concentration increased from 0.3 to 1.0 mg/L. The initial concentration
provided an important driving force for overcoming all mass transfer resistance of phenanthrene
molecules between the aqueous and solid phases [1]. In Figure 1a, the effects of ionic strength on
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the immobilization of phenanthrene on modified palygorskite were evaluated, with phenanthrene
from 0.3 to 1.0 mg/L, ionic strength from 0.01 to 1 M, and a constant pH of 7. The phenanthrene
sorbed amounts were found to increase significantly with the increasing NaCl concentration from 0.01
to 1 M. The maximum phenanthrene immobilization was 0.476 mg/g at NaCl of 1 M. It could, to a
certain extent, be explained by the “salting-out” effect, which refers to the reduced solubility of organic
compounds in salt solutions [32]. Phenanthrene is a nonionic compound and the immobilization was
partially due to hydrophobic interaction mechanisms. The decrease in solubility caused an increase in
the immobilization capacity of the sorbents due to increasing hydrophobic interactions induced by
the increasing NaCl concentration [33]. Generally, the amount of phenanthrene sorbed by modified
palygorskite increased with the increasing NaCl concentrations at a given phenanthrene aqueous
concentration. The addition of more salt ions, therefore, can enhance the retention of phenanthrene
on modified palygorskite. This is of special interest for the removal of PAHs through modified
palygorskite from an aqueous phase with a high salinity level.
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The effects of pH on phenanthrene immobilization onto modified palygorskite were studied
through batch experiments at pH 3, 7, and 11. Figure 1b shows that the pH level can significantly
affect phenanthrene immobilization on modified palygorskite. The maximum uptake of phenanthrene
was 0.455 mg/L at pH 3 for the gemini surfactant modified palygorskite. Then the sorption reduced
markedly from pH 3 to 7 at all given concentrations of phenanthrene. A further increase of pH from 7
to 11 had less pronounced effects on phenanthrene immobilization. Three mechanisms applicable to
PAH sorption were proposed: the hydrophobic interactions, the electron donor–acceptor interaction,
and the π–π interaction [34]. Because palygorskite clay minerals contained low amounts of humic
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substances [35], mechanisms such as enhanced dipole interaction between the charged surface (electron
acceptors) and phenanthrene with electron-rich π systems (electron donors) might be the major cause
of phenanthrene immobilization. In addition, the solution pH affected the surface properties of the
sorbent and the degree of ionization of the sorbate [36]. The pHpzc of modified palygorskite was
7.9. The mineral surface would be covered with negative charges when the pH was higher than
pHpzc. The modified palygorskite was subjected to protonation at low pH or deprotonation at elevated
pH [37]. This would affect the sorption sites for PAHs on sorbent surface. The above-mentioned
mechanisms were to some extent related to solution pH, resulting in a dependence of PAH sorption
on aqueous pH. The detailed mechanisms depended on the physical and chemical properties of the
interactive sorbate–sorbent system and still needed further investigation.

The effects of HA on phenanthrene immobilization to gemini-surfactant-modified palygorskite
as a function of HA dose (0–80 mg OC/L) were investigated and the results are shown in Figure 1c.
The initial phenanthrene concentrations were 0.5, 0.75, and 1 mg/L, respectively. The immobilization
of phenanthrene increased at the low HA level and then decreased if more HA was added. Specifically,
when the added dose of HA was less than 4 mg OC/L, the sorbed phenanthrene amount varied from
0.442 to 0.460 mg/g. However, the binding affinity of phenanthrene to the modified palygorskite
decreased with the further addition of HA. By gradually increasing the HA concentration to 80 mg
OC/L, the retention of phenanthrene was hindered from 0.460 to 0.416 mg/g. At a low HA dose, the
initial phenanthrene sorption increase was presumably due to the binding of phenanthrene to HA
along with the sorption of HA onto modified palygorskite, forming a complexation of sorbed HA
with phenanthrene [38]. The hydrophobic interaction mechanism was reported as the major factor
responsible for the binding of PAHs to HA [39]. This process could also be produced by the π−π

interactions between phenanthrene and humic substance acceptor groups in aqueous solutions [40].
The presence of HA at the low concentration facilitated the uptake of phenanthrene due to the
cosorption of HA and the phenanthrene complex on the modified palygorskite surface. At higher HA
concentrations, phenanthrene immobilization decreased with increasing HA concentration. Instead
of cosorption, the HA molecules would inhibit phenanthrene retention through competition for
limited sites on modified palygorskite surfaces [41]. With the increasing dose of HA, HA molecules
would occupy the pores of modified palygorskite surfaces that were large enough to accommodate
phenanthrene molecules, thus reducing the accessibility of phenanthrene molecules to sorption
sites and reducing the phenanthrene sorption on modified palygorskite [42]. In addition, the high
hydrophobicity of phenanthrene enhanced its ability to be dissolved into the hydrophobic HA
molecules in the solution and impeded the phenanthrene retention on the modified palygorskite.
The pHPZC value of modified palygorskite was 7.9. Under the test pH, the HA sorption would
decrease and more HA molecules would enter the aqueous phase. This would also result in enhanced
phenanthrene solubility in the solution and thus in reduced phenanthrene sorption from sorbents.

The effects of temperature on phenanthrene immobilization were investigated in Figure 1d.
There was slight difference in phenanthrene sorption when the temperature varied from 283 to
293 K. However, the sorption decreased from 0.452 to 0.445 mg/g with temperatures varying
from 293 K to 303 K. This indicated that temperature played a negative effect on phenanthrene
immobilization. The uptake of phenanthrene was found to reduce with increasing temperature,
indicating that phenanthrene immobilization on modified palygorskite was favored at lower
temperatures. The reduction in phenanthrene immobilization capacity with increasing temperature
from 293 to 303 K indicated an exothermic nature of the immobilization process. One explanation was
that increasing temperature could enhance phenanthrene solubility, and decrease immobilization [43].

3.2. SCA Trees

An SCA tree was established to reflect the relationships between the state variables and the
dependent variables. There were several factors affecting the performance of the SCA model,
including the quality of original experimental data, internal configuration parameters (α and Nmin),
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the combination of state variables and the data partition strategy [11]. The internal parameters had
significant effects on the shape of the SCA trees, since the SCA relied on these variables for cutting and
merging procedures as well as for stopping the iterations. The criteria for the cutting and merging
clusters were: cut cluster when p ≤ α and merge clusters when p > α, where the p values used at cutting
and merging knots were significance levels of the F test. In this study, a default significance level of 0.01
was set for both cutting and merging exercises. In general, the higher the α value, the lower the F level
(i.e., a decreased strictness in the cutting which would result in more cutting operations). Similarly,
the lower the α value, the higher the F level (i.e., more merging operations because of the reduced
strictness of mergence). The Nmin was set as 3 in this study and it also placed significant effects on the
scales of the cluster trees since it was used as one of the end criteria in training the SCA tree.

As for experimental run No. 3, the corresponding SCA tree is described in Figure 2; it formed
a forecasting system to reflect the phenanthrene immobilization process at the water/modified
palygorskite interface. Based on the tree, the phenanthrene immobilization can be predicted.
For example, let X1 = 0.9, X2 = 20, X3 = 0.3, X4 = 300, and X5 = 9 be new inputs. To predict the
corresponding phenanthrene immobilization process, we have: X1 > 0.6 for the first branch knot so
that the sample enters cluster 3; X1 ≤ 0.9, so that it enters cluster 6; X3 ≤ 0.325, so that it enters cluster
12; X5 > 8.75, so that it enters cluster 19; and X2 > 7, so that it finally enters cluster 29 with a prediction
value of 0.337 ± 0.004. Let X1 = 0.4, X2 = 6, X3 = 0.2, X4 = 290, and X5 = 6.5 as new inputs. To predict
the corresponding phenanthrene immobilization, we have: X1 ≤ 0.6 for the first branch knot so that
the sample enters cluster 2; X3 ≤ 0.325, so that it enters cluster 4; X5 > 5.25, so that it enters cluster
9; and X2 ≤ 7, so that it enters cluster 16 and finally merges into cluster 38 with a prediction value
of 0.182 ± 0.011. Let X1 = 0.65, X2 = 12, X3 = 0.08, X4 = 310, and X5 = 8.5 as new inputs. To predict
the corresponding phenanthrene immobilization, we have: X1 > 0.6 for the first branch knot so that
the sample enters cluster 3; X1 ≤ 0.9, so that it enters cluster 6; X3 ≤ 0.325, so that it enters cluster 12;
X5 ≤ 8.75, so that it enters cluster 18; X3 > 0.075, so that it enters cluster 27; and X5 > 5.25, so that it
enters cluster 37 and finally merges into cluster 40 with a prediction value of 0.359 ± 0.021. Similarly,
we can obtain other prediction data with respect to any combination of X1–X5 through the SCA tree.
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The tree clearly shows the role of every environmental parameter in mapping the relationship.
However, the SCA tree could not directly quantify the effects of environmental factors on phenanthrene
immobilization. To this end, the effects of input (Xk) on the output (Y) in SCA are defined as [11]:

E f f ects(Xk, Y) =
NN

∑
i=1

NXk(i) (3)

where, NN is the number of total nodes in the SCA tree; and NXk (i) is the number of patterns (samples)
at node i of the SCA tree where the corresponding Xk variable is used as the cutting criteria at node i.
Correspondingly, NXk (i) represents the number of samples on which the Xk variable has influence at
node i. To a certain extent, the layers (nodes) where Xk is located in the SCA tree represent the weight
effect which Xk has on Y. This is because the higher the independent variables are in the SCA tree, the
earlier the classification criteria would depend on the variables, and the more data patterns on which
Xk would have an effect. Therefore, based on the obtained SCA tree, the effects of the environmental
factors on phenanthrene immobilization were ranged in a descending order as: initial phenanthrene
concentration, ionic strength, pH, added HA dose, and temperature. The results are consistent with
our previous studies using the fuzzy factorial method [1]. One of the advantages of SCA is that it
has no requirement for the format of training and test data, while factorial method needs preliminary
experimental design for the levels of input data.

Figures 3–5 and Table 2 show the results obtained using least squares support vector machines
(LSSVM) and random forest (RF) models for experimental run No. 3. The reason for choosing these
models for comparison was that the current models used for constructing relationships in sorption
studies are mainly based on these methods. The LSSVM-related model indicated a higher predictive
capability than the linear method for the sorption of methylene blue [44]. RF proved to be more
powerful than multiple linear regression to predict the sorption of bromophenol blue using activated
carbon sorbents [45]. As for the immobilization of phenanthrene on modified palygorskite, the
coefficient of the determination of R2 for training and test sets of SCA (0.994 and 0.992) were higher
than those of LSSVM (0.843 and 0.710) and those of RF (0.881 and 0.883). The RMSEs for training
and test sets of SCA (0.00837 and 0.0101) were lower than those of LSSVM (0.0454 and 0.0642) and
those of RF (0.0577 and 0.0603). From the data, the calibration and verification efficiency of RF was
higher than 0.8 and the whole dataset distributed along a straight line. However, the dataset was
unbalanced in terms of regional distribution and all the data were away from the line. Moreover, the
calibration and verification ability of LSSVM was limited. These results confirmed the better fitting and
predictive ability of SCA relative to LSSVM and RF when building nonlinear relationships between
environmental factors and the sorption amount of phenanthrene in the immobilization process.
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Table 2. Comparisons among SCA, LSSVM and random forest for the fitting of phenanthrene sorption
data (Run No. 3).

Run No. 3
SCA Random Forest LSSVM

Training Test Training Test Training Test

R2 0.994 0.992 0.881 0.883 0.843 0.710
RMSE 0.0084 0.0100 0.0577 0.0603 0.0454 0.0622

In this study, the data were collected 10 times for the model calibration and verification through
SCA methods. The calibration and verification of the model were conducted 10 times to assure
the stability of the model. Each experimental run consists of 243 samples, 162 samples for the
training set and 81 samples for the test set. The data were randomly sampled based on uniform
distribution. The correlation coefficients R2 and RMSE of SCA from ten experimental runs are listed
in Table 3. It is indicated in the table that all the R2 are approaching one and the RMSE approaching
zero. This confirmed the excellent prediction performance of the model when building nonlinear
relationships through SCA methods.
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Table 3. R2 and RMSE through SCA methods through 10 experimental runs.

SCA R2 RMSE SCA R2 RMSE

Calib_run1 0.994 0.00806 Verif_run1 0.990 0.0104
Calib_run2 0.996 0.00701 Verif_run2 0.994 0.00827
Calib_run3 0.994 0.00837 Verif_run3 0.992 0.0101
Calib_run4 0.996 0.00748 Verif_run4 0.990 0.0107
Calib_run5 0.994 0.00796 Verif_run5 0.990 0.0110
Calib_run6 0.996 0.00767 Verif_run6 0.988 0.0118
Calib_run7 0.994 0.00813 Verif_run7 0.992 0.0103
Calib_run8 0.996 0.00757 Verif_run8 0.988 0.0120
Calib_run9 0.992 0.00906 Verif_run9 0.992 0.00941

Calib_run10 0.994 0.00801 Verif_run10 0.992 0.00956

After collecting the experimental data 10 times, 10 SCA trees were built accordingly. The sequence
of the significance of the factors is listed in Table 4. It is obvious that X1 (initial phenanthrene
concentration) and X3 (ionic strength) are the two most significant factors influencing the sorption
process for all the experimental runs. X2 and X5 are less significant than X1 and X3. This is because
the sample size becomes smaller after several cutting/merging processes, and the system is not that
stable with a small dataset. Therefore, the sequence of X2 (added HA dose) and X5 (pH) might be
different. The most insignificant factor compared to the other four parameters is X4 (temperature),
though it still has certain effects on the immobilization process (Figure 1). In all, the ordering of the
effect of the input variables was basically the same for multiple trees, indicating that SCA can be used
to map the nonlinear and discrete relationships and elucidate the effects of factors on phenanthrene
immobilization at the aqueous/modified palygorskite interface.

Table 4. The sequence of the significance of the factors in the SCA tree.

Run Number Sequence of the Environmental Factor

1 X1 X3 X2 X5
2 X1 X3 X2 X5
3 X1 X3 X5 X2
4 X1 X3 X5 X2
5 X1 X3 X5 X2
6 X1 X3 X2 X5
7 X1 X3 X5 X2
8 X1 X3 X2 X5
9 X1 X3 X2 X5
10 X1 X3 X5 X2

4. Conclusions

In this paper, a stepwise-cluster inference model was developed to analyze the nonlinear
relationships among environmental factors and phenanthrene immobilization at the water/modified
palygorskite interface, including the initial phenanthrene concentration, pH, ionic strength,
temperature, and added HA dose. The results indicated that SI could help establish a statistical
relationship between environmental parameters and phenanthrene immobilization where discrete
and nonlinear complexities exist. Compared to LSSVM and RF methods, SI was more straightforward
for describing the nonlinear relationships and precisely fitting and predicting the immobilization
of phenanthrene. R2 and RMSE were calculated to demonstrate the accuracies of the developed
forecasting trees. Through the calculation of input effects on the output in SI model, the effects of
environmental factors on phenanthrene immobilization were ranged in a descending order as: initial
phenanthrene concentration, ionic strength, pH, added HA dose, and temperature. The maximum
phenanthrene immobilization on modified palygorskite was 0.476 mg/g under the experimental
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conditions tested and the corresponding removal efficiency of phenanthrene was higher than 94%.
To the best of our knowledge, this study was the first attempt to introduce SCA into mapping
the nonlinear relationships involved in PAH immobilization processes. It was expected that SCA
would expand the potential applications to other complicated relationships during multiple types of
sorbent/sobate systems in the immobilization processes.
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