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Abstract: Facing rapid loss of biodiversity as a consequence of climate change, Chile has formally
pledged to restore 600,000 ha of native forest by 2035. This effort, however, has not considered the
amount and quality of native plants required to meet this pledge. Thus, we examined data collected
during the annual, government-conducted census of small- and medium-sized nurseries from central
Chile, which account for 78% of the nation’s total plant production, to assess if current production is
sufficient to meet Chile´s restoration needs. We coupled this with data collected during our series
of ongoing research projects to determine if nurseries are currently meeting minimum seedling
quality standards based on morpho-physiological attributes. Our four-year analysis (2016–2019)
shows that the number of native seedlings has increased by only 4%, but because only 19% of nursery
managers have training, just 29% of all seedlings meet quality criteria for restoration. Thus, under the
current rate and quality of plant production, meeting restoration pledges desired by the year 2035
would not be achieved until 2181. This timeline can be accelerated through an urgent expansion of
nursery space, implementation of a continuous program for technology and knowledge transference,
and strong support through governmental policies.

Keywords: nurseries; management practices; international agreement; seedling attributes

1. Introduction

The severity of climate change has increased the pace of loss of biodiversity and the
rise in CO2 emissions [1]. Consequently, the United Nations (UN) declared 2021–2030
the “Decade of Ecosystem Restoration.” In recognition of the critical role of forests in
addressing challenges imposed by climate change [2,3], the Bonn Challenge and The New
York Declaration of Forests aim to restore 350 million ha worldwide by 2030. This has
led different countries to outline their commitments to forest restoration, prioritizing the
conservation and restoration of remaining natural ecosystems [4]. One such priority area is
the central–southern portion of Chile, where a high level of endemism of Chilean native
species has led to this region’s classification as one of the 35 global hotspots of biodiversity
for ecological conservation (Figure 1A,B) [5–7]. Considering the challenge of prioritizing
critical forests, global sustainability, and climate change, Chile has pledged to join several
international agreements that, once ratified by the Chilean national congress, will become
legally binding. Among these, as part of the Paris Agreement of 2015 (COP21), Chile vows
“To afforest 100,000 ha mainly with native species” by 2030; these restored ha have the
potential to sequester between 900,000 and 1,200,000 t of CO2 annually [8].
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Figure 1. Global hotspots of biodiversity ((A); modified from [7]) including the Valdivian Forests of
Chile (B) where the Maule, Ñuble, and Biobío regions occur (C). These three regions account for 78%
of the national plant production. Green stars indicate locations of surveyed nurseries (C).

Within Chile, complementary policies have been developed with the objective of align-
ing global challenges, such as the “National Biodiversity Strategy (2017–2030) and its Action
Plan” [9], with the “Plan for Climate Change Adaptation in Biodiversity” (2014-2019) [10].
Specifically, the “National Strategy of Climate Change and Vegetational Resources” [11]
and the Chilean National Forest Policy (2015–2035) [12], hereafter Forest Policy, propose
the “protection and restoration of the forest heritage,” indicating “the incorporation to
restoration processes of 500,000 ha with native species to 2035, preferentially in degraded
lands owned by small and medium entrepreneurs with high levels of erosion, fragmenta-
tion, and with loss of biological corridors, or that present lower quality and quantity of
water resources.”

In addition, during the summer of 2017, Chile faced its most catastrophic wildfire of
the last 50 years, affecting almost 600,000 ha, of which 239,490 ha were native forests [13].
This wildfire raised concern and prejudice among citizens regarding the negative conse-
quences of planting extensive areas of exotic species on native biodiversity [14] and in-
creased social desire for land restoration with native species for recovery of ecosystem
services [15].

In order to meet global restoration challenges, direct seeding and seedling planting
are the most common active strategies to restore degraded sites. However, results regard-
ing seed use efficiency (seedling-to-seed ratio) and subsequent seedling survival with
this methodology are low [16,17]. For example, a review of 120 experiments comparing
direct seeding and outplanting seedlings concluded that seeding results in significantly
fewer plants being established despite the higher use of seeds [18]. A similar review of
75 experiments regarding direct seeding in tropical and temperate forests determined that
average germination was 44% and of the seeds that germinated, seedling survival after
one season was only 21% [17]. Despite the fact that seeding is an attractive alternative
because it reduces planting costs, its poor species performance and low seedling density
achieved reduces its applicability [19–21]. Thus, planting native tree species to achieve
restoration goals is the most promising option [17]. Given this, it is surprising that with
ambitious national and international commitments for reforestation, the availability and
production of quality plants for restoration is rarely considered within the restoration
programs of countries, including Chile [15,22–24]. Furthermore, the poor quality and
low supply of native plant species in nurseries were recognized as some of the major
bottlenecks for the restoration of natural forests in Chile [15]. Within the next few years
in Chile, the demand will increase for nursery-produced native plants grown under the
concept of the “target plant” [25,26], meaning that the plants are cultivated to meet specific
morphophysiological attributes determined according to the restoration project objective(s)
and field characteristics. Without attention to this concept, the absence of desired plant
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quality attributes will result in increased on-site mortality, leading to higher economic and
environmental costs and an inability to achieve restoration goals [27].

2. Materials and Methods

In Chile, the common vernacular is to use the terms “reforestation” and “afforestation”
when discussing the planting of exotic tree species on existing and new forest plantation
sites, respectively, for future forest product use, whereas “restoration” is used when
discussing planting native tree species for all ecosystem services, which may also include
potential forest products [28].

In this paper, we more deeply discuss the bottleneck for restoring the restoration of
Chile’s natural forests [15], exploring three perspectives. First, we describe the current nurs-
ery capacity for the production of native plants needed for restoration to meet international
and national commitments. For this, we used the Chilean National Forest Corporation
(CONAF) database for the four-year period 2016 through 2019 [29–32]. We filtered this
annual, government census of national plant production by the number of plants, species,
region, number of growing seasons, and stocktypes.

Second, we leveraged the census data with data and observations obtained through
several research and technology transfer projects led by our Centro Tecnológico de la
Planta Forestal (CTPF; Technology Center for Forest Plants) program within the Chilean
Forest Institute (INFOR) from 2014 to 2019. These activities were conducted within the
Biobío, Ñuble (a portion of Biobío until 2018), and Maule regions because their nurseries
account for 78% of the total national plant production (Figure 1C) [32], excluding nurseries
from large forest enterprises that produce mainly non-native species. Within these regions,
27 small- (50,000 to 300,000) and medium-sized (300,000 to 2,500,000 plants) forest nurseries
(17 from Biobío-Ñuble and 10 from Maule; size defined in [33]), which represent 60% and
98% of plants produced in these three regions, respectively, were characterized. Data in-
cluded the education and experience level of managers, production system (bareroot or
container), and specific propagation practices toward achieving morpho-physiological
attributes. These data provided insight into the relationship between propagation practices
and subsequent plant attributes and allow us to diagnose limiting factors in the current
production process.

Third, we use the capacity and production factor information to suggest ways to adjust
the pace and scope of Chilean efforts to meet restoration goals. Together, these perspectives
address one of the greatest environmental challenges faced by the Chilean forestry sector
this decade.

3. Results and Discussion

3.1. Availability of Plants and Species to Achieve Restoration Challenges

During the four-year period (2016–2019), Chilean nurseries doubled the number of
trees and shrubs they grew annually for ecosystem restoration, reforestation, and afforesta-
tion; in 2019, about 169 million plants were in production (Table 1). Almost all of this
increase was due to an expansion in the production of exotic seedlings in response to the
2017 wildfire, despite that almost half of the burned area corresponded to native forest.
Exotic seedling production on average accounts for 89% of the total number of plants in
production annually. Although the number of exotic species in production is high (287)
and consistent across years (Table 1), three exotic species (Pinus radiata (D. Don), Eucalyptus
globulus (Labill.), and Eucalyptus nitens (H. Deane & Maiden) Maiden) account for 95% of
the total production of exotic plants.
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Table 1. Number of native and exotic species and seedlings produced by season between 2016 and 2019. Trend values (%)
indicate changes in plant production between 2016 and 2019 (average ± SD).

2016 2017 2018 2019 Total Average Trend (%)

Native

Number of seedlings

Tree 9,618,953 10,984,804 10,938,390 9,684,443 41,226,590 10,306,648±
756,980 0.7

Shrub 431,084 744,752 883,556 1,027,296 3,086,688 771,672±
254,681 138

Others * 464,204 682,973 278,390 182,138 1,607,705 401,926±
220,933 −61

Total 10,514,241 12,412,529 12,100,336 10,893,877 45,920,983 11,480,246 ±
918,451 4

Number of Species
Tree 59 65 75 94 – 73 ± 15 59

Shrub 44 52 72 104 – 68 ± 27 136
Others * 98 63 84 150 – 99 ± 37 53

Total 201 180 231 348 – 240 ± 75 73

Exotic

Number of seedlings 72,053,797 67,535,380 118,915,285 158,296,526 416,800,988 104,200,247±
42,897,733 120

Number of species 288 292 282 284 – 287 ± 4 −1

Total 82,568,038 79,947,909 131,015,621 169,190,403 462,721,971 115,680,493
± 42,707,255 105

* Cactus, climbing plants, herbaceous, etc.

The total number of native seedlings in production each year remained constant at
about 11.5 million per year (Table 1). The overall number of native species increased by 73%,
with about twice as many new shrub species added as tree species (Table 1). Although the
annual average number of native species is high (240), just 10 native species were re-
sponsible for 65% to 71% of the total native species in production, with five tree species
(four of them Nothofagus) accounting for about half of the production (Quillaja saponaria
(Molina), 19%; N. dombeyi (Mirb.) Oerst, 13%; N. pumilio (Poepp. & Endl.) Krasser, 8%;
N. obliqua (Mirb.) Oerst, 7%; and N. alpina (Poepp. & Endl.) Oerst. 6%). The contribution of
native shrub seedlings to the total native seedling production increased from 4.1% to 9.4%
(Table 1), with the most commonly produced species belonging to four genera: Azara spp.,
Baccharis spp., Berberis spp., and Escallonia spp.

In Chile, native plants are produced in three ways (i.e., stocktypes): (1) in larger-
volume pots (>15 L) and polybags (500 mL to 40 L); (2) as bareroot stock in field soil;
and (3) as “covered root” seedlings, which includes all hard-sided containers (54 to 280 mL)
(Table 2). As already mentioned, on an annual basis, about 11.5 million native plants
are in production. Almost one-third of the production is in pots and polybags (Table 2)
that are not intended for restoration; these plants are for ornamental use (e.g., community
landscapes, parks, etc.). The remaining 7.7 million native plants, grown as bareroot or
covered root stocktypes, are destined for restoration. On an annual basis, nearly 60% of
these one-season plants remain unsold (i.e., holdover stock) and are transplanted to larger
pots and polybags and are maintained for several seasons in the nursery before outplanting
(Table 2). These plants become unsuitable for restoration purposes because of root malfor-
mation [34–36] and nutrient deficiency owing to lack of fertilization during subsequent
growing seasons [37]. This means that, on average, nurseries currently have about 11.5
(Table 2) million native plant seedlings in production every year, but only 3.3 million meet
the criteria for outplanting and are delivered annually for restoration planting.
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Table 2. Number of native plants produced between 2016 and 2019 according to stocktypes and the nursery growing season.

Nursery Growing Season

Stocktypes 1 2 3 >4 N.I Total

Pots and polybags 1,059,216 1,335,589 818,568 424,783 52,155 3,690,310
Bareroot 285,205 624,765 233,724 75,632 – 1,219,326

Covered root * 3,023,906 3,031,489 338,096 80,073 4,000 6,477,563

Total 4,368,327 4,991,842 1,390,387 580,488 56,155 11,387,199

* Including speedling, tubes, and Patrick system. N.I: No information.

Chile’s commitment to the Paris Agreement calls for planting 100,000 ha within the
decade. The goal of the Forest Policy is more ambitious, requiring nearly 500,000 ha.
Assuming an average establishment density of 1000 plants ha−1 (range between 400 and
1600 plants ha−1; [28]) and 75% survival is achieved (an optimistic goal), then 1333 plants
ha−1 will be required. Current nursery production rates will, therefore, be sufficient to
plant about 2475 ha year−1. Thus, also assuming that 80% of the committed ha are planted
with native species, it will require 32 and 161 years, instead of the pledged 10 and 15 years,
to achieve the goals of restoring the 80,000 ha under the Paris Agreement and the 400,000 ha
under the Forest Policy provisions considering only native species, respectively. Clearly,
improving nursery efficiencies to reduce the length of production cycles and expand
nursery space is needed to increase the pace of the restoration trajectory. Refining nursery
practices so that all container-native plants are produced within a single growing season
would double potential planting to 5073 ha year−1, thereby reducing the years required
to meet the goals by half. Recent research has demonstrated that many of these native
plant species can readily be grown in a single growing season with proper nursery cultural
practices [38–42]. The remainder of this manuscript looks at factors that limit efficiencies
within Chilean nurseries, and recent research that addresses those inefficiencies.

3.2. Diagnosing Nursery Production Factors that Limit Native Plant Production

Our survey revealed that only 19% of the nursery managers have a forest engineer or
forest technician degree (equivalent to a four-year Bachelor of Science degree or two-year
technical degree, respectively). Thus, managers and their staff rely mainly on previous
experience or third-party recommendations, often lacking sound technical or scientific
knowledge [27,35,43]. This lack of science-based, technology transfer has created barriers
between these smaller nurseries and the larger nurseries operated by forest enterprises
that possess more technology, access to scientific literature, and improved professional
development. Thus, it is difficult for smaller nurseries to produce seedlings as efficiently as
the larger nurseries, and often seedling quality is compromised. In terms of management
opportunities to improve the pace of native plant seedling growth and overall seedling
quality in small- and medium-sized nurseries, the three key challenges are understanding
the roles of the growth substrate, fertilization, and irrigation on the growth of native plants.

The first challenge faced by nurseries is the use of composted P. radiata bark; 90%
of the nurseries in Maule and 100% in Biobío and Ñuble use this as the main growth
substrate [43,44]. In terms of nutrient availability, this substrate is inert [45]; therefore,
all nutrients must be supplied through fertilization (after accounting for inputs via the
irrigation water) and, according to our survey, this is rarely considered by managers.
For native species, nutrient requirements are yet to be developed for specific species.
This is in stark contrast to the exotic tree species E. globulus, planted for forest products in
Chile, where detailed information regarding applied nutrient concentrations and nutrient
foliar levels at the end of the production stage are well known [45,46].

The second challenge is proper fertilization. Our survey found that 100% of the re-
sponding nurseries use soluble fertilizers (e.g., Ultrasol®, SQM, Santiago, Chile; or Vitra®

Vitra, Santiago, Chile) or controlled-release fertilizers (e.g., Osmocote® ICL Specialty Fertil-
izers, Summerville, SC, USA; or Basacote® Compo Expert, Santiago, Chile) that have been
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specifically formulated for use on Chilean agricultural soils, not soilless media. These fer-
tilizers have low concentrations of magnesium and sulfur (less than 1%) and almost no
calcium. Therefore, it is common to observe deficiencies in these elements (Figure 2).

Figure 2. Deficiency symptoms of magnesium in Eucalyptus nitens (A) and phosphorus in Eucalyptus
globulus (B) detected during the 2014–2015 growing season at nurseries in the Biobío region.

Proper application of irrigation is critical to efficient seedling production and is the
third challenge to native plant production in Chile. Determining when and how much to
irrigate can be achieved by many ways [47], including visual and tactile determination,
container weight measurement, or through the use of a pressure chamber. Our survey
found that 100% of responding nurseries base timing of irrigation events on “visual ap-
pearance,” indicating a lack of objective irrigation criteria. This is the simplest method [47],
but it is highly subjective and requires extensive experience. We found that using this
technique has led nursery managers to schedule irrigation systematically rather than based
on plant needs, often applying irrigation daily, and for some operations, up to three times
per day [43,44,48]. The result is excessive irrigation and increased costs associated with the
expense of water, energy use, and wear on equipment [44].

Basing irrigation on qualitative techniques can have deleterious biological impacts
as well. The current irrigation technique promotes an environment with high relative
humidity, increasing the occurrence of foliar pathogens such as Botrytis spp. (Figure 3A)
and promoting the development of cryptogams (i.e., algae, moss, and liverworts) on the
surface of the growth substrate, which becomes a physical barrier for water and nutrient
absorption (Figure 3B) [49,50]. For example, Dumroese et al. [49], when comparing over-
head and subirrigation techniques, observed that overhead irrigated plants had 3× more
moss growth on the substrate than subirrigated plants. Excessive irrigation leaches nutri-
ents from the growth substrate, decreasing element availability and absorption efficiency,
which leads to lower seedling nutrient concentrations at the end of nursery production [51].
This problem is exacerbated when coupled with fertigation (irrigation water containing
soluble fertilizers) applied at low nutrient concentrations. Combining frequent irrigations
and with the application of low nutrient concentrations reduces the absorption of nutrients
such as nitrogen (N). In Picea glauca (Moench) Voss, reducing irrigation up to 30% v/v
decreased leachate volume by 65% and the quantity of N leached by 52%, without any
negative effects on plant growth [52].
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Figure 3. (A) Incidence on Botrytis cinerea on Eucalyptus globulus plants; (B) moss growth on the
speedling surface due to excessive irrigation.

During our diagnostic survey performed during 2014–2017 in E. globulus plants pro-
duced in the Biobío region, leaf N concentrations were 0.69% (Table 3). This value is
well below the proposed national standard for propagation material for forest use (i.e.,
NCh 2957/0.Of2006; [53]), which establishes an acceptable range from 1.7% to 2.5% of leaf
N. This observed value is also well below other published results [45,46] (Table 3) that show
it is possible to achieve these concentrations through integrated irrigation management
and fertigation of species-specific N applications. Proper N concentrations are important
because it has been extensively demonstrated that low N levels decrease field survival
due to lower capability for root growth [39,54–56]. A recent review [55] indicated that
nutrient-loaded seedlings performed better during outplanting in Mediterranean areas as a
consequence of the increased growth of new roots. In agreement, Villar-Salvador et al. [56]
reported that seedlings of two Mediterranean woody species, Quercus coccifera L. and Quer-
cus faginea Lam., with higher N concentrations, performed better during field establishment
than those with lower N concentrations; higher N values were positively correlated with
root growth capacity. Accordingly, an increase in foliar N from 0.89% to 1.58% caused an
increase in field survival from 40% to 80% in E. globulus seedlings [57]. While this work was
done with an exotic Eucalyptus species, the concept likely applies to any woody plant in
propagation, and research with native species in Chile confirms it. Ovalle et al. [39] reported
a survival rate between 80% and 93% for the native Q. Saponaria, with foliar N concen-
trations between 2.2% and 2.7%, respectively. Similarly, Acevedo et al. [41] observed that
increasing whole-plant N concentration from 0.61% to 0.93% increased first-year survival
of Nothofagus alessandrii Espinosa from 28% to 51%.

Table 3. Applied nitrogen concentrations (mg L−1) and subsequent leaf N concentrations (%) on Eucalyptus globulus plants
produced in hard-sided containers in research nurseries [45,46], which we observed in production nurseries in the Biobío
region during 2015.

Source Treatments NCh *

Monsalve et al. (2009) [46]
Applied N (mg L−1) 50 100 150 200 – –

Leaf N (%) 1.17 1.36 1.44 1.64 – 1.7–2.5

Acevedo et al. (2021) [45]
Applied N (mg L−1) 50 150 300 450 600 –

Leaf N (%) 1.21 1.48 1.86 1.99 2.22 1.7–2.5

Growing season 2013–2014
MeanNur_1 Nur_2 Nur_3 Nur_4 Nur_5

Biobío region (2015)
Applied N (mg L−1) 10 1.9 75 93 57 47.3 ± 40

Leaf N (%) 0.87 0.75 0.66 0.60 0.58 0.69 ± 0.12

* Standards according to the Chilean norm NCh 2957/0. Of2006. Nur_n: different nurseries.
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3.3. Increasing the Pace and Scope of Restoration

Considering the current national situation, Chile lacks the capacity to produce suf-
ficient native plants to meet the timelines of the Paris Agreement and the Forest Policy.
To address the insufficient quantity, it is necessary to shift production from pots and bags
to restoration stocktypes/production types, expand current nurseries, and/or develop
new nurseries.

Governmental policies and incentives are key to overcoming the bottleneck of plant
production [15] and should promote the interest of private entrepreneurs to invest in the
expansion or establishment of forest nurseries. This effort must be linked to the critical
seed supply chain described by León-Lobos et al. [58] and Álvarez et al. [59]. These policies
could transform restoration efforts by creating important economic activity that generates
green jobs and income, especially in rural communities. Indeed, government incentives
and investments in nurseries and seed collection activities for ecological restoration have
spurred economic activity in Brazil [60,61].

A permanent program that transfers technology and knowledge about best manage-
ment practices to nursery managers would help improve plant quality [27]. Well-trained
nursery managers would attain adequate knowledge to implement technologies, solve prob-
lems, and implement the correct management practices to produce seedlings that meet
morphological and physiological quality standards. This action should address the low lev-
els of formal education presented by nursery managers by providing regular, science-based
training, and instruction in efficient management techniques. The two most important
and ongoing topics include proper fertilization and irrigation, which are interconnected.
For example, training in designing appropriate fertilization schemes using customized
or commercial fertilizers would increase fertilization efficiency, lower production costs,
and yield plants with recommended nutrient concentrations to support improved survival
and growth on the outplanting site. Likewise, training for the implementation of efficient
irrigation techniques, monitoring, and scheduling based on the specific water demand of
species, rather than systematic irrigation, would yield further benefits. The use of these
best management practices should increase nursery efficiency by yielding more plants
of higher quality in a shorter period of time, thereby reducing costs, decreasing resource
inputs, and reducing the carbon footprint. Improved plant quality will have a positive
effect on plant field survival and growth, thus increasing the pace and scope of successful
restoration. The development of such a technology transference program may have addi-
tional benefits, such as providing the basis for a collaborative network among nurseries
that promotes resource sharing, and fosters the exchange of native plant materials from
those with surplus inventory to those needing stock, thereby balancing supply and demand
issues and avoiding the problem of “holdover” stock.

All recommendations and decisions should be based on the best available science.
Currently, the Chilean norm for plant quality is focused on exotic species, except for
N. alpina. Thus, Chile has an urgent need for research aimed at developing appropriate
standards for morphophysiological traits (i.e., seedling quality) of native tree and shrub
species and the nursery management techniques required to achieve them. With the
realization that other native plants are also important for other types of restoration activities
(e.g., wetlands, prairies, riparian zones, xerophytic formations, etc.) focused research on
less-known species and ecosystems that informs nursery production protocols and field
establishment techniques would provide a more holistic approach to restoration in Chile
and thereby avoid an oversimplification of the structure and functions of ecosystems to be
restored [4,61,62].

4. Conclusions

In this study, we discuss in depth an important bottleneck proposed by Bannister et al. [14]
for the restoration of natural forests in Chile. Meeting Chile’s national and international com-
mitments to forest restoration will require immediate action and diligence across the nursery,
scientific, and policy sectors. Under the current scenario, Chile will not meet its pledged forest
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restoration timelines and biodiversity goals. Instead of meeting the Paris Agreement pledge
by 2030 and the national Forest Policy goal by 2035, realization will not be achieved until
2052 and 2181, respectively. This delay is caused by low production capacity (11.5 million
seedlings per year) coupled with poor seedling quality (only 29% have sufficient quality for
restoration), the latter exacerbated by inadequate training of nursery managers (only 19% with
formal training). To address this native plant production bottleneck, we recognized three key
needs: (1) the implementation of strong governmental policies that incentive the generation of
nurseries as a new economic activity; (2) the development of science-based information for
production and establishment techniques, including species from diverse forest ecosystems,
which could serve as input for (3) the establishment of a permanent technology and knowl-
edge transference program to nurseries. These challenges do, however, offer an opportunity
to develop rural economies with improved resource sustainability that ultimately increase
the pace and scope of forest restoration needed to conserve and restore Chile’s remarkable
endemic forest biodiversity.
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